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Accumulating evidence indicates the presence of structural and functional abnormalities
of the posterior cingulate cortex (PCC) in patients with major depressive disorder
(MDD) with suicidal ideation (SI). Nevertheless, the subregional-level dynamic functional
connectivity (dFC) of the PCC has not been investigated in MDD with SI. We therefore
sought to investigate the presence of aberrant dFC variability in PCC subregions in
MDD patients with SI. We analyzed resting-state functional magnetic resonance imaging
(fMRI) data from 31 unmedicated MDD patients with SI (SI group), 56 unmedicated MDD
patients without SI (NSI group), and 48 matched healthy control (HC) subjects. The
sliding-window method was applied to characterize the whole-brain dFC of each PCC
subregion [the ventral PCC (vPCC) and dorsal PCC (dPCC)]. In addition, we evaluated
associations between clinical variables and the aberrant dFC variability of those brain
regions showing significant between-group differences. Compared with HCS, the SI
and the NSI groups exhibited higher dFC variability between the left dPCC and left
fusiform gyrus and between the right vPCC and left inferior frontal gyrus (IFG). The SI
group showed higher dFC variability between the left vPCC and left IFG than the NSI
group. Furthermore, the dFC variability between the left vPCC and left IFG was positively
correlated with Scale for Suicidal Ideation (SSI) score in patients with MDD (i.e., the SI
and NSI groups). Our results indicate that aberrant dFC variability between the vPCC
and IFG might provide a neural-network explanation for SI and may provide a potential
target for future therapeutic interventions in MDD patients with SI.

Keywords: major depressive disorder, posterior cingulate cortex, magnetic resonance imaging, suicidal ideation,
dynamic functional connectivity (dFC)
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INTRODUCTION

Suicide presents a heavy burden on public health, resulting
in nearly one million deaths each year worldwide (Turecki
and Brent, 2016). Important contributors to suicide include
familial, social, cultural, genetic vulnerability, psychological, and
psychiatric factors (Turecki and Brent, 2016). It is reported that
up to 80% of people who die by suicide have mental disorders
(Ilgen et al., 2010) and more than half of suicide attempters
suffered from depression at the time of the attempt (Chahine
et al., 2020). Suicidal ideation (SI), described as the consideration
or plan to commit suicide (Klonsky and May, 2014), is a
significant risk factor for suicide among patients with major
depressive disorder (MDD) (Klonsky et al., 2016). Therefore,
efforts to achieve a better comprehension of the neurobiological
mechanisms underlying SI in patients with MDD are crucial to
make progress in the treatment and prevention of suicide.

The posterior cingulate cortex (PCC), which forms a key
part of the default mode network (Buckner et al., 2008),
demonstrates different brain activity and increased functional
connectivity during the resting state than during cognitive
tasks (Greicius et al., 2003; Pfefferbaum et al., 2011). The PCC
forms a key hub for self-referential processing (Johnson et al.,
2009), cognitive control (Vanyukov et al., 2015), and emotion
processing and underlies multidomain cognitive functions by
linking to distal cortical areas, such as the prefrontal cortex
(Leech et al., 2011). In the last decade, much neuroimaging
literature has reported structural and functional changes in
the PCC of MDD patients with SI (Schmaal et al., 2020).
A structural study found increased PCC volume in MDD
patients with SI when compared with MDD patients with
suicide attempts (SAs) (Hong et al., 2021). Functional magnetic
resonance imaging (fMRI) has been widely used to investigate
aberrant brain activity in the PCC in MDD patients with SI,
and brain dysfunction has been related to cognitive control
(Minzenberg et al., 2015) and self-referential (Quevedo et al.,
2016) observations in these patients. For instance, Marchand
et al. (2013) reported aberrant functional connectivity between
the PCC and dorsolateral prefrontal cortex and inferior frontal
gyrus (IFG) during motor control tasks in MDD patients with SI.
Additionally, this aberrant functional connectivity was positively
correlated with SI intensity (Marchand et al., 2013). Analogous to
this, decreased resting-state functional connectivity between the
PCC and habenula has also been detected in MDD patients with
SI (Ambrosi et al., 2019).

The abovementioned studies were conducted from the
viewpoint that the PCC is a single homogeneous structure;
however, accumulating evidence indicates that the PCC is not
homogeneous, either structurally or functionally (Leech et al.,
2011). On the basis of the cytoarchitectonic characteristics of
the PCC, Fan et al. (2016) recommended that the PCC should
be divided into two major subregions, the ventral PCC (vPCC)
and dorsal PCC (dPCC) nuclei. The dPCC is reported to play an
important role in the orientation of the self and body in visual
space (Vogt et al., 2006), whereas the vPCC is at an intermediate
stage of information processing between visual recognition
and emotion-related substrate and plays a key role in self-
reflective function (Johnson et al., 2002; Uddin et al., 2005). PCC

subregion-based network abnormalities or volume differences
have been reported in schizophrenia (Ebisch et al., 2018),
epilepsies (Parvizi et al., 2021), autism spectrum disorders (Lau
et al., 2019), obsessive-compulsive disorder (Matsumoto et al.,
2010), Alzheimer’s disease (Xu et al., 2009), and chronic pain
(Yoshino et al., 2018). Nevertheless, PCC dysfunction at the
subregional level has been little studied in MDD patients with
SI. Therefore, we still know little about whether PCC subregion-
based dysfunction is disrupted in MDD patients with SI.

Using the approach of static functional connectivity, aberrant
brain activity in PCC subregions was reported in MDD patients
with SI (Chase et al., 2021, 2017). Of note, resting-state
functional connectivity has traditionally relied on static analytic
approaches that assume stable patterns of connectivity across the
entire resting scan period. However, human brain connectivity
shows time-varying profiles across periods of unconstrained
rest (Allen et al., 2014; Zalesky et al., 2014). Analysis of
the variability of functional connectivity (dFC) may therefore
enable a more sophisticated demonstration of the spontaneous
fluctuating nature of neural signals (Vidaurre et al., 2021) and
their association with cognition and behavioral performance
(Kucyi et al., 2017). Thus, investigation from the perspective of
temporal dynamics is needed to explore aberrant dFC in MDD
patients with SI. Recently, dFC is increasingly being suggested
as a prognostic indicator of disease (Preti et al., 2017; Lurie
et al., 2020), such as Parkinson’s disease (Kim J. et al., 2017),
Huntington’s disease (Espinoza et al., 2019), and depression (Liao
et al., 2018). Moreover, a prior study reported that patients with
depression with SI revealed increased dynamic connectomics
relative to patients with depression without SI and healthy
controls (HCs) (Liao et al., 2018). Thus, a better understanding
of dFC variability may offer nuanced insights into brain activity
in MDD patients with SI, further improving our understanding
of the psychopathological mechanisms underlying MDD with SI.
Up to now, no study has investigated dFC variability differences
in PCC subregions in MDD patients with SI.

In the current study, we analyzed resting-state fMRI data
from 31 unmedicated MDD patients with SI, 56 unmedicated
MDD patients without SI, and 48 matched healthy subjects. The
sliding-window method was applied to characterize the whole-
brain dFC of each PCC subregion. We generated the following
hypotheses: (i) relative to HCs and MDD patients without SI,
MDD patients with SI would exhibit anomalous dFC patterns
in PCC subregions; and (ii) the aberrant dFC variability would
show associations with clinical variables. With these hypotheses,
we sought to identify aberrant dFC variability in PCC subregions
in MDD patients with SI. In addition, we evaluated correlations
between clinical variables and the aberrant dFC variability of
brain regions showing significant between-group differences.

MATERIALS AND METHODS

Participants
In total, 89 unmedicated patients with MDD between the
ages of 18 and 65 years were drawn from the Molecular
Biomarkers of Antidepressant Response study (clinical trial
number: ChiCTR1800017626) cohort, the data of which were
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published in our previous study (Lan et al., 2021). For all patients,
the entrance criteria were (i) meeting the criteria for MDD
according to the Diagnostic and Statistical Manual of Mental
Disorders, 5th edition; (ii) available imaging data and data on
symptoms; (iii) a score ≥ 17 on the 17-item Hamilton Depression
Rating Scale (HAMD-17) (Helmreich et al., 2012); and (iv)
medication-free for at least 4 weeks before inclusion in the trial.

The exclusion criteria included a history of other major
psychiatric disorders meeting the criteria of axis I of the
Diagnostic and Statistical Manual of Mental Disorders, 5th
edition, current serious and unstable somatic disease or a
history of neurologic or other chronic medical conditions, a
history of substance abuse or dependence, breast-feeding, and
pregnancy. Recruitment was carried out at the Affiliated Brain
Hospital of Guangzhou Medical University, Guangzhou, China.
Ethics approval was obtained from the ethics committees of the
Affiliated Brain Hospital of Guangzhou Medical University. In
addition, healthy volunteers (n = 48) recruited from the local
community served as HCs. Informed consent was signed by all
participants before participating in this study.

Assessment of Suicidal Ideation and
Depression
The severity of depressive symptoms was assessed using the
17-item HAMD. All raters were masters- or doctoral-level
psychiatrists who had undergone training on performing the
HAMD-17 before the study to maintain inter-rater reliability, and
they all showed an intra-class correlation coefficient > 0.9. The
Scale for Suicidal Ideation (SSI) was used to assess the presence
and intensity of SI according to 19 items (Beck et al., 1979).
Each item has three alternative statements graded from 0 to 2,
with the total score ranging from 0 to 38 points, with higher
scores indicating greater SI. In this study, the patients with MDD
were classified into an SI group (SSI > 3) and a no SI (NSI)
group (SSI ≤ 3). This threshold has been described as a clinically
significant cutoff for SI in previous studies (Holi et al., 2005;
Ballard et al., 2015; Grunebaum et al., 2018).

Magnetic Resonance Imaging Data
Acquisition
Participants underwent resting-state fMRI on a 3T Philips
Achieva MRI Scanner (Philips, Netherlands). Whole-brain
fMRI was acquired using a gradient-echo echo planar imaging
sequence with the following parameters: repetition time
(TR) = 2,000 ms, echo time = 30 ms, flip angle = 90◦,
slice thickness = 4 mm, number of slices = 33, and field of
view = 220 mm × 220 mm. A total of 240 functional volumes
were acquired in 8 min. During the MRI scans, all participants
were instructed to keep their eyes closed but stay awake.

Resting-State Functional Magnetic
Resonance Imaging Preprocessing
Functional image preprocessing was performed using the Data
Processing Assistant for Resting-State fMRI (DPARSF1)

1http://rfmri.org/DPARSF

implemented in MATLAB (version R2013b). For each
participant, the first 10 functional volumes were removed
to ensure signal stabilization, then the remaining 230 volumes
were corrected for timing differences between slices. The
motion-corrected functional images were conducted using a six
motion parameter (rigid body). Notably, the mean framewise
displacement (FD) based on the Jenkinson model (FD-
Jenkinson) was computed by averaging the FD from every time
point for each participant (Jenkinson et al., 2002). Participants
with more than 3 mm of head movement or 3◦ of rotation were
excluded. The images were then spatially normalized to the
standard Montreal Neurological Institute echo planar imaging
template and resampled to 3 mm × 3 mm × 3 mm. After
spatial normalization, the images were smoothed using a 4-mm
full-width at half-maximum Gaussian kernel. Subsequently, we
treated the six parameters from the rigid-body translation, the
white matter signal, and the CSF signal as nuisance covariates to
be regressed out. Finally, the images were filtered with a temporal
band-pass filter of 0.01–0.08 Hz.

Dynamic Functional Connectivity
Analysis
Bilateral dPCC and bilateral vPCC regions of interest (ROIs)
were derived from the Brainnetome Atlas (2Figure 1). dFC
analysis was conducted using a sliding-window approach in the
DPABI software3. The sliding-window method was performed to
explore time-varying changes in functional connectivity during
resting-state fMRI scans. The resting-state blood oxygenation
level-dependent (BOLD) time series was segmented into 50 TR
windows with a size of 100 s. A sliding window with a step
size of 1 TR was applied, resulting in 181 consecutive windows
across the entire scan. We chose a window length of 50 TR
(100 s) with a step size of 1 TR (2 s) because it has been
shown to be able to maintain a balance between capturing rapidly
shifting dynamic relationships and obtaining steady correlations
(Leonardi and Van De Ville, 2015; Shunkai et al., 2021). For
each window, correlation z maps were calculated between the
truncated time course of the ROI and all other voxels using
Fisher’s z−transformed Pearson correlation coefficient, resulting
in 181 sliding-window correlation z maps across the entire scan
for each participant. Consequently, the dFC was estimated by
calculating the standard deviation (SD) of the z maps across the
181 windows, and z-standardization was then applied to the dFC
maps. Finally, all dFC maps were spatially smoothed using a
Gaussian kernel of 4 mm × 4 mm × 4 mm full-width at half
maximum. To further validate the reliability of the results, we also
analyzed other window sizes of 30 and 70 TR (Liao et al., 2014).

Statistical Analyses
Demographic and clinical data were tested for normality using
the Shapiro–Wilk or Kolmogorov–Smirnov normality test. If
demographic and clinical data passed the normality test, a
Student’s t-test or one-way ANOVA was used, whereas a
Mann–Whitney test was performed if data were not normally

2http://www.brainnetome.org/
3http://rfmri.org/dpabi
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FIGURE 1 | Four seeds of the posterior cingulate cortex in the bilateral hemisphere. L, left; R, right; dPCC, dorsal posterior cingulate cortex; vPCC, ventral posterior
cingulate cortex.

distributed. Chi-square tests or Fisher exact tests were used
for categorical variables. Statistical calculations were carried out
using Statistical Package for the Social Sciences 24.0 (SPSS Inc.,
NY, United States).

To identify the within-group dFC patterns of each PCC
subregion, one-sample t-tests were conducted in the SI, NSI,
and HC groups (p < 0.05, uncorrected). For each PCC
subregion, analysis of covariance (ANCOVA) was used to test
for between−group differences in dFC maps within the union
mask of one-sample t-tests of the SI, NSI, and HC groups.
Age, gender, and mean FD were treated as covariates. All
statistical maps were corrected for multiple comparisons using
Gaussian random field (GRF) correction (cluster significance
p < 0.05/4 = 0.0125, voxel significance p < 0.005) performed
using DPABI software. The mean z-scores of brain regions
showing significant differences among the three groups were
extracted for further post hoc analyses (p < 0.05, Bonferroni
correction test). Finally, correlations between clinical variables
(SSI scores and HAMD without suicide) and the aberrant
dFC variability measurements were performed in the patients
with MDD using Spearman correlation (p < 0.05, Bonferroni-
corrected test).

RESULTS

Demographic and Clinical
Characteristics
There were no significant differences in gender, mean FD, and age
between the SI, NSI, and HC groups (all p > 0.05). In addition,
no significant differences were found in education, duration of
illness, and age of onset between the SI and NSI groups (all
p > 0.05). However, we found significant differences in the scores
of HAMD-17, HAMD-17 without suicide, and SSI between the
SI and NSI groups (all p < 0.05). The detailed demographic and
clinical features of the participants are presented in Table 1.

Dynamic Functional Connectivity
Variability in the Posterior Cingulate
Cortex Subregions
The dFC variability of each PCC subregion, as derived from
the one-sample t-tests, is shown separately for the three groups

in Figure 2 (p < 0.05, uncorrected). Significant differences in
dFC variability between the three groups were observed between
the left dPCC and left fusiform gyrus, left vPCC and left IFG,
and right vPCC and left IFG (Table 2 and Figure 3A; GRF
corrected, cluster significance p < 0.0125, voxel significance
p < 0.005). However, no significant differences were found in the
whole-brain dFC variability of the right dPCC between the three
groups. The results of the post hoc analysis on the brain regions
showing significant differences are shown in Figure 3B (p < 0.05,
Bonferroni-corrected test). Compared with the HCs, the SI and
NSI groups showed higher dFC variability between the left dPCC
and left fusiform gyrus and between the right vPCC and left IFG.
The SI group exhibited higher dFC variability between the left
vPCC and left IFG than the NSI group.

Correlation Analyses
The dFC variability between the left vPCC and left IFG
was positively correlated with the SSI scores of all patients
with MDD (i.e., the SI group and NSI group combined;
r = 0.254, Bonferroni-corrected p = 0.048; Figure 4). However, no
correlation was observed between dFC and SSI scores within the
SI group (r = 0.102, p = 0.572) or within the NSI group (r = 0.020,
p = 0.886). There were no significant correlations between
HAMD without suicide scores and dFC variability between the
left vPCC and left IFG in patients with MDD. Furthermore, no
significant correlations were found between other significantly
different dFC variability subregions and the scores of SSI and
HAMD without suicide in patients with MDD.

Validation Analysis
The results of the 30-TR sliding-window length analysis validated
the main results (50 TRs; see Supplementary Figure 1 and
Supplementary Table 1). However, no significant differences
were observed with the 70-TR sliding-window length.

DISCUSSION

To our knowledge, this study is the first to report aberrant
dFC variability of PCC subregions in MDD patients with SI.
Aberrant dFC variability between the left vPCC and left IFG was
observed in MDD patients with SI in comparison with those with
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TABLE 1 | Demographic and clinical features of subjects.

Variables SI NSI HCs T/Z/F/χ2 P-value

Numbers of subjects 33 56 48 –

Gender (male/female) 10/23 27/29 23/25 3.216 0.200a

Age (years) 24.52 ± 5.82 26.04 ± 5.13 27.54 ± 5.95 2.900 0.059b

Education (years) 13.09 ± 2.98 13.14 ± 3.00 NA −0.079 0.937c

Duration of illness (month) 30.17 ± 24.06 23.26 ± 21.89 NA 1.618 0.106d

Age of onset 22.03 ± 6.26 24.21 ± 5.09 NA −1.793 0.076c

HAMD-17 26.21 ± 5.32 22.21 ± 4.23 NA 3.685 0.001c**

HAMD-17 without suicide 23.61 ± 5.37 21.23 ± 4.21 NA 2.177 0.034c*

SSI 15.88 ± 5.69 0.95 ± 1.05 NA 7.971 <0.001d***

Mean framewise displacement 0.05 ± 0.02 0.05 ± 0.02 0.06 ± 0.02 0.419 0.658b

SI, major depressive patients with suicidal ideation; NSI, major depressive patients without suicidal ideation; HCs, healthy controls; HAMD-17, the 17-item Hamilton
Depression Rating Scale; SSI, scale for suicide ideation.
aChi-square test.
bOne-way ANOVA.
cTwo-sample t-test.
dMann–Whitney U test.
*p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 2 | The dFC variability patterns of the bilateral dorsal posterior cingulate cortex (dPCC) and the bilateral ventral posterior cingulate cortex (vPCC) within NSI,
SI and HCs groups (p < 0.05, uncorrected). The color bar represents a dynamic functional connection. dFC, dynamic functional connectivity; dPCC, dorsal posterior
cingulate cortex; vPCC, ventral posterior cingulate cortex; SI, major depressive patients with suicidal ideation; NSI, major depressive patients without suicidal
ideation; HCs, healthy controls.

MDD patients without SI, while dFC variability abnormalities
between the left dPCC and left fusiform gyrus, right vPCC,
and left IFG were detected in MDD patients with SI relative
to HCs. Furthermore, we confirmed the relationship between
dFC abnormalities of the vPCC subregion and SI severity in
patients with MDD. Overall, our findings reveal alterations in
dFC variability between brain regions and demonstrate that SI
is linked to aberrant dFC variability in patients with MDD. Our
data advance the understanding of the potential neurobiological

mechanisms of MDD with SI and point to options for clinical
diagnostic biomarkers in the future.

Aberrant Dynamic Functional
Connectivity Variability in dPCC
The PCC has previously been subdivided into dorsal and ventral
regions on the basis of post-mortem cytology measurements
(Vogt et al., 2006). Each of the PCC subregions has distinct
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TABLE 2 | The areas of significantly different dFC among the SI, NSI, and HCs group (voxel p < 0.005, cluster p < 0.0125, GRF corrected).

Subregion Significant regions MNI coordinates Voxel size (mm3) F-value

X Y Z

Left dPCC Left Fusiform −27 −57 −12 486 15.345

Left vPCC Left inferior frontal gyrus −45 9 24 513 11.637

Right vPCC Left inferior frontal gyrus −42 9 21 459 11.122

SI, major depressive patients with suicidal ideation; NSI, major depressive patients without suicidal ideation; HCs, healthy controls; dPCC, dorsal posterior cingulate
cortex; vPCC, ventral posterior cingulate cortex.

cytoarchitecture, patterns of structural connectivity, and
resting-state functional connectivity (Vogt and Laureys, 2005;
Margulies et al., 2009). It was suggested that the dPCC plays
an important role in visual space and executive control of
behavior (Vogt et al., 2006). In the current study, relative to
HCs, both MDD patients with and without SI showed higher
dFC variability between the left dPCC and left fusiform gyrus.
However, no significant difference was observed between MDD
patients with SI and MDD patients without SI. Our findings
reflect the pathological effect of MDD on altered dFC patterns.
The dPCC and fusiform gyrus are consistently reported to be
involved in many aspects of cognition, such as word recognition,
processing of color information (Weiner and Grill-Spector,
2010), and attentional focus (Leech and Sharp, 2014). Since
these brain regions play a major role in cognition, the disrupted
dFC variability between the left dPCC and left fusiform gyrus
might contribute to negative self-perceptions and confer negative
emotions (Schniering and Rapee, 2004) in depressed individuals.
Our results highlight the idea that the dFC of key brain
regions (such as the dPCC and left fusiform gyrus) in patients
with MDD might show abnormalities and thus constitute a
neurophysiological basis for the decreased ability to react flexibly
to external or internal cognitive demands (Hamilton et al., 2011;
Hutchison et al., 2013). Scholars have consistently proposed an
analogous viewpoint. For example, Luo et al. (2021) detected
decreased temporal variability of the dynamic index of bilateral
PCC in patients with MDD in comparison with HCs, while other
recent studies have reported dynamic alterations in brain activity
in the fusiform gyrus in patients with MDD (Hou et al., 2018;
Xue et al., 2020; Zhang et al., 2021). Therefore, it is plausible to
consider that the observed anomalous dFC between the dPCC
and fusiform gyrus is a neurobiological feature of patients with
MDD. In conclusion, our findings could further enhance our
understanding of how dFC properties support normal brain
functions in patients with MDD.

Aberrant Dynamic Functional
Connectivity Variability in vPCC
In the current study, when compared with HCs, MDD patients
with SI showed higher dFC variability between the left dPCC
and the left IFG and between the right vPCC and left
IFG. Moreover, relative to MDD patients without SI, MDD
patients with SI showed higher dFC between the left vPCC
and left IFG. Our data suggest that disrupted dFC between
the vPCC and IFG may provide clues to the representation
of neurocognition in MDD patients with SI. The vPCC is

at an intermediate stage of information processing between
visual recognition and emotion-related substrate (Johnson et al.,
2002; Uddin et al., 2005). Interestingly, deficits in interference
processing and learning/memory constitute an enduring defect
in information processing in MDD patients with SI (Keilp et al.,
2014). A previous study indicated that MDD patients with
suicidal thoughts and behaviors showed structural and functional
abnormalities in the PCC (Dombrovski et al., 2013; Peng et al.,
2014).

Our findings could also be interpreted from a broader
perspective. It is well known that the vPCC plays a key role
in the default mode network (responsible for the processing of
rumination) (Leech et al., 2011), while the IFG is the center hub of
the frontoparietal network (responsible for handling behavioral
inhibition) (Corbetta and Shulman, 2002). Thus, aberrant dFC
between the vPCC and IFG in MDD patients with SI could
constitute a high-risk circumstance in which the SI is converted
to lethal action via impaired top-down behavior inhibition and
impulsive decision-making (Schmaal et al., 2020). Hence, we
conclude that the observed abnormal dFC variability in the
MDD patients reveals impaired connectivity between the default
mode network and frontoparietal network, which might relate
to the potential neurobiological mechanisms of SI. In line with
our findings, experimental evidence demonstrates altered dFC
between the default mode network and frontoparietal network
in patients with MDD (Demirtas et al., 2016; Yao et al., 2019).
Furthermore, Liao et al. (2018) quantified dynamic connectomic
variability using topological properties in patients with MDD
with SI and found that the topological properties of dynamic
connectomics could not only distinguish MDD patients with and
without SI but could also predict the degree of SI. Congruent
with previous findings, we suggest that the aberrant dFC might
be regarded as a neurobiological feature for use in predictive and
diagnostic models in patients with MDD with SI.

Correlations Between Aberrant Dynamic
Functional Connectivity Variability and
Clinical Variables
We confirmed an association between dFC variability in the
left vPCC subregion and SI severity in patients with MDD.
However, we observed no correlation between dFC variability
in the left vPCC subregion and the scores of HAMD without
suicide in the patients with MDD. With regard to our finding
that dFC variability is associated with SI severity but not with
MDD severity (measured by the HAMD score without the SI
part), we speculate that this may reflect the substantial impact
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FIGURE 3 | ANCOVA analyses of dFC values among three groups when taking the subregion of posterior cingulate cortex as a seed. (A) Brain regions with
significant differences among three groups, voxel p < 0.005, cluster p < 0.0125, GRF corrected. (B) Post hoc analyses of dFC values among three groups.
Bonferroni corrected. dFC, dynamic functional connectivity; vPCC, ventral posterior cingulate cortex; dPCC, dorsal posterior cingulate cortex; IFG, inferior frontal
gyrus; SI, major depressive patients with suicidal ideation; NSI, major depressive patients without suicidal ideation; HCs, heathy controls. n.s., not significant.
**p < 0.01, ***p < 0.001.

of SI on brain dysfunction, rather than the pathological effects
of the disease. Our findings support the idea that SI severity
is related to anomalous dFC variability in patients with MDD.

Schmaal et al. (2020) reviewed neuroimaging investigations
across different mental illnesses for brain function, structural, and
molecular alterations showing associations with suicidal thoughts
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FIGURE 4 | Correlation analysis between dFC and SSI score in depressed
subjects (i.e., SI group and NSI group). The dFC between the between left
vPCC and left IFG was positively associated with SSI score (r = 0.254,
Bonferroni-corrected p = 0.048). SI, major depressive patients with suicidal
ideation; NSI, major depressive patients without suicidal ideation; dFC,
dynamic functional connectivity; vPCC, ventral posterior cingulate cortex; IFG,
inferior frontal gyrus; SSI, scale for suicide ideation.

and behaviors. They found that brain dysfunctions particularly
converged in brain areas processing visual recognition and
emotion regulation, such as the vPCC. Analogously, Auerbach
et al. (2021) reported that altered vPCC volume was associated
with SI and non-suicidal self-injury. Overall, we expect that the
anomalous dFC variability in the left vPCC subregion underlies
an emotional imbalance in individuals with SI. Collectively, the
anomalous dFC variability in the left vPCC subregion may reflect
SI severity, rather than illness per se.

There are several limitations to the current study. First,
our study is a cross-sectional analysis, which restricts causal
interpretations and longitudinal tracking of SI. Second, we
compared the dFC variability differences between HCs and MDD
patients with or without SI but did not include MDD patients
with SA, who frequently show PCC dysfunction. A previous
study reported that young depressed patients with SA exhibited
lower PCC gray matter volume relative to HCs (Peng et al.,
2014). In addition, decreased activity was found in the PCC
during cognitive control in patients with mood disorders with
SA (Minzenberg et al., 2015), and patients with MDD with SA
exhibited an increased PCC response relative to HCs during the
viewing of knives (Kim Y. J. et al., 2017). Furthermore, MDD
patients with SA exhibited increased functional connectivity
between the dPCC and left IFG when compared with MDD
patients but without SA (Kim Y. J. et al., 2017). Thus, it would
be meaningful to conduct a direct comparison of the dFC of
PCC subregions between patients with SI and those with SA.
Third, we acknowledge that our findings must be interpreted
with caution because of the relatively small sample size. Finally,
because of limitations resulting from the small sample size, we
could not confirm the relationship between the dFC of the left

vPCC subregion and SI severity in MDD patients with and
without SI. The robustness of the left vPCC-left IFG contribution
to SI needs further validation. Future studies with greater sample
sizes that include longitudinal designs and across different mental
illnesses are needed to corroborate our findings.

CONCLUSION

Using dFC variability analyses of PCC subregions, we found that
MDD patients with SI showed higher dFC between the left PCC
and left IFG than those with MDD without SI. Moreover, the
dFC variability positively correlated with SSI scores within all
patients with MDD. The observed dFC abnormalities between
vPCC and IFG might provide a neural-network explanation for
SI and may provide new clues on the potential neurophysiological
mechanisms of MDD with SI.
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