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Whole-brain segmentation from T1-weighted magnetic resonance imaging

(MRI) is an essential prerequisite for brain structural analysis, e.g., locating

morphometric changes for brain aging analysis. Traditional neuroimaging

analysis pipelines are implemented based on registration methods, which

involve time-consuming optimization steps. Recent related deep learning

methods speed up the segmentation pipeline but are limited to distinguishing

fuzzy boundaries, especially encountering the multi-grained whole-brain

segmentation task, where there exists high variability in size and shape among

various anatomical regions. In this article, we propose a deep learning-based

network, termed Multi-branch Residual Fusion Network, for the whole brain

segmentation, which is capable of segmenting thewhole brain into 136 parcels

in seconds, outperforming the existing state-of-the-art networks. To tackle

the multi-grained regions, the multi-branch cross-attention module (MCAM)

is proposed to relate and aggregate the dependencies among multi-grained

contextual information. Moreover, we propose a residual error fusion module

(REFM) to improve the network’s representations fuzzy boundaries. Evaluations

of two datasets demonstrate the reliability and generalization ability of

our method for the whole brain segmentation, indicating that our method

represents a rapid and e�cient segmentation tool for neuroimage analysis.
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1. Introduction

Neuroanatomy segmentation plays a key role in the

analysis of the development of the neonatal brain, and

the diagnosis of neurodegenerative diseases. For instance,

segmentation is carried out on the brain for reaching volume,

thickness, and morphological measurements. The brain MRI

scans are usually segmented automatically by warping a

manually annotated atlas to the target by a well-established

pipeline such as FreeSurfer (Fischl et al., 2002) and FSL

(Woolrich et al., 2004). Several steps are involved for extensive

numerical optimization including image transformation, careful

fine-tuning of parameters, smoothing, and even non-linear

registration. Especially, the estimation of the 3D deformation

field for non-linear registration is computationally intense

and suffers from long runtime. The efficiency of this type of

segmentation algorithm is extremely low, and it is not practical

for large-scale data processing. Therefore, there is an urgent

need for fast and accurate brain segmentation algorithms,

so that medical research based on large-scale brain structure

segmentation becomes feasible. It is challenging to develop fast

and accurate whole-brain segmentation algorithms, due to the

complex 3D brain structure, high-dimensional neuroimaging

data, spatial dependency between slices, and numerous and

imbalanced labels.

Recently increasing deep learning algorithms have been

proposed for medical image semantic segmentation, e.g. brain

lesion location. The CNN based methods provide insight

into efficiently and effectively processing the whole brain

in an end-to-end manner, which is feasible to segment the

whole brain into parcels at the minute-level, at the same

time surpassing conventional atlas-based methods in terms

of segmentation accuracy. For instance, Roy et al. (2019)

proposed the QuickNAT framework based on a deep fully

convolution neural network that processes the 3D MRI T1

brain scans in seconds, which greatly improves the efficiency

of segmentation and makes large-scale segmentation tasks

feasible. FastSurfer (Henschel et al., 2020) introduced a

competition block and included a wider context within a

slice to improve spatial representations. However, these studies

are still limited in dealing with multi-grained parcels and

complex boundaries.

In this article, we propose a novel segmentation network

architecture, Multi-branch Residual Fusion Network (MRF-

Net), that could segment the whole brain into parcellations in

seconds. Unlike most existing methods mentioned above, our

network benefits from strengthening representations on multi-

grained representations, especially on fuzzy boundaries. Our

contributions can be summarized as:

• To tackle the limitation of the high variability in

size and shape between regions, we propose a multi-

branch cross-attention module (MCAM), which is able

to explore locally distributed patterns with different

respective fields, capturing and relating dependencies

between representations in various scales.

• The fuzzy boundaries are improved by a residual error

fusion module (REFM), that leverages the residual errors

between slices to improve marginal representations for

locating boundaries.

• Experimental evaluations on two datasets demonstrate that

our method represents a rapid and efficient segmentation

tool for morphometric neuroimage analysis, which

achieves high reliability and generalization abilities

in performance. The method achieves consistent

improvements and surpasses the existing state-of-

the-art methods with average dice scores of 81.70 and 86%

in two datasets, respectively.

The rest of the article is organized as follows: We first present

the related studies about the semantic segmentation on the

whole brain tasks in Section 2. In Section 3, we introduce

the studied two datasets and represent a detailed architecture

of the proposed method, including the residual error fusion

module (Section 3.4) and the multi-branch cross-attention

module (Section 3.5). In Section 4, we conducted extensive

experiments to evaluate the advantage of our method in four

aspects including the segmentation performance in Section

4.1, the computational complexity in Section 4.2, ablation

studies to evaluate the proposed modules in Section 4.3, and

reliability performances with statistical analysis in Section 4.4.

The conclusion is drawn in Section 5.

2. Related study

2.1. Traditional whole-brain
segmentation

The whole-brain segmentation is always conducted by well-

maintained MRI processing pipelines, such as FreeSurfer (Fischl

et al., 2002), FSL (Woolrich et al., 2004), BrainSuite (Shattuck

and Leahy, 2002), SPM (Penny et al., 2011), and ANTs (Avants

et al., 2009). Such pipelines leverage atlas-based models for

locating brain regions using registration approaches, leading to

a cost of several hours of calculation time for a large number of

graphics transformations.

2.2. Medical image segmentation

Deep learning methods have recently merged, that are

able to achieve outstanding performances in image recognition

(Ren et al., 2015; He et al., 2016; Grigorev et al., 2020) and

text analysis (Vaswani et al., 2017; Devlin et al., 2018; Xu

et al., 2020), and even inference in seconds. The extensive
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applications of deep learning in medical images have helped

interpret medical scans, lesions, disorganized patterns, and

morphological measurements (Topol, 2019; Yang et al., 2021a,b;

Yin et al., 2021). Among them, UNet (Ronneberger et al.,

2015) is a network that has made a breakthrough in the

field of medical image segmentation. Subsequent studies have

been focused on modification of the network architecture and

achieves consistent improvements over UNet, such as UNet++,

UNet3+, and nnU-Net (Isensee et al., 2018; Zhou et al., 2018;

Yuan et al., 2019; Huang et al., 2020). In particular, UNet-

like networks leverage a skip connection method to extract and

retain both high-level and low-level semantic features, which

improves the learned representations, at the same time reducing

parameters by pruning unnecessary architectures. In addition,

most forms of medical images are in 3D dimension, so 3D

segmentation networks such as 3D-UNet and V-Net have been

proposed by Çiçek et al. (2016), Liu et al. (2018), Milletari

et al. (2016), Myronenko (2018), and Jiang et al. (2019) and

achieved considerable results, outperforming 2D methods in

some tasks. However, due to the complexity of computation of

the 3D feature maps, the 3D methods are difficult to be applied

in practice, especially for some tasks dealing with large-scale

images. To reduce the computational cost, 2.5D segmentation

methods have been proposed by Yu et al. (2019) by receiving

several 2D slices as an input. These segmentation algorithms

will not occupy a great number of computing resources while

retaining local spatial information. Therefore, our study is

implemented in this way to improve efficiency, which can be

easily applied in practice.

2.3. Whole-brain segmentation

To date, there are some deep learning networks for whole-

brain structure segmentation. The segmentation algorithm

based on a 3D network requires high computing resources,

resulting in slow computing speed (Huo et al., 2019), and

requires a lot of preprocessing work. These preprocessing

steps are error-prone, so it is not convenient for large-scale

applications. SD-Net is the first to achieve end-to-end full

convolutional network segmentation, which could segment

the brain into 27 classes, so its practicality is limited (Roy

et al., 2017). QuickNAT (Roy et al., 2019) propose the fusion

of three views based on SD-Net, which greatly improves

the accuracy of whole-brain structure segmentation. Finally,

the state-of-the-art CNN based whole-brain segmentation

network is FastSurfer (Henschel et al., 2020), which has

made more in-depth improvements based on QuickNAT. It

proposes competitive dense blocks (CDB) to replace ordinary

dense blocks and competitive connections instead of skip

connections. Additionally, it can segment the brain into 95

classes, which greatly improves the practicality of FastSurfer in

medical research.

3. Materials and methods

3.1. Datasets

In this article, we built two datasets for training, validation,

and testing the performance of our proposed MRF-Net. Note

that, all the sets are selected with matched age and gender. For

evaluation, each dataset is split into a training set with 70%

samples, a validation set with 15% samples, and a test set with

15% samples. Within both two datasets, healthy controls are

included balanced with gender, age, and scanning parameters

(i.e., scanners, field strength, and acquisition parameters).

Johns Hopkins University (JHU). The JHU dataset was

collected from the JHU brain atlas repository by Ye et al.

(2018) and Wu et al. (2016) with 136 T1 brain magnetic

resonance images (MRI) with ages ranging from 22 to 90.

These images were divided into 136 parcels via the MRICloud

platform (https://braingps.MRICloud.org) and corrected by

clinicians manually. The data were acquired using the MPRAGE

sequences at JHU using 3T Philips scanners with 1 mm

isotropic resolution.

TheAlzheimer’sDiseaseNeuroimaging Initiative (ADNI).

The ADNI dataset was built based on the ADNI database

(Mueller et al., 2005), containing 5074 T1whole-brainMRI, each

of which was segmented into 138 brain regions (On average,

2 parcels are missing for each data) by a validated method

(MALPEM) (Ledig et al., 2018). The study was done in the

BioMedIA group at Imperial College London, UK.We randomly

collected 210 data of normal control in this study. T1-weighted

(T1w) MR brain images were collected from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) including ADNI-1,

ADNI-GO, and ADNI-2.

3.2. Methods overview

As is shown in Figure 1, the encoder-decoder structure is

implemented as the basis for MRF-Net. For the 2.5D image

segmentation, the input is obtained by dividing the raw image

into blocks by every 7 slices along the axial or coronal

plane, where the ground truth of the mediate slices is used

as supervision.

3.3. Residual dense blocks

The encoders and decoders are constituted by residual dense

blocks, where each residual dense block contains 3 convolution

layers with 64 channels. The residual dense block is improved

from the CDB of FastsurferCNN (Fischl et al., 2002). In each

residual dense block, the short-distance residual connections are

added to the convolution layer instead of maxout in CDB. And

change all convolution kernel size to 3. The bottom feature is

split into N ∈ {1, 2, 3} branches by a gray block.
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FIGURE 1

Multi-branch Residual Fusion Network (MRF-Net) structure. Operations are shown in di�erent colors, with detailed information on the right side.

For the multi-branch cross-attention module, a detailed structure diagram is displayed and represented by the decoder (a–c), where k

represents the size of the convolution kernel.

3.4. Residual error fusion module

In order to improve the representations of the boundary

details of each brain region, here, we calculate the difference

between the input slices to provide local spatial boundary

information. For 7-slice image input, 7 encoding branches are

implemented, where the input of the middle branch is the

fourth slice. Subsequently, the input of the remaining branches

is the difference between the fourth slice and other slices. Each

branch is constructed with two layers of convolution and a scSE

(Roy et al., 2018) attention module. The scSE module contains

a channel attention module and a spatial attention module.

The obtained 7 feature maps further extract features through

5 operations, they are: (1) concatenation and convolution; (2)

concatenation and group convolution (group = 7, dilation =

2); (3) cascade and group convolution (group = 7, dilation

= 4); (4) concatenation and convolution; (5) Convolution

operation on the middle slice. The feature maps of the five

branches are cascaded to the classifier. The use of dilated

convolution and group convolution is to expand the receptive

field of the network without causing confusion of information.

This module realizes the extraction of boundary detail features

and multi-scale information. Specific definition is shown

in Figure 2.
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FIGURE 2

The detailed architecture of the Residual error fusion module (REFM). Operations are shown in di�erent colors, with a detailed description on

the left side. The output of the module is further cascaded to the classifier.

3.5. Multi-branch cross-attention module

The MCAM is designed with two or three branch decoders

with different sizes of kernels embedded in order to locate multi-

grained contextual information. These blocks are connected

with a cross-attention module for mixing and synthesizing

multi-grained information. In detail, the decoder (a) contains

just one branch, the size of the convolution kernel in the middle

of the convolution group is 3, which will concatenate the feature

maps from the encoder, and decoder (a) is used to analyze

the performance. The two branches of the decoder (b) contain

residual dense blocks with kernel sizes of 3 and 5, respectively.

The two branches will concatenate the features from the encoder,

respectively, and then get two feature maps, and the cross-

attentionmodule will fuse the multi-scale features and upsample

to get two feature maps and send them to the next convolution

group. The three branches of the decoder (c) contain residual

dense blocks with kernel sizes of 3, 5, and 7, respectively (Dou

et al., 2020).The cross-attention module will fuse multi-scale

features and upsample to obtain three feature maps, which will
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be sent to the next convolution group. The decoder achieves the

highest segmentation accuracy.

The N branch’s decoder is calculated by:

yi = Fi
(

xi, skip
)

(1)

where xi and yi denote the i-th branch’s input and output feature,

respectively, function Fi(xi, skip) denotes the i-th branch’s RDB,

and skip denotes the skip feature from the encoder.

Our proposed cross-attention module contains two or

three identical channel attention modules. The original channel

attention is proposed by Roy et al. (2018), and we use it in a new

way. The channel attention is calculated by:

gc (xc) =
1

H ×W

H
∑

h

W
∑

w

xc
(

h,w
)

(2)

Gi (xi) = σ
(

W1Relu
(

W2g (xi)
))

(3)

where xi denotes the i-th branch’s input feature,H andW denote

the height and width of features, gc denotes the c channel’s

average value,W1 andW2 denote two fully-connected layers, σ

denotes the sigmoid layer, Gi (xi) denotes the channel attention

map of the i-th branch. It multiplies the channel attention map

of the current branch with the next branch to promote multi-

grained contextual information transforming among branches

of different grains. The cross-attention module is defined as:

yi = xi ⊙ G(i+1)%N (x(i+1)%N ) (4)

where % denotes the remainder operation, ⊙ denotes the

channel-wise multiplication. The cross-attention modules can

be added behind multi-branch decoders. Two different cross-

attention modules are designed for the decoder (b,c), where

Figure 1 demonstrates the details.

3.6. Implementation details

Our experiments are conducted in Pytorch with one

NVIDIA Tesla GV100-32G. Adam is used to optimize the

parameters of the networks. The batch size in the training phase

is set as 8. The average value of dice loss and cross-entropy loss

is used for training. We set the initial learning rate to 0.001,

and multiply the learning rate by 0.1 every 10 epochs. Our loss

function is shown as:

Loss(X,Y) = 1−
2× XY

X + Y
− XlogY (5)

The evaluation index adopts the Dice coefficient and average

Hausdorff distance, and the calculation formula of the Dice

coefficient is:

Dice(X,Y) =
2× XY

X + Y
(6)

The formula for calculating the average Hausdorff distance is:

HD(X,Y) =
1

| X |

∑

x∈X

miny∈Yd(x, y)+
1

| Y |

∑

y∈Y

minx∈Xd(y, x)

(7)

where Y and X denote the predicted probabilities and the ground

truths of the image, respectively. |X| and |Y| represent the

number of voxels in the binary label maps of ground truth X

and prediction Y.

4. Results

4.1. Comparison with state-of-the-art
methods

Our proposed MRF-Net was compared with the state-of-

the-art FastSurferCNN (Henschel et al., 2020), UNet++ (Zhou

et al., 2018), and UNet 3+ (Huang et al., 2020) for whole-

brain structure segmentation. The dice scores and average

Hausdorff distance of 3D results segmented from the validation

set and the test set are reported in Tables 1, 2, respectively,

where the best results are shown in bold. The experimental

results show that our proposed MRF-Net with the decoder

(c) outperforms other methods in terms of the dice score

with 81.70%/86.00% in the JHU/ADNI dataset, respectively.

In addition, the evaluation results on the test set with unseen

data are comparable to the validation set, indicating that the

methods achieve outstanding generalization ability for the whole

brain segmentation. The advanced deep learning tools bring

new insight for neuroimaging processing tools with fast and

accurate performance.

Moreover, we carried out ablation studies on the different

planes. To note that, the 2.5D segmentation methods are limited

to be conducted on the saggital planes, where the spatial

information of the left and right hemispheres are missed and

convolutions fail to distinguish the position information. As is

shown in Tables 3, 4, consistent improvements are achieved on

both the axial and the coronal planes, and results on the coronal

plane are better than those on the axial plane except for the

MRF-Net with decoder (c) on the JHU datasets. Overall, our

proposed method is robust in segmenting the whole brain along

both two planes.

Figure 3 further displays the detailed results of the

segmentation results. From the visualization view of the results,

it can be observed that our proposed MRF-Net improves the

segmentation accuracy in the boundary and optimizes the fuzzy

margins compared with other methods.

4.2. FLOPs and parameters

In order to show the practicability of MRF-Net, we

report the FLOPs and total parameters of all the networks.
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TABLE 1 The average Dice scores for 4 comparative networks on the axial segmentation results.

Dice JHU ADNI

Validation Test Validation Test

FastSurfer 79.83± 3.08 80.29± 4.22 84.64± 4.50 84.72± 1.70

Unet++ 80.08± 3.10 80.12± 5.68 85.26± 4.74 85.70± 2.07

Unet+++ 80.57± 3.01 81.49± 3.11 85.81± 3.87 85.35± 2.20

MRF-Net + decoder(b) (ours) 81.10± 2.99 81.36± 2.95 86.35± 3.76 85.84±1.44

MRF-Net + decoder(c) (ours) 81.36 ± 3.09 81.70 ± 1.57 86.45 ± 4.34 86.00 ± 0.83

The names of our networks are shown in the form of MRF-Net + decoder. The best results are shown in bold.

TABLE 2 The hausdor� distance scores for 4 comparative networks on the axial segmentation results.

Hausdorff JHU ADNI

Validation Test Validation Test

FastSurfer 0.299± 0.046 0.216± 0.033 0.266± 0.239 0.580± 0.706

Unet++ 0.292± 0.053 0.263± 0.215 0.427± 0.422 0.728± 0.707

Unet+++ 0.269± 0.051 0.169 ± 0.034 0.399± 0.315 0.836± 0.903

MRF-Net + decoder(b) (ours) 0.272± 0.045 0.229± 0.036 0.203± 0.102 0.500± 0.443

MRF-Net + decoder(c) (ours) 0.261 ± 0.045 0.173± 0.023 0.201 ± 0.170 0.404 ± 0.100

The best results are shown in bold.

TABLE 3 Average dice score across the axial and coronal segmentation results.

Hausdorff JHU ADNI

Axial Coronal Axial Coronal

FastSurfer 79.83± 3.08 80.04± 3.09 84.64± 4.50 85.40± 2.87

Unet++ 80.08± 3.10 80.28± 3.11 85.26± 4.74 86.15± 1.94

Unet+++ 80.57± 3.01 80.76± 3.04 85.81± 3.87 86.26± 3.67

MRF-Net + decoder(b) (ours) 81.10 ± 2.99 81.20 ± 3.01 86.35 ± 3.76 86.42 ± 2.02

MRF-Net + decoder(c) (ours) 81.36 ± 3.09 81.26 ± 3.04 86.45 ± 4.34 86.68 ± 1.92

The best results are shown in bold.

TABLE 4 Average hausdor� distance score across the axial and coronal segmentation results.

Hausdorff JHU ADNI

Axial Coronal Axial Coronal

FastSurfer 0.299± 0.046 0.287± 0.048 0.266± 0.239 0.219± 0.053

Unet++ 0.292± 0.053 0.274± 0.052 0.427± 0.422 0.200± 0.051

Unet+++ 0.269 ± 0.051 0.257 ± 0.049 0.399± 0.315 0.197± 0.061

MRF-Net + decoder(b) (ours) 0.272± 0.045 0.259± 0.047 0.203 ± 0.102 0.189 ± 0.043

MRF-Net + decoder(c) (ours) 0.261 ± 0.045 0.255 ± 0.050 0.201 ± 0.170 0.183 ± 0.040

The best results are shown in bold.

Figure 4 shows that our network MRF-Net+decoder (b) (w/o

REFM) surpasses the state-of-the-art networks in terms of

total parameters while maintaining a high speed. By reference

to Tables 1, 2, it can be observed that the MRF-Net with

decoder (b) achieves better performance than FastSurfer with

comparable parameters. A more complex decoder (c) can

achieve higher accuracy, but the speed has slowed down, and

the total amount of parameters has increased. Overall, the
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FIGURE 3

Segmentation results on the ADNI dataset. The axial plane and coronal plane results are shown, respectively. The red arrow highlights regions

where the MRF-Net improved.

FIGURE 4

The FLOPs and total parameters of all networks. Scatter plots show FLOPs and parameters. Each point represents a network with a detailed

name and location annotated next to the corresponding point. The results of our networks are bolded.

two kinds of decoder—decoder (b) and decoder (c) provides

an alternative way for clinic applications. The MRF-Net with

decoder (b) is more feasible for clinical applications that are

limited in computational resources and speed. The MRF-Net

with decoder (c) provides a more accurate tool with lower speed

to some extent.

4.3. Ablation study

We demonstrated the effectiveness of residual dense blocks,

REFM and MCAM through ablation studies. First, we set up an

ablation experiment for residual dense blocks, the performance

of 4 networks is reported to study the influence of the
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backbone on whole-brain segmentation. The first two networks

adopt the same decoder (a) in Figure 1, and the Resnet50

(He et al., 2016), VGG16 (Simonyan and Zisserman, 2014)

as encoders, respectively. Specifically, the connection method

of resnet50+decoder(a) is: the decoder (a) concatenates the

output feature maps of the start layer, layer1, and layer2 of

resnet50 by skip connection, and finally upsampling twice to get

the original size. The connection method of vgg16+decoder(a)

is: the decoder (a) concatenates the output feature maps of

every layer of vgg16 by skip connection. It can be seen from

Table 5 that the complex backbones do not perform better. And

our MRF-Net+decoder (a) (w/o REFM) performs better than

FastsurferCNN. Too much low-level semantic information is

lost in Resnet50 (He et al., 2016) and VGG16 (Simonyan and

Zisserman, 2014) because of their simple low-level encoding

layers, but our residual dense blocks could encode low-level

semantic information effectively so that the decoder can restore

more detailed information. In this experiment, we conclude that

TABLE 5 The Dice scores of 4 networks.

Dice JHU ADNI

Resnet50+decoder (a) 79.66± 3.08 83.05± 4.56

VGG16+decoder (a) 79.43± 2.94 82.45± 4.94

FastsurferCNN 79.83± 3.08 84.64± 4.50

MRF-Net +decoder (a) (w/o REFM) 80.32± 3.20 85.39± 4.17

The last of them are designed by us, and they are represented by encoder + decoder. The

axial segmentation results of the JHU dataset and ADNI dataset are reported. The best

results are shown in bold.

the complex high-level semantic information encoding cannot

greatly improve the accuracy of the whole-brain segmentation.

In terms of this, the decoding part and low-level semantic

information are focused on the next experiments.

Second, we set up an ablation experiment for REFM

and MCAM, Figure 5 shows the Dice scores of 7 different

networks on the two datasets. The 7 networks are represented

as encoder+decoder, the details of which are shown in Figure 5.

Network A and network B show the effectiveness of REFM, with

additional input boundary information, which can effectively

help the network segment fuzzy boundaries among brain

regions. Network C can significantly improve the performance

of whole-brain segmentation compared to the single-branch

network B. The performance of network E is better than that

of network C, so the cross-attention module helps promote

the context transferring between two branches. Additionally, it

can be observed that the increasing trend from network D to

network E is obvious, but the Dice scores of network E and

network F are similar. Therefore, when the kernels of the middle

layer of two branches are different, the multi-grained contextual

information could improve the segmentation performance with

fewer parameters. Finally, according to the conclusion above, the

decoder (c) is designed, which achieves the highest Dice score.

4.4. Reliability analysis

We evaluate the intraclass correlation coefficient (ICC) on

the test set of both two datasets at the group-level. Figure 6

shows the intraclass correlation coefficient value on 10 structures

FIGURE 5

Seven networks are designed to verify REFM and MCAM. (w/o REFM) denotes that the decoder does not contain the Residual error fusion

module. We add di�erent decoders to the same encoder, and each network is represented by a letter, and their detailed correspondence is

listed on the bottom side of the figure. Among them, (w/o cross-attention module) denotes that the decoder does not contain the

cross-attention module, and (k = 3, 5) denotes that the size of the convolution kernel of the middle layer of the di�erent branches in the

decoder is (3, 3) and (5, 5), respectively.
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FIGURE 6

The intraclass correlation coe�cient in terms of segmented structural volume based on four methods on 10 structures. The error bars represent

the upper and lower bound of the ICC with a significance level of α = 0.05. ITG, Inferior Temporal Gyrus; Hippo, Hippocampus; ILV, Inferior

Lateral Ventricle; L, Left hemisphere; R, Right hemisphere.

for the four methods including Fastsurfer, Unet++, Unet+++,

and MRF-Net, with the upper and lower bound at significance

level α = 0.05 shown in black. The ICC value in the range of

0-1 reflects the reliability of the methods, and a bigger value

indicates a better performance. It is shown that our proposed

MRF-Net outperforms the other three methods over these

structures on both datasets. High reliability performances (ICC

> 0.975) are achieved on the left inferior lateral ventricle and

the right inferior lateral ventricle in both datasets. In addition,

the consistent improvements demonstrate that the proposed

method achieves more robust performances than other state-

of-the-art methods, although there are differences in reliability

performance between the two datasets, especially in the left

amygdala, whichmight be caused by the applied templates in the

two tasks. In addition, the confidence intervals of the MRF-Net

are smaller than other methods, indicating that our proposed

method achieves a better segmentation consistency.

Moreover, the group-level and individual-level ICC and

Pearson correlation coefficient (PCC) are also compared, which

are summarized in Tables 6, 7. The individual-level comparison

is obtained by measuring the corresponding score among the

segmentation volume and the ground truth for each image, and

the mean and the SD are calculated across the test subjects.

The group-level comparison is conducted by measuring across

the whole dataset for each brain parcel. The displayed scores

are averaged across the whole brain, which is corresponded

to a previous study by Henschel et al. (2020). In addition,

to show the improvement of the reliability, the performance

improvements over the FastSurfer method are shown with

statistical scores, where pairwise tests are implemented on the

improvements to evaluate significance. Our proposed MRF-Net

exhibits high reliability on the ADNI dataset at both individual-

level and group-level. For each image, the reprehensibility is

the highest with the ICC score of 0.9977, and a significant

improvement (p = 0.023) is achieved compared with the

FastSurfer. Moreover, the PCC scores with MRF-Net are the

highest among the fourmethods on both two datasets, indicating

that the evaluated results of MRF-Net are more closely to the

ground truth. Consistent significant improvements are obtained

in both datasets (p <0.001 and 0.033 for the JHU and the ADNI

datasets, respectively).

5. Discussion

Our proposed brain segmentation network MRF-Net could

segment T1 brain MRI into 136 parcels, and compared with

other CNN based methods, the experiments demonstrated that

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.940381
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wei et al. 10.3389/fnins.2022.940381

TABLE 6 Estimations of volume on intraclass correlation coe�cient (ICC) in terms of individual-level and group-level.

Methods JHU ADNI

Individual PCC p-value Group PCC Individual PCC p-value Group PCC

FastSurfer 0.9678± 0.0476 - 0.812± 0.125 0.9953± 0.0043 - 0.881± 0.099

Unet++ 0.9657± 0.0244 0.112 0.811± 0.107 0.9956± 0.0038 0.1370 0.894±0.099

Unet+++ 0.9889 ± 0.1087 <0.001*** 0.831±0.117 0.9957± 0.0039 0.0680 0.908± 0.104

MRF-Net + decoder (c) 0.9697± 0.0187 0.248 0.814± 0.126 0.9977 ± 0.0047 0.023* 0.939 ± 0.041

The best results are shown in bold. *p value <0.05; ***p value < 0.001.

TABLE 7 Estimations of volume on Pearson correlation coe�cient (PCC) in terms of individual-level and group-level.

Methods JHU ADNI

Individual PCC p-value Group PCC Individual PCC p-value Group PCC

FastSurfer 0.9769± 0.032 - 0.783± 0.115 0.9959± 0.0037 - 0.914± 0.064

Unet++ 0.9698± 0.210 0.033* 0.782± 0.120 0.9961± 0.0034 0.209 0.921± 0.064

Unet+++ 0.9917± 0.005 <0.001*** 0.791± 0.118 0.9963± 0.0033 0.165 0.929± 0.085

MRF-Net + decoder (c) 0.9935 ± 0.005 <0.001*** 0.798 ± 0.125 0.9979 ± 0.0042 0.033* 0.938 ± 0.035

The best results are shown in bold. *p value <0.05; ***p value < 0.001.

the MRF-Net achieves outstanding performance in terms of

accuracy and reliability. Compared with the traditional methods

that cost several hours for segmentation, our network not only

completes the segmentation within 1 min (on the GPU) but

also requires a little complex preprocessing work. For example,

atlas-based methods such as FreeSurfer and FSL (Fischl et al.,

2002; Woolrich et al., 2004) implement complex registration

algorithms for segmentation, resulting in numerous time in

image transformations, and are also limited by parameter setting

that plays an important role in image registration. Moreover,

researchers need to be very familiar with the software or the

tool, which costs much time for researchers to learn to use

and explore the detailed parameter settings. Deep learning

technology can mitigate these shortcomings. It does not require

complex parameter settings and inference time and has a strong

generalization. This kind of method is easy to be applied and

suitable for whole-brain segmentation tasks.

The high variability in shape and structure among regions

is not avoidable in the whole brain segmentation. This

characteristic results in the fuzzy boundary, which cannot be

easily distinguished even by doctors. In terms of this, our

proposed REFM is proposed to help strengthen the network’s

learning of fuzzy boundary information by implementing

the residual marginal image difference. The model takes the

residual information between the 7-layer slices as inputs and

aggregates residual differences among slices to enhance the

spatial information of margins. Through the information fusion

of the 7 branches, a rich feature map containing low-level

semantic information is finally obtained. According to the

ablation experiment, we can clearly see from the ablation

study that compared with MRF-Net +decoder (a) (w/o REFM),

the network B with REFM increased by approximately 0.2%

Dice coefficient.

For the multi-grained problem of whole-brain

segmentation, we found that existing networks such as

FastSurfer and QuickNAT (Roy et al., 2019; Henschel et al.,

2020). only increase the receptive field by increasing the scale

of the convolution kernel, which is obviously rough for the

multi-grained features of whole-brain MRI. In this way, the

MCAMmodule is designed, which consists of multiple branches

of convolution kernels of different sizes, which can help the

network identify multi-grained features better. From the related

experiments of FLOPs and parameters, this module will not

increase too many parameters and maintain a fast speed. From

the comparative experiments, MCAM uses the network to

obtain the best results on the whole-brain segmentation task

with multi-grained features and improves the Dice coefficient

by about 1.5% compared with FastSurfer on the JHU dataset.

From the ablation experiments, when the attention contexts

of different branches are different, the improvement effect

is more obvious. This effectively shows that the different

size convolution kernels of each branch help to improve the

recognition effect of multi-grained information.

According to the ablation experiments, the complex

backbone network cannot improve the accuracy of the model,

because the complex detailed information might not exist in the

high-level semantic information, but in the low-level semantic

information. According to the ablation experiments, the start

part of ResNet and VGG networks lacks rich convolutional

layers, whereas the initial part of ResNet is a single-layer
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convolutional layer and max-pooling, and VGG contains just

2 convolutional layers. They lose a lot of low-level semantic

information, and our residual dense block is composed of

three groups of convolutional groups, so the low-level semantic

information is well maintained by the encoder block. The final

results show that MRF-Net +decoder (a) (w/o REFM) improves

the Dice coefficient by about 0.7% in the JHU dataset compared

to other backbone networks.

In addition to the above comparisons, we conducted a

reliability analysis and reported ICC and PCC, these two

parameters show that the segmentation results of MRF-Net are

closer to the ground truth. In addition, we list some ICC values

of important brain regions. It can be seen that our results are

significantly better than FastSurfer. This might be caused by the

optimized multiple structures and fuzzy boundaries by MCAM

and REFM, respectively.

Our MRF-Net is trained independently and can be easily

appended to any existing whole-brain maps and researchers

could easily build themselves’ segmentation models. We hope

that this work will contribute to large-scale brain science

research. In future study, we will explore the clinical feasibility

of this method and verify its performance in other cases with

serious anatomical atrophy such as Alzheimer’s Disease.
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