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Mechanisms of ginsenosides
exert neuroprotective effects on
spinal cord injury: A promising
traditional Chinese medicine
Le Qi , Jun Zhang, Jinghong Wang, Junyan An, Wu Xue,
Qinyi Liu * and Yan Zhang *

Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China

Spinal cord injury (SCI) is a devastating disorder of the central nervous

system (CNS). It is mainly caused by trauma and reduces the quality of

life of the affected individual. Ginsenosides are safe and effective traditional

Chinese medicines (TCMs), and their efficacy against SCI is being increasingly

researched in many countries, especially in China and Korea. This systematic

review evaluated the neuroprotective effects of ginsenosides in SCI and

elucidated their properties.

Methods: All experimental information and summaries used in this review

were acquired from peer-reviewed articles in the relevant fields. The PubMed,

Web of Science, Google Scholar, and China National Knowledge Infrastructure

databases were searched for relevant articles. Information on the manual

classification and selection of ginsenosides that protect against SCI is

included in this review.

Results: A literature survey yielded studies reporting several properties

of ginsenosides, including anti-inflammation, anti-apoptosis, anti-oxidative

stress, and inhibition of glial scar formation.

Conclusion: In this review, we discuss the mechanisms of action of different

ginsenosides that exert neuroprotective effects in SCI. These results suggest

that after further verification in the future, ginsenosides may be used as

adjunctive therapy to promote neurological recovery.
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ginsenosides, spinal cord injury, traditional Chinese medicine, mechanism,
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Introduction

Spinal cord injury (SCI) is a devastating neurological disease
that can lead to the loss of sensory and motor functions, quality
of life, and social independence owing to the inability of the
central nervous system (CNS) to adequately replace lost cells
and connections (Sámano et al., 2021). The annual morbidity
of SCI is approximately 15 to 40 cases per million globally and
has increased with the development of modern society (Wang
X. et al., 2021). According to the International Spinal Cord
Society (ISCS), SCI can be divided into two main categories:
traumatic and non-traumatic, with a prevalence of 90 and 10%,
respectively (Gbd 2016 Neurology Collaborators, 2019). The
former is usually caused by traffic accidents, sports injuries, and
violent attacks, whereas nontraumatic SCI is mainly triggered by
infection and vascular events (Badhiwala et al., 2020).

According to the different pathophysiological responses,
the pathophysiological processes of SCI can be divided
into primary and secondary phases. In the primary phase
of SCI, the extent of injury, which causes cell necrosis,
axonal transection, and local vascular loss around the injured
area, is closely related to the strength of physical factors,
such as compression, shearing, and acute stretch or tension
(Anjum et al., 2020). The secondary injury phase reflects a
multi-characteristic pathological process following the primary
injury phase and lasts for several weeks. These include
blood and vessel changes, oxidative stress, neuronal apoptosis,
ionic deregulation, glutamate excitotoxicity, inflammation,
fibroglial scarring, and cyst formation (Dimitrijevic et al.,
2015). Neurologists and clinicians have long considered the
secondary phase as a strategic therapeutic target to promote
functional benefits.

Currently, various experimental therapeutic strategies
for SCI are being researched in the fields of neurobiology,
pharmacology, materials science, and other related scientific
fields; however, they have not been implemented clinically
(Albayar et al., 2019). Therefore, SCI treatment is limited
to surgical decompression and high-dose intravenous
methylprednisolone administration (Shinozaki et al., 2021).
Surgery can efficiently decompress the damaged spinal
cord, remove local irritants in due course, and stabilize the
condition. However, recent clinical studies have shown that
high doses of methylprednisolone may increase the incidence
of many complications, including pneumonia, bedsores, and
blood clots, which limit improvements in patients with SCI
(Ter Wengel et al., 2019).

Ginsenosides are found almost exclusively in the plant
genus Panax but are mainly derived from Panax ginseng roots
and processed via column purification or high-performance
liquid chromatography (Lu et al., 2022). Approximately 40
ginsenoside compounds have been identified that have a wide
spectrum of therapeutic effects on diabetes, cancer, stress,
inflammation, immune stimulation, and cardiovascular diseases

(Liu H. et al., 2020; Gong et al., 2022). Recent in vivo and in vitro
studies have shown that all different ginsenosides subtypes
had a significant impact on protecting against SCI. Therefore,
with the vast array of ameliorative effects, such as antioxidant,
neuroprotection, promotion of neurite outgrowth, and anti-
inflammation, P. ginseng and its major components (Table 1
and Figure 1), ginsenosides, could potentially reduce secondary
complications in patients with SCI. The present review discusses
recent advances in the mechanisms of ginsenosides against SCI
from different perspectives.

Specific varieties of ginsenoside
ingredients

The active ingredients associated with the ginsenosides used
against SCI are shown in Table 1 and Figure 1.

Anti-inflammatory properties

Inflammation is a crucial component of secondary injury
after SCI and can be both beneficial and harmful to
many cell types, including neutrophils, microglia, astrocytes,
dendritic cells (DCS), blood-derived macrophages, and B
and T lymphocytes (Zhang et al., 2017). When the spinal
cord is injured, the damaged area forms an immune-induced
microenvironment that recruits various cells that release
numerous inflammatory cytokines. Inflammatory cells gather
and infiltrate the spinal cord tissue, resulting in higher adhesion
molecule expression and microvascular endothelial function. All
of these factors trigger an inflammatory cascade reaction, which
further aggravates spinal cord tissue damage (Mukhamedshina
et al., 2017), as shown in Figure 2.

Ginsenosides and microglia

Microglia are resident immune cells and macrophages.
Upon injury, monocytes infiltrate spinal cord tissue and convert
it into local macrophages. Macrophages and microglia have
M1-like (pro-inflammatory) and M2-like (anti-inflammatory)
phenotypes, respectively (Kroner et al., 2014). Currently, the
most studied inflammatory factors are tumor necrosis factor-α
(TNF-α), interleukin-1 beta (IL-1 β), and interleukin-6 (IL-6),
which are indicative of the level of inflammation. Our ultimate
goal was to facilitate the conversion from M1 to M2 phenotype.

Many studies have shown that different ginsenosides can
significantly reduce the expression levels of the aforementioned
inflammatory factors, in the microglia, through different key
factors. Recent studies (Xu X. et al., 2020; Wang D. et al.,
2021) found that both Rb1 and Rh2 can exert anti-inflammatory
effects through the Toll-like receptor 4 (TLR4) and NF-κB
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TABLE 1 Detailed information on the beneficial ginsenoside properties in the treatment of spinal cord injury.

Ginsenoside Molecular structure Anti-
inflammatory

Anti-apoptotic Anti-oxidant
stress

Inhibition of glial
scar formation

Signal path or
receptor

GRb1
√ √

ERβ (Lee et al., 2021;
Gong et al., 2022)

√ √
TLR4/ NF-κB (Lü

et al., 2019)
√ √

GABA (Wang D.
et al., 2021)

√
AQP4 (Chen et al.,

2020)
√

eNOs/Nrf2/HO-1
(Li et al., 2019)

√
PI3K/AKT (Luo
et al., 2014; Tang

et al., 2017; Liu X.
et al., 2018)

√
Nrf2/HO-1

(Ghafouri-Fard et al.,
2022)

√ √
PPARγ (Ye et al.,

2016)
√

Nrf2 and NF-κB (Li
et al., 2017a)

GRg1
√ √

PI3K/AKT (Jang
et al., 2016)

√
Nrf2/ARE (Yi et al.,

2019)
√ √

MAPKp38/Nrf2/
NF-κB (Chu et al.,

2019)

GRg3
√

AKT/ eNOs (Fan
et al., 2018)

GRh2
√ √

TLR4/NF-κB (Wang
Y. et al., 2015)

GRd
√ √

AKT/ERK (Xu X.
et al., 2020)

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.969056
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-969056 August 17, 2022 Time: 16:46 # 4

Qi et al. 10.3389/fnins.2022.969056

FIGURE 1

Signaling pathways of the different kinds of ginsenosides in the treatment of spinal cord injury.

FIGURE 2

Mechanism of the anti-inflammatory properties of ginsenosides.

signaling pathways in the microglia. Their results showed
that the expression levels of IL-1β, IL-6, and TNF-α were
significantly reduced. In contrast, Wang et al. found that another

critical factor in Rb1 is microRNA-130b-5p. Another study
(Jang et al., 2016) reported that nuclear factor erythroid-2
related factor 2 (Nrf2) could be the upstream signal factor for
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NF-κB pathways in the processing of Rb1, and Chen (Chen
et al., 2020) showed that Rb1 reduces pro-inflammatory factors
via the γ-aminobutyric acid (GABA) receptor. Similarly, other
researchers concluded that the expression levels of the activation
marker Iba-1 in the microglia were lower than before SCI,
indicating that the ginsenosides acted as anti-inflammatory
molecules (Kim et al., 2015, 2017).

In addition to the NF-κB signaling pathway in microglia,
many researchers have focused on other pathways. A study (Su
et al., 2016) demonstrated that notoginsenoside R1 (NG-R1)
had a protective effect against oxLDL-induced endothelial cell
injury by inhibiting the production of pro-inflammatory factors
production via mitogen-activated protein kinases (MAPKs).
In addition, the authors showed, for the first time, that anti-
inflammatory effects were associated with the activation of
peroxisome proliferator-activated receptor γ (PPARγ) protein
expression and transcription levels.

Spinal cord injury treatment mainly involves the
intravenous injection of hormones, after surgery, to
effectively reduce spinal cord edema and cell damage;
however, some inflammatory reactions inevitably occur.
Shi et al. (2019) confirmed that Rg1 not only inhibits the
pro-inflammatory cytokines TNF-α and IL-6, which are
induced by hormones in vivo and in vitro but also increases the
level of anti-inflammatory cytokine interleukin-4 (IL-4) in a
variety of serum types.

Ginsenosides and astrocytes

Astrocytes are not immune cells but play a pivotal role
in the neuroinflammatory pathway. Upon injury, astrocytes
transform into active astrocytes to enhance M1 chemokine
production through the expression of TNF-α, IL-12, and IFN-
γ. In addition to these inflammatory factors, if astrocytes are
damaged, they lose the ability to regulate intracellular adhesion
molecule (ICAM) and vascular cell adhesion molecule (VCAM)
expression (Haroon et al., 2011).

After 21 days of simultaneous injection of Rg1 and Rb1 into
rats, the intensity of glial fibrillary acidic protein (GFAP) and
mRNA expression of GFAP was markedly inhibited (Lee et al.,
2016). Furthermore, real-time PCR analysis demonstrated that
the mRNA expression of ICAM-1 and VCAM-1 in the spinal
cord were recovered.

Ginsenosides and T lymphocytes

T lymphocytes play a vital role in adaptive immune
responses, adopt different phenotypes, and contribute to the
injury and repair processes. Teff cells control neuronal function
by regulating the production of several pro-inflammatory
cytokines and chemokines (Anjum et al., 2020). Treg cells, on

the other hand, control the release of the anti-inflammatory
cytokine, interleukin-10 (IL-10), and transforming growth
factor-β (TGF-β). However, during SCI, Teff and Treg lose their
balancing regulation, causing more Teff cell activities, resulting
in a higher release of pro-inflammatory cytokines.

To the best of our knowledge, only Lee (Lee et al.,
2016) has investigated the role of ginsenosides in T cell
regulation. The results showed that Rg1 and Rb1 limited the
recruitment and infiltration of Th1 and Th17 T cells into the
spinal cord and inhibited the production of pro-inflammatory
cytokines, such as IFN-γ and interleukin-17 (IL-17). Based
on this study, ginsenosides may play an important role as
an anti-inflammatory agent in SCI. However, more potential
and innovative specific functional components need to be
analyzed with a genetic database to facilitate the recovery of
neurological function in the later stages, rather than limiting
these usual cytokines.

Anti-apoptotic properties

After SCI, the self-regeneration ability of neuronal cells is
insufficient and the degree of self-repair is severely limited,
which makes it difficult to recover nerve function at a later
stage. Therefore, inhibition of neuronal cell apoptosis is an
important part of the pathogenesis and repair process. Neuronal
cell apoptosis usually refers to the programmed death of these
cells and is the main cause of delayed spinal cord cell death
after SCI. It is an active process of neuronal cell destruction, and
its characteristics include cell shrinkage, genome fragmentation,
chromatin aggregation, and nuclear pyknosis (Liu S. et al., 2018),
as shown in Figure 3.

Ginsenosides and the caspase family

The pathological process of neuronal apoptosis mainly
involves a protease cascade mediated by members of the caspase
family, including caspase-3, caspase-8 (Sobrido-Cameán and
Barreiro-Iglesias, 2018), and caspase-9 (Keane et al., 2001).
A few caspases, such as 11, 12, 13, and 14 have also been
identified as specific apoptotic factors (Keane et al., 2001; Jin
et al., 2011). Caspase-3 plays the most important role among
these factors. The process of regulating neuronal apoptosis after
the activation of Caspase-3 is regulated by B-cell lymphoma
(Bcl). Zhao et al. (2018) confirmed that Rb1 reduced the Bax:Bcl-
2 ratio, and caspase-3 and p-ASK-1 levels to protect nerve cells
in the spinal cord of rats. Similarly, another study (Ahmed et al.,
2016) found that Rb1 also inhibited caspase-3 and activated
the anti-apoptotic gene BCL by phosphorylating the estrogen
receptor. The conclusions of the two aforementioned studies are
consistent with those obtained for Rg1 (Ke et al., 2014; Wang
et al., 2014; Li et al., 2017b; Fan et al., 2018).
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FIGURE 3

Mechanism of the anti-apoptotic properties of ginsenosides.

Ginsenosides and autophagy

Autophagy is a major process mediating cell death (Sobrido-
Cameán and Barreiro-Iglesias, 2018). As a recycling agent, it
detoxifies unnecessary proteins and organelles by promoting
lysosomal pathways. During SCI, abnormal activation of
autophagosomes and lysosomes triggers rapid cell death (Yu
and Fehlings, 2011). Luo et al. (2014) suggested that Rb1 might
alleviate autophagic vacuoles and inhibit neuronal apoptosis
induced by oxygen glucose deprivation (OGD) and transient
ischemia. To further clarify the mechanism, the PI3K inhibitor
LY294002 was used to prove that the anti-apoptotic effect was
achieved through the PI3K/Akt signaling pathway. Similarly,
Rg1 exerts neuroprotection via the same pathway as Rb1
(Yi et al., 2019).

Ginsenosides and aquaporin-4

Aquaporin-4 (AQP4) is mainly distributed in the terminal
feet of astrocytes and vascular endothelial cells and plays a
key role in maintaining water balance. It is also an important
protein involved in the development of spinal cord edema
(Oklinski et al., 2016). When SCI occurs, the high expression
of AQP-4 can lead to acute spinal cord edema, resulting in the
inactivation and apoptosis of nerve cells, while the inhibition
of AQP-4 expression can reduce cell water poisoning and
the spinal cord edema index (Liu et al., 2015). Consequently,
AQP-4 may be a key target in SCI management. Huang

et al. (2015) demonstrated that the expression level of AQP-4
increased significantly after SCI and Rb1 could offset its growth.
Compared with the spinal cord neurons of the untreated group,
those in the treated group had neurons that were significantly
complete and higher in number; such results were further
corroborated by Li et al. (2019).

Ginsenosides and mitochondria

Most of the energy required by the human body is provided
by the mitochondria, and mitochondrial dysfunction causes
neuronal death (Golpich et al., 2017). Xu M. et al. (2019)
reported that GRb1 and GRg1 co-cultured with astrocytes
significantly increased cell viability, decreased mitochondrial
DNA (mtDNA) copy numbers, and weakened the mitochondrial
membrane potential (MMP) depolarization. All these changes
enhanced the mtDNA content. In addition, the two ginsenosides
increased the activity of mitochondrial complexes I, II, III, and
V and increased adenosine triphosphate (ATP) levels. Although
GRb1 and GRg1 have different chemical structures, they are
both involved in increasing the efficiency of mitochondrial
oxidative phosphorylation in astrocytes.

In the last decade, researchers have found that if
ginsenosides are wrapped with other ions, they may exert
neuroprotective effects by inhibiting ion toxicity; this has
become a new topical research area. In Guo et al. (2017) showed
that using mechanical emulsification technology to prepare
alginate chitosan microspheres by solidifying Rg1 combined
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FIGURE 4

Anti-oxidative stress and lipid peroxidation mechanism of ginsenosides.

with calcium ions and chitosan, can significantly improve the
neuroprotective effect.

Therefore, in the future, ginsenosides should be combined
with chemical materials to create a sustained release system
that is placed in the injured area to increase local targeting and
decrease toxic effects on other organs.

Anti-oxidative stress

After SCI, oxidative stress destroys proteins, lipids, and
DNA by producing reactive oxygen species (ROS) and reactive
nitrogen species (RNS) in the spinal cord. ROS and RNS
production increase ascorbic acid demand and alter the activity
of antioxidant enzymes, such as superoxide dismutase (SODs),
catalase, and glutathione (GSH). Therefore, neutralizing ROS
and RNS is considered an effective way to reduce secondary
injury in the treatment of SCI. The important biomarkers used
to assess oxidative responses are 4-hydroxynonenal (4-HNE),
malondialdehyde (MDA), and acrolein (Tsikas, 2017). When
SCI occurs, the extracellular matrix is damaged and the products
of membrane peroxidation are expressed. Consequently, these
biomarkers can indirectly indicate damage caused by oxidative
stress (Chio et al., 2021), as shown in Figure 4.

Researchers (Ye et al., 2016, 2019; Liu X. et al., 2018; Huo
et al., 2019; Zhang et al., 2022) have confirmed that Rb1 and Rg1
significantly decrease the levels of ROS, RNS, and MDA after
SCI to reduce oxidative stress in spinal cord tissues. In contrast,
Ye and Huo found that the quantity of survivin protein and

X-linked inhibitor of apoptosis protein (XIAP), around injured
sites, increased in response to oxidative stress. In addition,
serum catalase, superoxide dismutase (SOD), and GSH activity
increased. At the same time, they validated that nuclear factor
E2 (Nrf2) is the main cause of cellular defense against oxidative
stress. This conclusion is in accordance with other researchers
for Rg1 (Chu et al., 2019) and Rb1 (Ni et al., 2014). According
to previous studies, ER-β was an important target for reducing
oxidative stress, which was confirmed for Rb1 by Lü et al.
(2019). In Cong and Chen (2016) first verified that Rd plays the
same role as Rb1 and Rg1 in SCI treatment. The results of this
study showed that Rd effectively reversed the redox imbalance
in the spinal cord tissue by inhibiting the activation of the
MAPK signaling pathway. Overall, the study evaluated a single
ginsenoside in anti-oxidative stress (Sng et al., 2022). Given
these results, it is necessary to consider using a combination of
ginsenosides to improve secondary injury in patients with SCI.

Inhibition of glial scar formation

Spinal cord injury triggers the formation of glial scar
tissue around the injury epicenter, which is a multifactorial
phenomenon that contributes to the damage of several neuronal
populations of the injured spinal cord. After a scar is formed,
it becomes a physical barrier in the physiological sense and
secretes a variety of axon regeneration inhibitory factors (Robel
and Sontheimer, 2016). Glial scars also form chemical barriers,
as shown in Figure 5.
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FIGURE 5

Inhibition of glial scar formation by ginsenosides.

Ginsenosides and astrocytes

After SCI, astrocytes become reactive. In the focal area,
reactive astrocytes proliferate, hypertrophy, and migrate, and
the cell processes are thick and overlap with each other. This is
accompanied by an increased release of related proteins such as
GFAP, vimentin, and nestin (Adams and Gallo, 2018). Together,
these factors contribute to the formation of glial scars (Pekny
and Pekna, 2014), and the process indicates a dynamic change
(O’Shea et al., 2017).

Xu L. et al. (2020) conducted a study on glial fibrin
degradation using Rg1. Their results showed that Rg1
significantly downregulated GFAP and chondroitin sulfate
proteoglycans (CSPGs), and promoted the expression of nerve
growth factor (NGF), glial cell line-derived neurotrophic factor
(GDNF), basic fibroblast growth factor (bFGF), laminin (LN),
and fibronectin (FN). Notably, these neurotrophic factors are
involved in the regulation of neural differentiation and axonal
regeneration in central peripheral neurons (Wada et al., 2018).
In addition, they can promote the survival and repair of neurons
to reduce the formation of neurocysticercosis disease and
syringomyelia, and inhibit the formation of glial scars, which are
beneficial for promoting spinal cord recovery (Lan et al., 2017).

Ginsenosides and olfactory
ensheathing cells

Several studies using SCI models of varying severity have
shown that olfactory ensheathing cells (OECs) are glial cells

capable of lifelong regeneration. The transplantation of OECs
for the treatment of SCI has shown promising results (Zhou
et al., 2019). Tang et al. (2017) reported that Rg1 upregulated
the expression of migration factors that are related to OECs
via the PI3K/Akt signaling pathway, including (MMP-2),
matrix metalloproteinases-9 (MMP-9), and neural cell adhesion
molecule 1 (NCAM1). Lu et al. (2010) obtained similar results
for Rg1. These results indicate that Rg1 can not only promote
the growth of OECs but also upregulate the expression of glial
cell-derived neurotrophic factor and NGF, which may have great
potential in OEC therapy. The migration and repair of OECs can
further inhibit glial hyperplasia and scar formation, which is of
great significance in SCI (Ingram et al., 2016).

However, until now, studies on ginsenosides that inhibit
glial scar formation have been limited to a small number of
neural cell types. Therefore, it is essential to determine the
relationship between ginsenosides and more cell varieties, such
as microglia, fibroblasts, and pericytes.

Prospects of ginsenosides in
protecting against spinal cord
injury

To date, studies have shown the great potential of
ginsenosides in the field of neuroprotective effects, and to
some extent, revealed their related mechanisms. However, as
a therapeutic strategy, there are still limited applications of
ginsenosides. Thus, the following are our future prospects
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regarding research on ginsenosides. First, researchers have
studied the mechanism of action of single ginsenosides in the
treatment of SCI, and there are limited studies on combined
ginsenosides application. In future studies, two or more
ginsenosides could be used simultaneously to evaluate their
neuroprotective effects. Second, the methods of administration
were all by intraperitoneal injections, and absorption rates
of other administration routes, such as gavage, were not
investigated. More importantly, it is vital to know the
concentration of the ginsenosides that reach the damaged spinal
cord and whether it is associated with toxic side effects in
other organs. Besides, extend the treatment to compare short
and long-term efficacy after SCI. Third, there are only a few
signaling pathways through which different ginsenosides act and
the key proteins involved are not yet clear. In our opinion, we
should increase the use of an applied gene database to identify
the specific functional components of ginsenosides. Finally,
ginsenosides should be combined with innovative chemical
materials to improve their pharmacological role.

Conclusion

Accumulating evidence has revealed the potential
neuroprotective effects of ginsenosides on SCI, indicating that
ginsenosides may be an adjuvant therapy in traditional Chinese
medicines (TCMs). Based on this, this review concludes with
the possible mechanisms of ginsenosides related to SCI and
its limitations for future clinical translation. This review has
focused on four possible mechanisms of SCI: anti-inflammatory,
anti-apoptotic, anti-oxidative stress, and inhibition of glial
scar formation. These mechanisms recommend ginsenosides
as neuroprotective agents against many degenerative and
traumatic diseases.

However, studies on the application of ginsenosides, in
general, are still in their infancy. Many obstacles remain between

basic research and clinical applications that need to be overcome
in the future. To develop ginsenosides for use as a recognized
clinical therapeutic approach, additional challenges need to be
addressed, including a better-combined application of various
ginsenosides, establishing the ideal method of administration
and determining the absorption rate, comparing short and long-
term efficacy, better understanding of the potential specific
functional components, and more combinative forms with
appropriate chemical materials to improve its efficacy.
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