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perception learning
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of Nursing, Air Force Medical University, Xi’an, China

Visual perceptual learning (VPL) refers to the improvement in visual

perceptual abilities through training and has potential implications for clinical

populations. However, improvements in perceptual learning often require

hundreds or thousands of trials over weeks to months to attain, limiting

its practical application. Transcranial direct current stimulation (tDCS) could

potentially facilitate perceptual learning, but the results are inconsistent thus

far. Thus, this research investigated the effect of tDCS over the left human

middle temporal complex (hMT+) on learning to discriminate visual motion

direction. Twenty-seven participants were randomly assigned to the anodal,

cathodal and sham tDCS groups. Before and after training, the thresholds of

motion direction discrimination were assessed in one trained condition and

three untrained conditions. Participants were trained over 5 consecutive days

while receiving 4 × 1 ring high-definition tDCS (HD-tDCS) over the left hMT+.

The results showed that the threshold of motion direction discrimination

significantly decreased after training. However, no obvious differences in the

indicators of perceptual learning, such as the magnitude of improvement,

transfer indexes, and learning curves, were noted among the three groups.

The current study did not provide evidence of a beneficial effect of tDCS

on VPL. Further research should explore the impact of the learning task

characteristics, number of training sessions and the sequence of stimulation.

KEYWORDS

direct current stimulation (tDCS), brain stimulation, human middle temporal complex
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Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.988590
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.988590&domain=pdf&date_stamp=2022-09-01
https://doi.org/10.3389/fnins.2022.988590
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.988590/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-988590 August 26, 2022 Time: 15:25 # 2

Wu et al. 10.3389/fnins.2022.988590

Introduction

Visual perceptual learning (VPL) refers to training-induced
improvements in human visual perceptual abilities, ranging
from simple visual feature discrimination to complex object
recognition (Dosher and Lu, 2017; Zhang et al., 2018; Wu
et al., 2021a). VPL can be considered a manifestation of brain
plasticity; thus, investigating its neural mechanisms will improve
understanding of the neural plasticity of the adult brain (Kawato
et al., 2014). Over the past decades, researchers have mainly
focused on two important facets of the neural mechanisms
underlying VPL: the location (i.e., the cortical loci) and form of
the plasticity-related changes. In addition, an increasing number
of studies have translated VPL findings to clinical applications
(Lu et al., 2016). VPL has been used to treat patients with various
types of vision loss, such as cortical blindness (Huxlin et al.,
2009; Das et al., 2014; Herpich et al., 2019), amblyopia (Polat
et al., 2004; Huang et al., 2008; Levi and Li, 2009; Astle et al.,
2011; Barollo et al., 2017), macular degeneration (Astle et al.,
2015; Maniglia et al., 2016), myopia (Tan and Fong, 2008; Casco
et al., 2014; Yan et al., 2015), visual field defects (Casco et al.,
2018) and presbyopia (Sterkin et al., 2018). However, adequate
performance enhancements usually require substantial training
(Herpich et al., 2019), which limits the practical applications
of VPL. Methods for maximizing the effects of training (e.g.,
increasing the magnitude of improvement, learning speed, and
generation of trained skills, or extending the persistent effects of
learning) have attracted increasing interest.

Research has shown that noninvasive transcranial electrical
stimulation (tES) not only directly improves visual perception
(Ding et al., 2016; Bocci et al., 2018) but also promotes
perceptual learning when coupled with behavioral training,
such as transcranial direct current stimulation (tDCS; Pirulli
et al., 2013; Karlaftis et al., 2021), transcranial alternating
current stimulation (tACS; He et al., 2022) and random noise
stimulation (RNS; Contemori et al., 2019), benefiting for clinical
patients such as amblyopia (Spiegel et al., 2013; Campana
et al., 2014; Moret et al., 2018), mild myopia (Camilleri et al.,
2014, 2016) and hemianopia after occipital stroke damage
(Plow et al., 2011, 2012). Among tES techniques, tDCS is
particularly attractive due to its low cost and portability
(Reinhart et al., 2016). tDCS transiently modulates cortical
excitability by altering the membrane potential of neurons
(Stagg and Nitsche, 2011; Stagg et al., 2011). In general, the
cortical excitability is increased by the anodal electrode and
decreased by the cathodal electrode (Parkin et al., 2015; Woods
et al., 2016). In the first study, anodal tDCS over the extrastriate
visual cortical area (V5) or primary motor cortex (M1) was
found to significantly increase learning in the early phase,
but no significant effect was found for cathodal stimulation
(Antal et al., 2004a). Additionally, Sczesny-Kaiser et al. applied
tDCS over the primary visual cortex (V1) while participants
learned how to perform a visual orientation-discrimination task.

These researchers found that anodal tDCS improved VPL and
increased cortical excitability. Recently, Karlaftis et al. (2021)
applied tDCS over the right occipito-temporal cortex (OCT)
while participants trained on a signal-in-noise task and found
that anodal tDCS boosted learning by reducing GABA+ levels
and by altering local processing in the visual cortex as well as
functional connectivity between visual and posterior parietal
areas compared to sham tDCS.

However, other tDCS studies on visual learning have
reported varying results. Some studies did not find that tDCS
influenced visual learning when applied while participants
trained on orientation discrimination tasks (Fertonani et al.,
2011; Pirulli et al., 2013; Larcombe et al., 2018). Additionally,
overnight consolidation of visual learning was blocked by
anodal tDCS applied while participants trained on a contrast
detection task (Peters et al., 2013). Thus, further empirical
data in this area are needed. The current study has several
improvements in experimental design compared to previous
studies. Psychophysical research typically describes VPL
according to various aspects, namely, the magnitude of
learning, learning curves, specificity and transference; these
aspects reveal possible changes in visual processing in the brain
regions associated with learning in greater detail. However,
previous studies have mainly focused on the effect of tDCS
on the magnitude of learning, rarely incorporating the other
indicators. Therefore, this study comprehensively examined
multiple psychophysical indicators, including the magnitude of
improvement, learning curve and transfer index, to elucidate
the relationship between tDCS and VPL.

Coherent motion is frequently employed in studies
regarding the neuromodulation of visual perception (Olma
et al., 2013; Battaglini et al., 2017, 2020) given that the human
middle temporal complex (hMT+) has been confirmed to
play a specialized role in visual motion perception with
multiple techniques, such as lesions (Newsome and Pare,
1988), electrophysiology (Britten et al., 1992), functional
magnetic resonance imaging (fMRI; Chen et al., 2016, 2017)
and electrical stimulation (Antal et al., 2004b; Pavan et al., 2019;
Wu et al., 2020). For example, the visual area V1 receives visual
information from the eye; thus, cortical blindness is induced
by any damage to this region. However, many patients whose
V1 is damaged show activity in the hMT+ (Bridge et al., 2010;
Sara et al., 2015), and some still detect moving stimuli (which
are processed in this area) via a phenomenon termed blindsight
(Silvanto et al., 2005).

Here, we tested whether the application of high-definition
tDCS (HD-tDCS) over the hMT+ during training increased
VPL of motion direction discrimination. HD-tDCS differs from
the conventional approach in that it employs small electrodes
instead of the two large sponge electrodes and thus can target
more specific brain regions (Dmochowski et al., 2011). The
4 × 1 ring configuration is a typical and frequently used
montage for HD-tDCS; it involves a central electrode placed
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over the target region, and four return electrodes placed around
it in a ring-like configuration (Villamar et al., 2013). In the
current study, motion direction discrimination thresholds were
assessed without tDCS before (Pre) and two days after (Post)
training. The pre- and post-training assessments consisted of
varying stimulus types (trained: 100% coherence; untrained:
50% coherence) and motion direction (trained: 225◦; untrained:
45◦). Participants received five consecutive days of training,
during which they simultaneously experienced anodal, cathodal
or sham 4× 1 ring HD-tDCS over the hMT+ (Figure 1A).

Materials and methods

Participants

Twenty-seven participants (20 males) with normal or
corrected-to-normal visual acuity (VA) and a mean age of
20.5 ± 0.9 years were randomly divided into the anodal
(n = 9), cathodal (n = 9) or sham (n = 9) tDCS conditions.
No significant differences among the three groups regarding
age (p = 0.430) or VA (p = 0.830) were noted. None of
the participants had previous experiences with various visual
perception experiments; they were blinded to the objectives
of the study. The participants provided written informed
consent, and the study was approved by the local Research
Ethics Committee and adhered to the principles of the
Declaration of Helsinki.

Stimuli

As shown in Figure 1B, visual stimuli consisted of 400
white moving dots (0.18◦ in diameter), which were presented
against a gray background (mean luminance: 26 cd/m2). The
dots were randomly positioned within the round window (8◦ in
diameter) with a moving velocity of 10◦/s. The density of dots
was remained constant (7.96 dots/deg2) through substitution
with new dots at different, randomly selected locations within
the window once the dots moved outside the window. In the
100% motion coherence condition, all dots moved in the same
direction. In the 50% motion coherence condition, 50% of the
dots served as signals (moved in the same direction), and the
remainder served as noise (randomly moving direction). The
movement direction of the dots was fixed at 45◦ (upper right
of the window) or 225◦ (bottom left of the window).

All experimental procedures were completed in a quiet, dark
room in which participants were seated in front of a computer
screen. The experimental environment was kept constant in all
sessions. A gamma-corrected 60 cm × 34 cm monitor was used
to display the stimuli with 1,920× 1,080 pixels spatial resolution
and 85 Hz refresh rate using a computer running MATLAB
(MathWorks, Natick, MA, United States) and PsychToolbox

extensions. Participants binocularly viewed the displays from
75 cm away, with their head stabilized by a chinrest and
headrest; the displays covered 6.84◦ × 3.89◦ of their visual field.
For subjects with corrected-to-normal vision, normal VA was
ensured by optical correction.

Procedure

All observers had to complete the motion direction
discrimination tests before and two-day after training. The post-
test was conducted two-day after training because at least 48 h
of time interval was frequently used in previous studies to
limit potential carryover effects of tDCS (Wu et al., 2021b).
The tests without the tDCS effect contribute to obtaining the
pure improvement of VPL given that the tDCS itself could
directly benefit the visual motion perception (Wu et al., 2020).
During the test phase (Figure 1A), participants completed four
conditions, each containing 100 trials, at two coherence levels
(100 and 50%) and two motion directions (approximately 45◦

and 225◦). The four conditions were counterbalanced and each
lasted approximately 5 min. In a trial, two 500-ms visual stimuli
(45◦ and 45 ± θ◦; 225◦ and 225 ± θ◦) were randomly displayed
and separated by a 200-ms blank screen. A brief tone sounded
at the beginning of each stimulus. A two-alternative forced-
choice (2-AFC) response was made to judge the direction of
the second visual stimulus relative to the first (i.e., clockwise
or counterclockwise). A brief tone sounded after each response,
regardless of accuracy. Participants adequately practiced before
the formal experiment to become familiar with the tasks.

The threshold (θ◦) varied by trial and was controlled by
an adaptive three-down one-up staircase method to assess the
thresholds of motion direction discrimination, converging to an
accuracy rate of 79.4%. Specifically, this method decreased θn

by 10% (multiplied θn−1 by 0.9) after every three consecutive
correct responses and increased θn by 10% after every incorrect
response. Reversals were recorded when the direction of θ

change shifted from increasing to decreasing or vice versa and
excluded the first four or five reversals if the total number of
reversals was even or odd, respectively. The remaining reversals
were averaged to calculate the threshold.

During the training phase, each subject performed a motion
direction discrimination task with 100% coherency and a
motion direction of approximately 225◦. Training sessions
took place daily over five consecutive days, and the trained
direction and direction were fixed for all sessions. A brief
tone sounded only after a correct response. To ensure that
training and application of tDCS occurred simultaneously, each
training session consisted of 5 blocks of 80 trials, for a total
duration of approximately 18.3 ± 0.7 min, which was shorter
than the duration of stimulation (20 min). Participants were
allowed to rest between blocks and initiated the next block
when they were ready. The time of day and experimental
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FIGURE 1

The experimental procedure and task. (A) A diagram of the experimental procedure. Black rectangles indicate to the pre- and post-training
assessments (conducted without tDCS); white rectangles (S1–S5) indicate training sessions with simultaneous tDCS. (B) Example of a trial. The
pre- and post-training assessments determined motion direction discrimination thresholds in four conditions, varying in coherence (100 vs.
50%) and motion direction (45◦ vs. 225◦). The training session consisted of one condition: 100% coherence and a 225◦ motion direction.

environment were kept constant in all sessions. During the
middle of the training session, participants were asked to
report tDCS-induced sensations. Participants were specifically
asked the following question: What is your sensation of the
stimulation region? including any sensations such as burning,
itching, tingling, pain and so on. Sensation intensity was
evaluated on a 10-point scale as follows: 0 = none, 10 = strong
and intolerability.

Transcranial direct current stimulation

The majority of previous studies applied conventional 1× 1
tDCS over the hMT+. In this method, the active electrode is
placed approximately 3–4 cm above the mastoid-inion line and
6–7 cm left or right of the midline in the sagittal plane; the return
electrode is placed at the vertex (Antal et al., 2012; Larcombe
et al., 2018). To apply specific stimulation to the hMT+, a 4× 1
ring HD-tDCS montage (Soterix Medical, NY, United States)

was administered (Figure 2A). Zito et al. (2015) applied the
HD-tDCS over the right hMT+. The electrode montage was
the same and the region of interest was in the left hemisphere.
Specifically, the central electrode was placed at PO7 and four
return electrodes were placed at a distance of approximately
5 cm from the central electrode; their locations corresponded to
P3, OZ, TP7, and PO9 (in the 10–10 standard EEG system). For
anodal tDCS, the anode was placed on PO7, delivering a 20-min
1.5 mA DC (fade in/out: 30 s). The return current was equally
divided through the four remaining electrodes. Conductive gel
was injected into the electrode casings (1 cm in diameter) to
increase conductivity and reduce impedance (<5 k�). For sham
tDCS, the current was ramped up over 30 s at the beginning and
ramped down over 30 s, and current during the 20-min middle
period was 0 mA. As shown in Figure 2B, the current flow of
anodal tDCS was depicted using HD-Explore software (Soterix
Medical Inc., New York).

Given that the stimulator was operated by an experimenter,
he/she was unblinded to whether participants were receiving
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FIGURE 2

Electrode montage and simulated distribution of the electrical field during 4 × 1 HD-tDCS. (A) The red point represents the central electrode,
placed over PO7; the blue points represent the four return electrodes, placed over P3, OZ, TP7, and PO9. (B) HD-Explore software was used to
model the field intensity and current flow for anodal HD-tDCS: (a) coronal view, (b) sagittal view, and (c) axial view.

anodal or sham stimulation. However, this experimenter
was blinded to the purpose and the experimental design
of current study.

Data analysis

To obtain the learning curves, a power function was used

C(t) = (C0−ι) × t−ρ
+ ι (1)

where C0 is the initial threshold, t is the training session number,
ρ is the learning rate, and ι is the asymptotic line.

A nonlinear least squares method, implemented in
MATLAB (MathWorks, Natick, MA, United States), was used
to minimize the sum of squared differences between the model
predictions and measured values. The goodness of fit was
estimated by

r2
= 1.0−

∑
(ymeasured−ypredicted)2∑

[ymeasured−mean(ymeasured)]
2 (2)

where ymeasured and ypredicted represent the measured and
predicted values, respectively, and mean(ymeasured) represents
the mean of all the measured values.

We compared the learning curves among the three
experimental conditions (anodal, cathodal and sham) in a
nested-model testing framework. An F test was used to compare
the nested models:

F(df 1, df 2) =
(r2
full−r

2
reduced)/df 1

(1−r2
full)/df 2

(3)

where df 1 = kfull−kreduced, df 2 = N−kfull, kfull and kreduced are
the numbers of parameters of the full and reduced models, and
N is the number of data points. The best-fit model was defined
as the model that was statistically equivalent to other models and
had minimum parameters.

The transfer index was calculated as the magnitude
of improvement in the untrained direction divided by
the magnitude of improvement in the trained direction
(Zhang et al., 2018).

In addition to the frequentist statistical approaches, a
Bayesian repeated measures ANOVA was performed with the
opensource software package JASP. Bayesian analyses permit a
test of the relative strength of evidence for the null hypothesis
(H0: no effect of tDCS stimulation group) versus the alternative
hypothesis (H1: change in behavior as a result of tDCS
condition). The one-way Bayesian ANOVA on transfer indexes,
slope and intercept, and two-way Bayesian ANOVA on pre- and
post-training performance were separately performed in JASP.

Results

Pre- and post-training performance

A two-way analysis of variance (ANOVA) was conducted
incorporating the effects of the 2 time points (pre and post)
and 3 conditions (anodal, cathodal and sham) on the motion
direction discrimination threshold. As shown in Figure 3A,
there was a significant main effect of time, F(1,24) = 101.16,
p < 0.001, η2 = 0.81. However, the main effect of condition
and the time point× condition interaction were not significant,
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FIGURE 3

The results of the pre- and post-training assessments. (A) Improvements in the trained condition. (B–D) The transfer indexes in three untrained
conditions.

Fs < 1, indicating that neither anodal nor cathodal tDCS
significantly influenced performance on the motion direction
discrimination task.

To further interpretate of the null effect of tDCS, a two-
way Bayesian ANOVA was also performed. The consistent
pattern of results was found across both frequentist and
Bayesian analyses. The Bayes factor for the effect of active tDCS
condition (alternative hypothesis H1: significant difference
among anodal, cathodal and sham tDCS) was less than
hundredth (BF10 = 3.00e-12), providing extreme evidence for
supporting the null hypothesis.

Effect of transcranial direct current
stimulation on learning transference

The transfer indexes were calculated for three conditions:
50% coherence/225◦ direction, 100% coherence/45◦ direction,
and 50% coherence/45◦ direction. We conducted one-way
ANOVAs and one-way Bayesian ANOVAs on the transfer
indexes of the three conditions. The pattern of results was

consistent across both frequentist and Bayesian analyses.
There were no significant main effects of conditions in
the 50% coherence/225◦ direction condition (Figure 3B),
F(2,24) < 0.001, p = 0.996, η2 < 0.01, BF10 = 0.227;
BF01 = 4.408; 100% coherence/45◦ direction condition
(Figure 3C), F(2,24) = 0.37, p = 0.697, η2 = 0.03, BF10 = 0.295;
BF01 = 3.510; or 50% coherence/45◦ direction condition
(Figure 3D), F(2,24) = 0.08, p = 0.925, η2 = 0.01, BF10 = 0.238;
BF01 = 4.207. The Bayesian ANOVAs provided anecdotal
evidence in favor of the null hypothesis. Taken together, these
results suggest that tDCS did not influence learning transference
to untrained values of coherence and direction.

Effect of transcranial direct current
stimulation on learning over multiple
sessions

The anodal, cathodal and sham learning curves were
estimated by a power function with a total of nine parameters.
That is, each learning curve had three parameters: the initial
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threshold (C0), learning rate (ρ) and asymptotic line (ι). Thus,
eight models were developed by setting some parameters to
be equivalent (Table 1). Specifically, we constructed 8 models:
a full 9-parameter model (M1) with independent C0, ρ and ι

values; reduced 7-parameter models with identical C0, ρ or ι

values (M2, M3 and M4); reduced 5-parameter models with
identical C0/ρ (M5), C0/ι (M6) and ρ/ι (M7) values; and a
reduced 3-parameter model with identical C0, ρ and ι values
(M8). The eighth model (M8) was the most reduced (simplest)
model and was statistically equivalent to the other models (all
ps > 0.100; Figure 4). Thus, M8, which held all parameters equal
across the three conditions provided the best fit, suggesting
that tDCS did not significantly influence learning over multiple
training sessions.

Effect of transcranial direct current
stimulation on learning within a session

The above analyses did not find a significant effect of tDCS
on learning curves over five days of consecutive sessions. The
next analysis focused on learning curves within each session
(online effect; Reis et al., 2009). We averaged thresholds within
the same block for the five sessions. Based on the observed
trends, a linear regression model was used to fit the within-
session learning curves as a function of the block. The slope
and intercept of the learning curves were estimated with a
linear least squares method. One-way ANOVAs and one-way
Bayesian ANOVAs were conducted on the slope and intercept.
The ANOVA on the slope did not find a significant difference
among the anodal, cathodal and sham groups, F(2,24) = 0.81,
p = 0.457, η2 = 0.06, BF10 = 0.375; BF01 = 2.668. Similarly,
no obvious difference in intercept was found among the three
groups, F(2,24) = 0.05, p = 0.952, η2 = 0.01, BF10 = 0.233;
BF01 = 4.283. The Bayesian ANOVAs provided anecdotal (slope)
or moderate (intercept) evidence in favor of the null hypothesis.
These results indicated that tDCS had no effect on learning
within a session. slope.

TABLE 1 Comparison of model fits to the learning curves.

M2 M3 M4 M5 M6 M7 M8 r2(%) Parameters

M1 0.080 0.037 0.137 0.094 0.010 0.205 0.266 98.03 3C0, 3ρ, 3ι

M2 0.279 0.293 0.917 0.848 95.43 1C0, 3ρ, 3ι

M3 0.787 0.827 1 1 94.08 3C0, 1ρ, 3ι

M4 0.136 0.143 0.448 0.562 96.18 3C0, 3ρ, 1ι

M5 1 93.71 1C0, 1ρ, 3ι

M6 1 93.79 1C0, 3ρ, 1ι

M7 0.514 95.33 3C0, 1ρ, 1ι

M8 94.67 1C0, 1ρ, 1ι

Columns 2 to 8 display the p values of statistical comparisons between different models.
The model parameters are shown in the right column.

Sensations induced by transcranial
direct current stimulation

Each participant completed a question at the middle point
of each training session. The results are reported in Figure 5.
We compared the sensation intensity among anodal, cathodal
and sham tDCS conditions with one-way ANOVAs. The main
effect was significant or marginally significant for each session.
The p values from sessions 1 to 5 were 0.030, 0.013, 0.032,
0.019, and 0.090, respectively. Post-hoc LSD analyses were
further conducted for each session. The anodal tDCS induced
significantly greater sensation intensity than sham tDCS for all
training sessions: session 1 (p = 0.009), session 2 (p = 0.004),
session 3 (p = 0.010), session 4 (p = 0.010), and session 5
(p = 0.036). Additionally, p values of difference in sensation
intensity between cathodal and sham tDCS were 0.218, 0.149,
0.076, 0.019, and 0.109 from sessions 1 to 5, respectively. No
significant differences in sensation intensity were noted between
anodal and cathodal tDCS for all sessions [session 1 (p = 0.127),
session 3 (p = 0.364), session 4 (p = 0.783) and session 5
(p = 0.584)] with the exception of session 2, which was marginal
significant (p = 0.094). In general, the anodal tDCS-induced
sensations were perceived more strongly than sham-induced
sensations; moreover, anodal tDCS was indistinguishable from
cathodal tDCS, especially during the late period of training.

Discussion

After five consecutive days of training, the motion direction
discrimination thresholds significantly decreased. However,
4 × 1 ring HD-tDCS applied on the left hMT+ did not affect
VPL in terms of the magnitude of improvement, learning curve
or transference.

There are three possible explanations for the failure to
identify an effect of tDCS on VPL. First, there may have been no
room for improvements on the training task. Coherent motion
tasks are frequently employed to investigate visual perception
and its neural mechanisms since it has a relatively distinct
brain region (i.e., the hMT+). The coherent motion task has
many variations, depending on the research topic. For example,
the motion direction discrimination task in this study was
derived from a previous study conducted by Chen et al. (2016,
2017). Their task involved discriminating the global direction
of moving dots. Specifically, the moving dots were presented
twice, and participants then determined the minimum angle of
the two directions of moving dots. Obviously, that task required
two cognitive processes: identifying the direction of motion
against a noisy background and then discriminating between
the two presented directions of the moving dots. Our previous
study confirmed that anodal tDCS over the left hMT+ improved
motion direction identification in noisy conditions through
signal enhancement or noise reduction (Wu et al., 2020).
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FIGURE 4

Learning curves (discrimination threshold as a function of training session) fit by power functions in different models.

Additionally, anodal tDCS over V1 led to an improvement
in visual orientation discrimination (Sczesny-Kaiser et al.,
2016). This evidence suggests that the hMT+ and V1 may be
participate in the identification of direction against noise and the
discrimination of the direction, respectively. In current study,
participants trained on a condition with 100% coherence, a
task in which identification of the motion direction could not
be improved by applying tDCS over the hMT+, since there
were no randomly moving dots. That is, the learning task used
here included two cognitive processes, but there was a ceiling
effect on direction identification because of the high coherence
(100%) in the training task. Thus, tDCS over the hMT+ did
not improve direction identification. Nevertheless, the other
cognitive process (discrimination between two directions of
motion; related to V1) was not assessed in this study. In sum, this
study did not find an effect of tDCS on learning to discriminate
the direction of motion of 100% coherent dots. Thus, future
research should use other motion perception tasks in which
coherence is variable.

Second, the current study aimed to detect learning
enhancement over multiple sessions, rather than a simple
within-session change in behavior. Studies have shown that
tDCS over the left hMT+ can directly improve visual motion
perception measured during or immediately after stimulation
(Battaglini et al., 2017; Wu et al., 2020). However, VPL often
requires thousands of trials over multiple sessions to improve
(Herpich et al., 2019). Thus, VPL involves complex cognitive
processes such as sleep-mediated consolidation (He et al., 2021,
2022; Yang et al., 2022). To date, it remains unknown whether

tDCS facilitates VPL across multiple sessions. Consistent with
our results, several studies did not find a significant influence
of tDCS on multisession VPL (Fertonani et al., 2011; Larcombe
et al., 2018).

Third, the timing of stimulation and training may be
important. Pirulli et al. (2013) found that anodal tDCS facilitated
task performance if it was applied before training, whereas
transcranial random noise stimulation (tRNS) had a facilitated
effect only when it was applied during training. The authors
suggested that tDCS induced neuronal depolarization mainly
through the initiation of homeostatic mechanisms. These

FIGURE 5

tDCS induced sensation during 5-day training sessions.
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homeostatic mechanisms might not be totally functional if
engaged during a task but will eventually induce stronger
aftereffects. Therefore, anodal tDCS has effects that last after
the end of stimulation, and performance improvement is more
likely if tDCS is applied before the execution of training.
Conversely, other studies found that online application of tDCS
(during training) led to greater improvements in performance
on tasks involving motor learning (Nitsche et al., 2003;
Stagg and Nitsche, 2011) and VPL (Sczesny-Kaiser et al.,
2016; Karlaftis et al., 2021). The influence of timing on VPL
merits further study.

We found a stronger sensation induced by anodal tDCS
compared with sham condition across all training sessions.
Indeed, many previous studies also reported a difference in
subjective feelings between active and sham tDCS (Ambrus
et al., 2010; Larcombe et al., 2018). Obvious sensation induced
by active tDCS may make participants pay more attention to the
execution of task. However, we think there is no such possibility
given the between-subjects design of this study. Participants in
one group were only subject to one type of tDCS throughout the
entire experiment; they therefore did not experience different
feelings and cannot judge whether a stimulation is real or a
sham stimulation.

Magnetic resonance spectroscopy (MRS) provides a
noninvasive imaging technique to measure changes in cortical
neurotransmitter concentrations from within a defined region
of interest. It has been found that various neurotransmitter
systems (GABA, Glutamate, dopamine, serotonin, etc.) may
all have an impact on tDCS effect (Mclaren et al., 2018). For
example, anodal tDCS has been shown to be excitatory, result
in decreased GABA levels in visual (Barron et al., 2016), and
facilitate visual learning (Frangou et al., 2018; Karlaftis et al.,
2021). Additionally, anodal tDCS reduces local GABA while
cathodal stimulation reduces glutamatergic neuronal activity
with a highly correlated reduction in GABA (Stagg et al.,
2009). Although this study did not find the significant effect of
tDCS on VPL according to the behavioral results, the neural
mechanisms should be further explored.

As mentioned above, the effect of tDCS on VPL is
inconsistent in previous studies. Variability in tDCS effects have
resulted in calling for greatly increased sample sizes (Minarik
et al., 2016). Our sample size (n = 9 per group) is comparable
to or greater than several tDCS studies in the VPL that found
significant effects (Antal et al., 2004a; Herpich et al., 2019)
although it is smaller than more studies (Sczesny-Kaiser et al.,
2016; Karlaftis et al., 2021). The null effects in our study do not
exclude the possibility of a smaller effect that could be detected
with a larger sample size.

In conclusion, although this study failed to find a significant
effect of tDCS on motion direction discrimination learning, it
is too early to conclude that tDCS does not affect VPL, since
the results thus far are inconsistent. Thus, further study of this
topic is needed. Three possibilities should be considered during

future research: task selection, number of training sessions and
the timing of stimulation.
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