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The human brain is a dynamic multiplex of information, both neural

(neurotransmitter-to-neuron, involving 1.5 × 1015 action potentials per minute) and

immunological (cytokine-to-microglia, providing continuous immune surveillance

via 1.5 × 1010 immunocompetent cells). This conceptualization highlights the

opportunity of exploiting “information” not only in the mechanistic understanding of

brain pathology, but also as a potential therapeutic modality. Arising from its parallel

yet interconnected proteopathic-immunopathic pathogeneses, Alzheimer’s disease

(AD) enables an exploration of the mechanistic and therapeutic contributions of

information as a physical process central to brain disease progression. This review

first considers the definition of information and its relevance to neurobiology and

thermodynamics. Then we focus on the roles of information in AD using its two

classical hallmarks. We assess the pathological contributions of β-amyloid peptides

to synaptic dysfunction and reconsider this as a source of noise that disrupts

information transfer between presynaptic and postsynaptic neurons. Also, we treat

the triggers that activate cytokine-microglial brain processes as information-rich

three-dimensional patterns, including pathogen-associated molecular patterns

and damage-associated molecular patterns. There are structural and functional

similarities between neural and immunological information with both fundamentally

contributing to brain anatomy and pathology in health and disease. Finally, the role

of information as a therapeutic for AD is introduced, particularly cognitive reserve as

a prophylactic protective factor and cognitive therapy as a therapeutic contributor

to the comprehensive management of ongoing dementia.

KEYWORDS

Alzheimer’s disease, amyloid-beta, synaptic transmission, cytokine, information theory,
psychotherapy

1. Introduction

There are a number of “duality paradoxes” in the physical sciences, with the wave-
particle duality of light being the time-honored example Rab et al. (2017). In neuroscience,
the concept of information as a discrete entity offers an analogous duality paradox, being
abstract and fundamental, subjective and objective, metaphysical and physical. Considering
information as both a non-physical and physical entity within the brain is conceptually
complex. The assimilation of information through learning changes the physical structure of
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the brain, differentially organizing and re-organizing multiple brain
regions; conversely, the brain structure dictates our capacity to
receive and process information. Neural information is thus not
exclusively an abstract entity but rather interactively exists only
through its physical representation in the brain, being enabled
yet constrained by all the possibilities and restrictions imposed by
neuroanatomy; through this representation, information emerges
as physical glue at the brain-mind interface. Thus, in the brain,
information arguably exists as a tangible physical reality with the
ability to influence (and to be influenced by) the brain structure.

The conceptualization of information as a physical entity
necessitates its placement, possibly in an overarching position, within
the ascending structural hierarchy defined by atoms, molecules,
macromolecules, organelles, cells, tissues, and organs. Moreover, this
conceptualization highlights the essentially untapped opportunity of
exploiting information not only in the mechanistic understanding
of disease pathology, but also as a potential therapeutic modality
in its own right.

Alzheimer’s disease (AD) is the quintessential neurodegenerative
dementia. Arising from its parallel yet interconnected proteopathic-
immunopathic pathogeneses (Weaver, 2020), AD prototypically
enables an exploration of the mechanistic and therapeutic
contributions of information as a physical entity implicated in
human disease progression. AD affects the two principal cell lines
in the brain: neurons and glia. Extensive neuronal death and brain
atrophy (arising in part from pathological protein misfolding) result
in impairment of learning, memory, language, perception, and
executive function – hallmarks of disordered neural information
processing (Guarino et al., 2019). Concomitant microglial activation
dysregulates the pro-inflammatory/anti-inflammatory balance
culminating in inflammasome-mediated cellular toxicity – a
hallmark of disordered immune information processing (Su et al.,
2016; Hanslik and Ulland, 2020). AD may therefore be regarded as
a chronic, progressive disease characterized by dysfunction in both
neural and immunological information systems. This novel and
widely encompassing information-based conceptualization of AD
not only affords unique perspectives on disease mechanisms, but
also underscores the prospect of using information as a therapeutic
agent, either prophylactically or acutely, possibly in harmony with
conventional pharmacological approaches.

In this article, we present an overview of AD-mediated
dysfunction in neural and immunological information systems to
provide evidence that AD is an “informational disease (i.e., condition
that impairs normal functioning of the brain with information).” In
the subsequent sections, we first introduce relevant concepts from
information theory and thermodynamics and several applications
of information theory in neuroscience including mathematical
modeling of neurotransmission. This is then more fully extended to
AD, not only from a disease mechanism perspective, but also as a
source of insights regarding putative therapeutic approaches.

2. Background

Information theory and thermodynamics share entropy as a
conceptual pillar. Thermodynamically, a living organism is an
open, complex yet self-organizing physical system that displays the
characteristics of life by interacting in a temperature-dependent
process with its surroundings through a constant exchange of matter,

energy, and information while maintaining a dynamic steady state
crucial for survival. The state of such a physical system and how it
evolves as a function of time and in response to a panoply of external
stimuli are prescribed by energetics and combinatorics; ultimately,
Nature favors the ability to maintain order, primarily via brain-
orchestrated processes, to achieve a state of high stability and high
probability, aiming for free energy minimization at equilibrium.

In a human brain, biological mechanisms operating at multiple
spatial and temporal scales are strictly maintained and manipulated
at each hierarchical level of structural organization [including
molecules, subcellular organelles, cells, and tissues (Grizzi and
Chiriva-Internati, 2005)], forging a massive communication network
with no discontinuity. The topology of this network defines the
pattern of direction and strength of information flow from one
spatiotemporal point to another, either within the system or between
the system and its environment, and ensures efficient, reliable
communication from information source to destination. Thus,
the central nervous system (CNS) enables the brain and mind
to communicate actively with the ever-changing outside world
while concomitantly maintaining unchanging homeostasis via its
vast array of neural circuits which input sensory information,
process it, and trigger responses. The CNS functions primarily
as a collection of channels that convey information as discrete
electrical impulses; the convoluted architecture of this channel
network is composed of 86 billion neurons and 100 trillion synaptic
connections (Korade and Mirnics, 2014), providing the physical
basis for the speed and sophistication of information transmission,
compression, and processing. Structurally, the intercellular transfer
of information involves a cascade of biochemical processes that
generate a transmembrane electrochemical gradient and convert the
propagation of action potentials (i.e., electrical signals) into the
release of neurotransmitters (i.e., chemical signals).

During neurotransmission, synaptic vesicles liberate both
neurotransmitters and protons into the synaptic cleft, leading
to local, transient extracellular pH fluctuations (Sinning and
Hübner, 2013). The movement of neurotransmitters in the brain
interstitial fluid is characterized by the intrinsic randomness
of Brownian motion (Veletić et al., 2016). Evidence has also
accumulated to demonstrate that protons fulfill the criteria as
co-transmitters (Du et al., 2014; González-Inchauspe et al., 2017),
being involved in regulated intercellular signaling in concert with
classical neurotransmission (Soto et al., 2018). Proton translocation
in water, the major component of brain interstitial fluid, is likewise
described as a random process known as the de Grotthuss (1806)
mechanism in which an excess proton hops along a “water wire” (or
pre-existing sequence of hydrogen bonds among water molecules) in
an exclusive, stepwise manner (Codorniu-Hernández and Kusalik,
2013; Ball, 2017). Hence, the diffusional mode of neurotransmitters
and protons in synaptic transmission contributes to the stochastic
nature of nerve conduction.

Information transmission in the CNS is thus inherently
stochastic, and its likelihood of occurrence, which is fundamentally
dependent on the probability of neurotransmitter release with
variable timing and amplitude, is a critical factor in the modulation
of signal flow in neural networks (Branco and Staras, 2009; Ribrault
et al., 2011). In addition to being stochastic, these brain processes
are also inherently noisy as evidenced by the fluctuations in repeated
measurements of neuronal firing causing neuronal spike trains to
be characterized by variability and irregularity; indeed, noise is an
inseparable part of experimental brain measurement. This noise

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1106623
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1106623 February 7, 2023 Time: 12:39 # 3

Oh and Weaver 10.3389/fnins.2023.1106623

arises either from an irreducible indeterminacy or from epistemic
limitations, including limitations of measuring known variables and
controlling hidden variables (Trappenberg, 2010). Consequently, a
probabilistic approach is optimally employed when analyzing and
modeling neural information transmission.

Information transmission in the brain is a consequence of the
coordinated but probabilistic performance of individual neurons
and ensembles thereof; indeed, information is defined in terms of
a probability distribution. As atoms are the fundamental building
block of matter, information emerges as the fundamental unit of brain
function underlying virtually all microscopic and macroscopic neural
processes. Damage or “blockage” to this communication network can
herald the onset or progression of brain dysfunction.

AD is an irreversible, progressive neurodegenerative disease
that arises primarily from communication failure among neurons
and among glia. Microscopically, the diseased brain is afflicted
at the molecular level with the presence of extracellular amyloid
plaques composed of aggregates of Aβ peptides and intraneuronal
neurofibrillary tangles of a hyperphosphorylated microtubule-
associated tau protein, linked to neuronal death and synaptic loss
(Pospich and Raunser, 2017; Chen and Mobley, 2019; DeTure and
Dickson, 2019; Lee et al., 2019b). Also, at the cellular level, activated
microglia trigger immunopathic responses that contribute to disease
progression (Hemonnot et al., 2019; Ennerfelt and Lukens, 2020).
Macroscopically, the neuronal and microglial changes are reflected as
cerebral atrophy mirroring disease progression (Frisoni et al., 2010;
Tondelli et al., 2012; Marino et al., 2019; Frenzel et al., 2020).

The notion that AD is an informational disease is preliminarily
supported by brain network analysis and neuroimaging studies.
For example, from transgenic mouse experiments, Kashyap et al.
(2019) derived a complex network model which suggests that AD
progression can be interpreted as a phase transition from initial
robustness to irreparable disintegration, and estimated a critical time
after which the neuronal network undergoes rapid deterioration.
Based on their observation on the loss of spines caused by Aβ

accumulation, the model explains that the consequent reduction in
synaptic density impairs rapidly coordinated activity of neurons,
global efficiency of network signal transmission, and structural
plasticity of the network as the disease progresses (Kashyap et al.,
2019). Also, Engels et al. (2017) used magnetoencephalography to
confirm a posterior-to-anterior information flow over the cortex
in higher frequency bands in healthy brains, and found it to be
disturbed in both cortical and subcortical regions in early-onset AD
brains as highly connected regions (or hubs) in posterior areas are
pathologically disrupted. They observed a prominent reduction in the
information flow from the precuneus and the visual cortex, toward
frontal and subcortical structures, in AD. Thus, abundant existing
data provide empirical evidence for AD as an informational disease.

3. What is information?

In a seminal paper “A Mathematical Theory of Communication”
(Shannon, 1948), Claude E. Shannon, the founder of information
theory, provides a mathematical definition of information in the
context of communication and describes how information can be
transmitted between different elements of any system, whether
biological or man-made, in an efficient and reliable manner in
defiance of noise. Information is what allows one, who is in possession

of that information, to make predictions with accuracy better than
chance (Adami, 2016) or, simply, reduces uncertainty in a situation
where one has to make a choice out of multiple alternatives. The
fundamental results from information theory can be summarized as
follows: (1) it is impossible to compress data below the entropy bound
of the source without losing information; and (2) it is possible to
transmit information through a noisy channel at any rate less than
channel capacity with an arbitrarily small probability of error (Ash,
2012).

Shannon first introduced the uncertainty function called
information entropy H which is equal to the weighted average of
information contents of all the possible states i where the weights are
the probabilities pi of occurrence of the states. The sole function that
satisfies the certain characteristics of information is in the following
form:

H
(
p1, · · · , pn

)
= − k

∑
i

pi ln pi

where k is a positive constant and the negative logarithm of pi is
the information content associated with the state i. The information
content can be understood alternatively as the level of surprise when
the state is observed. H, which is strictly nonzero for discrete random
variables, is a measure of the amount of information contained
in a probability distribution or reduction in uncertainty when the
outcome of a random experiment has been revealed. A bit is thus
equal to the amount of information, or the extent of uncertainty,
involved in a binary question regarding two equiprobable outcomes
as in flipping a fair coin.

The same mathematical expression for entropy occurs both
in information theory and statistical mechanics. Are the Shannon
entropy and the Boltzmann entropy the same in nature? There
is still considerable disagreement over how to relate information
to thermodynamic entropy (Ben-Naim, 2015, 2017b; Ben-Naim,
2017a). Since the foundation of the second law of thermodynamics,
which states that the entropy of an isolated system never decreases
over time, many have strived to incorporate information explicitly
into classical thermodynamics and gauge thermodynamic costs
for information manipulation. In 1867, James Clerk Maxwell
first revealed the relationship between information and entropy
in a thought experiment wherein a tiny, intellectual being sorts
gas molecules by velocity and thus reverses heat flow by using
information about their positions and velocities in two neighboring
chambers (Leff and Rex, 2002). At first, Maxwell’s “demon” seems to
violate the second law of thermodynamics, but the imaginary creature
illustrates that one can utilize information to ease the restrictions
imposed by the second law on the exchange of energy between a
system and its surroundings (Parrondo et al., 2015).

In the Bayesian paradigm, probability is not an inherent
property of a physical system but essentially quantifies the degree
of ignorance an observer has about the state of the system
as the observer’s estimate of probability is updated whenever
new information becomes available (Stone, 2013). Jaynes (1957)
reinterpreted statistical mechanics as a form of statistical inference
within the framework of subjective probability and demonstrated that
the conventional relations, such as the partition function and the free
energy, in statistical mechanics are an immediate consequence of the
principle of maximum entropy, which is the least biased estimate
possible on the given information (Jaynes, 1957). Jaynes derived the
equivalence of information entropy to thermodynamic entropy for
canonical equilibrium states except for the presence of the Boltzmann
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constant k which may be regarded as a correction factor (Jaynes,
1957).

Landauer speculated that information is explicitly physical and
thus obeys the laws of physics since it is stored in physical
systems (e.g., brains), transmitted by physical means (e.g., all-or-none
action potentials), and processed in physical devices (e.g., neurons)
(Landauer, 1991; Lutz and Ciliberto, 2015). Landauer showed that the
erasure of information is inexorably accompanied by the generation
of heat (Landauer, 2000). Specifically, the erasure of one bit of
classical information in a two-state system dissipates a minimum
amount of energy proportional to temperature (i.e., E = kTln 2),
known as the Landauer limit, as heat to compensate the entropic
loss (Plenio and Vitelli, 2001; Roy, 2014). The physical nature of
information ensures that it can be included in the second law
of thermodynamics not as a pure abstraction, and by extension,
information processes (e.g., erasure and measurement) can be treated
as physical operations with thermodynamic costs (Parrondo et al.,
2015).

It was also suggested that the second law of thermodynamics
operates at the level of information; that is, information is erased
by some processes and cannot be recovered once erased, and the
dynamics of information is related to but independent of the
dynamics of energy (Duncan and Semura, 2004). The applicability
of the first statement to AD is questionable since it has been reported
that memory failure in early AD models reflects an impairment in
the retrieval of information rather than the erasure of information
(Roy et al., 2016). Based on the central ideas that (1) information
is a fundamental physical quantity, and (2) temperature connects
information and energy, heat transfer can be viewed as a loss of
detailed information about the state of a system, and hence, there is a
direct link between heat flow 1Q and information loss 1I (Duncan
and Semura, 2004):

1I = −
1Q

kTln 2
.

Based on the fact that information often drives physical systems away
from equilibrium, thermodynamics of information can be translated
in terms of non-equilibrium thermodynamics (Parrondo et al., 2015).
Stochastic thermodynamics rigorously show that Shannon entropy
determines the energetics of a non-equilibrium process coupled
to thermal reservoirs of constant temperature T (Seifert, 2012).
For example, when an observer acquires new information about a
physical system with states x after measurement, the statistical state
shifts from p (x) to p (x | m) where m is the measurement outcome.
The post-measurement state is generally out of equilibrium even
if the pre-measurement state was in equilibrium. Assuming that
measurement does not affect the Hamiltonian and the state of the
system, the increase in non-equilibrium free energy F is given by
Lloyd (1989), Parrondo et al. (2015).

1Fm = − T1Sm = kTI (X;M) > 0

where I (X;M) is the mutual information between the state X and
the measurement outcome M. Since the mutual information is
positive, information acquisition (i.e., measurement) always increases
the free energy and thus the amount of extractable work in an
isothermal process (Parrondo et al., 2015). Detailed discussions of
the connection between information and thermodynamics and the
realization of the physical nature of information have been presented
in other comprehensive reviews (Serreli et al., 2007; Maruyama et al.,
2009; Raizen, 2009; Toyabe et al., 2010; Bérut et al., 2012; Lutz and
Ciliberto, 2015; Parrondo et al., 2015; Rex, 2017).

4. Information theory and
neuroscience

After Shannon’s (1948) seminal work, the flexibility of
information theory enabled its applicability to a diversity of
research areas outside its original scope (even though Shannon
(1956) alerted against the “injudicious” use of information as a
novel tool in his essay The Bandwagon). Accordingly, information
theory has been adopted in neuroscience as a primary means
to quantify neural information and to evaluate the performance
of neurons and their circuits. The first application was made in
MacKay and McCulloch (1952) who analyzed neural coding from
the perspective of information theory to estimate the upper bounds
on the information transmission capacity (i.e., channel capacity)
of a neuron assuming two types of coding, namely, pulse code
modulation and pulse interval modulation. They found that a system
of the latter type can signal several times more information per
second through synaptic transmission than the former type.

Assuming a neuron is a communication channel, neural coding
is concerned with measuring how much information neural spikes
carry about the stimuli that evoke them and characterizing their
relationship (i.e., stimulus-response models) (Borst and Theunissen,
1999). Neural coding capacity is the maximum output entropy rate
possible at the mean spike rate (MacKay and McCulloch, 1952; Koch
et al., 2004; Koch et al., 2006). The actual capacity that is related to
a neuron’s inputs is smaller than the coding capacity because [1] the
output entropy includes noise entropy, and [2] the consecutive spikes
are not always mutually independent (Koch et al., 2004; Stone, 2018).
Neural coding efficiency is a measure of the proportion of entropy in
a neuron’s output that comprises information about its inputs (Rieke
and Warland, 1999; Stone, 2018).

A compelling attempt has been made to discern the existence of
theoretical connections between thermodynamics and information
theory permitting the unification of brain and cognition models.
Thermodynamic terms have been frequently used to model brain
activity (Salerian, 2010; Varpula et al., 2013), while information-based
approaches have been developed to describe cognitive processes
(Friston, 2010; de Castro, 2013). Two important features are
commonly involved in thermodynamic models of brain activity
(Collell and Fauquet, 2015): first, the second law of thermodynamics
is the main principle that drives neural activity; second, the brain
is a dissipative structure in which an entropic exchange takes place
across its boundaries, and a source of free energy (mainly in the
form of adenosine triphosphate, ATP) is required to maintain a
reproducible steady state (e.g., to transmit a new train of neural
spikes). The core principle that lies in the information-based model
proposed by Friston et al. (2006), Friston (2010) is the so-called
free energy principle which asserts that any self-organizing system
that is at equilibrium with its environment must minimize its free
energy. In his theory, free energy is defined as the upper bound
on entropy or “surprise” associated with receiving a sensory input
and having a model of the world (Collell and Fauquet, 2015).
Self-organizing biological agents, including brains, should restrict
themselves to a limited number of states by averting surprising states
(i.e., minimize the long-term average of surprise) to ensure that their
sensory entropy remains low (Friston, 2010). Collell and Fauquet
(2015) subsequently proposed a theoretical framework to formalize
the connection between neural activity and cognition by means of
the classical links between thermodynamics and information theory.
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A comprehensive review on thermodynamic relationships in the
brain has been presented by Street (2016).

5. Information transmission in the
brain

5.1. Neural information

Functionally, the brain is a complex system in which neural
information is disseminated and distributed via interneuronal
communication processes. Traditionally, such communication
processes have been represented by a simple linear model known
as the Shannon–Weaver model of communication (Shannon et al.,
1949), which may be deconstructed into six key components. The
sender is an information source that generates a message to be
communicated. The encoder associates with each message an object
which is suitable for transmission over a channel and less susceptible
to channel noise. The encoded message is then transmitted over the
channel. The decoder operates on the channel output to recover the
original message that is acceptable to the receiver. When the sender
and the receiver communicate each other through a noisy channel,
the recovery of the original message with complete reliability is
normally unattainable by virtue of the influence of noise (Ash,
2012), which is a general term for anything that is prone to disturb
signals and thus produce errors in the course of transmission. The
performance of each component in the communication model, and
thus information transmission, cannot be deterministic but must be
statistically defined as clearly seen in the definition of information
entropy (Reza, 1994).

The beauty of the Shannon–Weaver model is found in
its generality that encompasses all communication processes
regardless of whether signals are digital or analog or whether
the communication system is artificial or biological. Since
neurotransmission is probabilistic and noisy (Smetters and Zador,
1996; Branco and Staras, 2009; Yarom and Hounsgaard, 2011; Veletić
et al., 2016), information transfer between synaptically coupled
neurons can be formulated in terms of the Shannon–Weaver model
as follows (Figure 1): (1) the presynaptic and postsynaptic neurons
are the sender and the receiver, respectively, conveying action
potentials as discrete messages. (2) Neurotransmitter-generating
transporters or molecular mechanisms that create synaptic vesicles
and neurotransmitters serve as the encoder. (3) The channel is the
extracellular aqueous medium in the synaptic cleft. (4) The receptors
on the postsynaptic neuron or their ligand-binding mechanisms
function as the decoder. (5) The sources of noise in the nervous
system arise from the molecular to the behavioral level (Faisal et al.,
2008). For example, the presence of Aβ oligomers in the synaptic
cleft can be a fatal source of noise in AD brains (discussed below).

Veletić et al. (2016) applied information theory to model
neurotransmission at a single synapse and estimated the
synaptic channel capacity. In their model, both spike and
neurotransmitter sequences are described as non-homogeneous
Poisson processes. They identified three distinct sources of
unreliability in the neurotransmitter release machinery: (1) the
release of neurotransmitters upon the arrival of an action potential,
which is modulated by the vesicle release probability, driven by the
intracellular Ca2+ concentration within the presynaptic terminal,
(2) the propagation of neurotransmitters toward the postsynaptic

FIGURE 1

Shannon–Weaver model of communication for neurotransmission
disrupted by the presence of Aβ oligomers (green bars) in the synaptic
cleft between presynaptic (blue) and postsynaptic (yellow) neurons.
Red circles and blue bars represent neurotransmitters and receptors,
respectively.

receptors, which is described by the neurotransmitter propagation
probability following a Bernoulli distribution, and (3) the binding
of neurotransmitters to the receptors whose probability can also be
modeled to follow a Bernoulli distribution in a simplified scenario.
They computed the channel capacity of noisy Poisson-type bipartite
and tripartite synapses with varying conditions of vesicle releases,
through the analogy between optical and synaptic communication
systems. The detailed calculations are presented in the work of Veletić
et al. (2016), and the extension of their work to neurotransmission
over multiple-access synaptic channels (consisting of multiple
synapses that link two neurons and operate jointly) is found in the
work of Veletić and Balasingham (2020). Other theoretical works
that involve rigorous information-theoretical analysis on synaptic
transmission include a derivation of lower bounds on the capacity
of a simple model of a cortical synapse (Manwani and Koch, 2001),
estimation of lower and upper bounds on the rate of information
transmission in a model of synaptic facilitation (Salmasi et al., 2019),
and development of a realistic model predicting the dynamics of
neurotransmission at the synapse between the mossy fiber and the
granule cell in the cerebellum (D’Angelo et al., 2005).

5.2. Immunological information

In the immune system, information exists in spatiotemporal
patterns. The recognition, learning, storage, communication, and
transformation of these patterns ultimately shape and control the
behavior of the immune system and how it responds to a diversity
of injurious threats. Multiple informational design principles are
present in the brain’s immune system, characterized by being diverse,
distributed, dynamic, adaptable, error tolerant, and putatively self-
protective.

Structurally, the neuroimmune system comprises microglia as its
cellular backbone and cytokines as its molecular backbone. Cytokines
are a group of diverse small proteins (4–20 kDa) which function
as immunomodulatory signaling molecules regulating immunity
by inducing changes in gene expression and by influencing the
responsiveness of selected cell populations (Kany et al., 2019). Most
cytokines enhance or inhibit the action of other cytokines through
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a complex interdependency that involves pleiotropism, redundancy,
and synergism (de Haan et al., 1996).

Somewhat analogous to neurotransmitters, cytokines are released
and diffuse to receptor proteins that may be located on the originating
host microglial cell or on adjacent neuroglial cells. The same cytokine
may induce different effects on different microglial cells; conversely,
different cytokines may elicit similar biological responses. The
probabilistic release and binding of cytokines demonstrate stochastic
and noisy behavior of the immunological information. The triggers
that activate cytokine-microglial brain processes are information-
rich three-dimensional patterns, including pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) (Venegas and Heneka, 2017). PAMPs are “non-
self ” molecular motifs (e.g., glycans) found within microbes that
are recognized by pattern recognition receptors (PRRs) in immune
cells, heralding a microglial response. DAMPs are “self ” molecular
motifs (e.g., nuclear or cytosolic proteins from injured cells) that
are also recognized by PRRs, thereby perpetuating a non-infectious
inflammatory response. Thus, at a high-level generalization, there
are similarities between the structural and functional underpinnings
of neural and immunological information with both fundamentally
contributing to brain anatomy and pathology in health and disease.

6. Information in the pathogenesis of
Alzheimer’s disease

6.1. Neural information

The connection between two neurons is characterized by synaptic
multiplicity and variability. It is composed of multiple synaptic
contacts which can be functionally heterogeneous even when they
belong to the same presynaptic axon and target the same postsynaptic
neuron (Branco and Staras, 2009). The strength of a neuronal
connection rests upon three main factors: the number of synaptic
contacts, the magnitude of the postsynaptic depolarization caused
by neurotransmitters liberated from a single synaptic vesicle, and
the likelihood of neurotransmitter release at each synapse (del
Castillo and Katz, 1954). Experimental evidence shows that multiple
synapses contributing to a single connection can exhibit a broad
and continuous probability distribution of neurotransmitter release
(Murthy et al., 1997); this probability is so dynamic it can change
over a short timescale (Zucker and Regehr, 2002). Furthermore, the
probability is regulated with high spatial precision, and its tuning
is the result of a complex series of molecular and cellular processes
(Branco and Staras, 2009).

The accumulation of amyloid plaques and neurofibrillary tangles
is a classical phenotypic hallmark of AD, traditionally classified
as a protein-misfolding disease, or proteopathy, since the toxic
deposits are composed of misfolded protein aggregates, which
can be seeded via a prion-like mechanism (Pospich and Raunser,
2017). Soluble Aβ oligomers, which build a complex equilibrium
with insoluble Aβ fibrils, are key neurotoxins in AD brains.
Multiple lines of evidence show that Aβ peptides exert an adverse
impact on multiple cellular and subcellular brain processes; for
example, an imbalance between the production and clearance of Aβ

peptides, particularly those that are highly prone to oligomerization,
precedes abnormal synaptic pruning and gliosis marked by
increases in activated microglia (microgliosis) and reactive astrocytes

(astrocytosis) (Frost and Li, 2017; Olsen et al., 2018; Selkoe, 2019).
Aβ peptides also trigger calcium dyshomeostasis and oxidative
stress by enhancing free radical generation (Arbel-Ornath et al.,
2017; Butterfield and Boyd-Kimball, 2018; Marsh and Alifragis,
2018). Moreover, Aβ-induced actin cytoskeletal abnormalities (Lee
et al., 2019a) and mitochondrial dysfunction (Correia et al., 2016)
have been reported, and it was found that proteasome dysfunction
correlates with the detection of intraneuronal Aβ oligomers (Tseng
et al., 2008). Also, extensive evidence supports the pathological role
of Aβ peptides in synaptic dysfunction (Shankar and Walsh, 2009;
Forner et al., 2017; Marsh and Alifragis, 2018; Fagiani et al., 2019).
Collectively, these processes implicate Aβ as a causative factor of
interneuronal information communication failure in AD, particularly
by defects in synaptic vesicle dynamics and neurotransmitter action.
It is, however, well known that the presence of Aβ alone is not
informative as to where patients stand along a putative pathway
of preclinical AD progression; those with evidence of both Aβ

and biomarkers suggestive of neurodegeneration seems to show the
greatest risk of cognitive decline (Jagust, 2015).

When soluble Aβ oligomers interfere with the reuptake of
extracellular glutamate, they undermine synaptic function through
hyperexcitability of glutamatergic neurons as evidenced by the
occurrence of seizures in AD patients (Vossel et al., 2013; Lam
et al., 2017) and neuronal hyperactivation in the neocortex and
hippocampus where Aβ accumulates in abundance (Zott et al.,
2018). Zott et al. (2019) used mouse models of AD to demonstrate
that Aβ-mediated hyperactivation is initiated by the suppression
of glutamate reuptake by neurons and astrocytes, which is linked
to a defect in synaptic transmission exclusively in active neurons.
They also reported that the infusion of human Aβ oligomers into
the hippocampus results in hyperactivation in a mechanistically
similar fashion to a glutamate reuptake blocker (TBOA). An
excessive amount of the excitatory neurotransmitter then triggers
excitotoxicity and eventually the degeneration of dendrites and cell
death (Mattson, 2019).

Aβ-mediated hyperactivation is a typical example that illustrates
the perturbing effect of Aβ oligomers on information transmission
at synapses in the affected brain. It can be thought of as the
noise (i.e., Aβ-induced glutamate reuptake inhibition) affecting
directly on the performance of the decoder (e.g., AMPA and
NMDA receptors). From the perspective of information theory, it
is also interesting to understand how Aβ oligomers would alter the
probability of neurotransmitter release, one of the critical sources of
the stochasticity of neurotransmission, which is intimately related to
the performance of the encoder.

Aberrant neurotransmitter release induced by Aβ oligomers
has been extensively reported. Recently, He et al. (2019) found
that a significant reduction in the probability of neurotransmitter
release at the hippocampal synapse between Schaffer collateral
and CA1 pyramidal neurons in mouse models of AD with
elevated Aβ production leading to an mGluR5-mediated presynaptic
depletion of phosphatidylinositol-4,5-bisphosphate in axons. The
same observation was made when synthetic Aβ oligomers were
present at the synapse in wild-type mice (He et al., 2019).

Several studies report that Aβ peptides affect the activity of key
proteins involved in either the signaling mechanism that regulates
the availability and recovery of synaptic vesicles in neurotransmitter
release or the interaction between synaptic vesicles and the
presynaptic membrane (Marsh and Alifragis, 2018). For example,
Park et al. (2017) provided evidence that the exposure of neurons to
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soluble Aβ hampers trafficking and reallocation of synaptic vesicles
among synapses via activation of calcium/calmodulin-dependent
protein kinase type IV (CaMKIV), thereby preventing neurons from
physiological synaptogenesis and synaptic plasticity. Using in vitro
binding assays and in vitro single-vesicle content-mixing assays,
Yang et al. (2015) showed that intracellular Aβ oligomers impair the
formation of the SNARE (soluble N-ethylmaleimide-sensitive factor
attachment protein receptor) complex and thus inhibit SNARE-
mediated exocytosis, which is essential for synaptic transmission, by
directly binding to the SNARE motif of syntaxin 1a.

Synaptic connections may also play a role in “transmissible”
Aβ aggregation within the diseased brain. Premature formation of
amyloid plaques can be initiated by the intracerebral infusion of Aβ-
rich brain extracts (Jucker and Walker, 2013). The proteinaceous
seeds of Aβ aggregation in one region then travel along the axon and
propagate to axonally coupled neurons, resulting in the spread of Aβ

aggregation to other regions, including neocortical and subcortical
regions, similar to those affected in AD (Hamaguchi et al., 2012;
Jucker and Walker, 2013; Spires-Jones and Hyman, 2014). The Aβ

seeds can therefore serve as self-propagating agents for the actuation
and progression of the disease.

Sensory perception is the ability of an organism to detect,
process, and respond to internal and external stimuli using
traditional (sight, smell, hearing, taste, and touch) and other senses
(thermoception, proprioception, nociception, equilibrioception, and
mechanoception). Sensory activation transforms physicochemical
stimuli into action potentials (sensory transduction) by sensory
receptors in the central nervous system. Significant alterations
in sensory perception may arise from pathological changes
in AD brains. Particularly, there is emerging evidence that
olfactory dysfunction is associated with cognitive decline and
neurodegeneration in the brain. The sense of smell has shown the
greatest promise among all sensory biomarkers of AD since Esiri
and Wilcock (1984) observed collections of neurofibrillary tangles
in the anterior olfactory nucleus of AD patients (Romano et al.,
2021). For instance, odor identification, odor familiarity, and odor
recognition memory have been shown to discriminate between
cognitively normal individuals, mild cognitive impairment (MCI)
patients, AD patients, and those at risk for AD (Olofsson et al., 2010;
Albers et al., 2015; Roberts et al., 2016; Yaffe et al., 2017; Dintica
et al., 2019; Murphy, 2019). Detailed information is available in many
comprehensive reviews including Romano et al. (2021) and Murphy
(2019). However, to our best knowledge, it still remains elusive at
the cellular and subcellular levels why olfaction deteriorates more
significantly compared to other senses [i.e., possible mechanisms
that underlie olfactory dysfunction in association with cognitive
impairment, AD dementia, and its pathologies (Dintica et al., 2019)]
and thus how information theory can be applied to pathological
mechanisms that lead to olfactory dysfunction in AD. Also, in
the narrative review published in Romano et al. (2021), the
authors report that “only olfaction has been studied to any extent,
leaving a clear gap in the literature for the use of other senses.”
Nevertheless, information and coding theory-based approaches have
been attempted to understand olfaction at neuronal resolution. The
olfactory system encodes and translates information from the vast
order space into an accurate neural map in the brain (Grabe and
Sachse, 2018). To explore how olfactory signals (e.g., the type and
concentration of odorants) are encoded, transformed, integrated, and
conveyed at the level of the primary neurons, the notion of olfactory
coding has been introduced and widely employed (Ressler et al.,

1994; Malnic et al., 1999; Seki et al., 2017; Grabe and Sachse, 2018).
The olfactory code contains spatial and temporal dimensions (Giurfa,
2009; Whalley, 2013), and different olfactory coding schemes have
been investigated (Schild, 1988; Malnic et al., 1999; Al Yamani
et al., 2012; Wilson et al., 2017). But the first application of
concepts of information and coding theory to the olfactory system
dates back to 1954. Hainer et al. (1954) constructed a theory of
olfaction that considers the informational aspects of three domains of
knowledge (the subjective olfactory experience, the neurophysiology
of the olfactory system, and the requirements for the storage and
transmission of information) with many simplifications and specific
assumptions concerning only single species (Hainer et al., 1954;
Schild, 1988). To understand the significance of the action of odorant
molecules on the receptors, they evaluate the information channel
capacity of the nerves which connect the olfactory patch (receptor
cells) and the cerebrum (mitral cells) and compare it for different
patterns with the subjectively perceived and counted information of
olfaction (i.e., the number of odors and intensity differences) (Hainer
et al., 1954).

A cholinergic hypothesis posits the degeneration of cholinergic
neurons in the basal forebrain and the loss of cholinergic
transmission in the cerebral cortex and other regions as the
major correlate of cognitive dysfunction in AD patients (Kar
et al., 2004). A disturbing, suppressive effect of Aβ peptides on
acetylcholine synthesis and release was observed (Pedersen et al.,
1996; Majdi et al., 2020). It was also found that Aβ peptides
inhibit vesicular acetylcholine transporter, thereby preventing its
axonal transportation, and reduce choline reuptake (Majdi et al.,
2020). Cholinesterase inhibitors (such as donepezil, galantamine,
rivastigmine, and tacrine) are known to partially improve cognitive
symptoms as they increase acetylcholine levels in the synaptic cleft
and enhance cholinergic transmission directly by inhibiting the
acetylcholinesterase, an enzyme that hydrolyzes acetylcholine, and
thus slowing down the metabolic breakdown of acetylcholine (Raina
et al., 2008; Sun et al., 2008; Anand and Singh, 2013; Ferreira-
Vieira et al., 2016). Interestingly, the action of the inhibitors is
analogous to how an error correction code works in coding theory,
which is an encoding scheme that transmits messages (acetylcholine
neurotransmission) such that errors (Aβ-induced reduction in
acetylcholine production) can be detected and corrected (inhibition
of acetylcholine breakdown) within certain limitations [positive
effects of the drugs only for a short period of time (Sun et al., 2008;
Ferreira-Vieira et al., 2016)] to recover the original message (increase
in acetylcholine levels).

6.2. Immunological information

Immunological information encoded in various forms may
constitute a risk for AD and may initiate the AD cascade,
invoking neuroinflammatory processes. The brain responds to a
wide range of different immunomodulatory stimuli. Many stimuli –
infection, trauma, ischemia, pollution, depression, alcohol abuse –
are potentially noxious to the brain (and are known risk factors
for AD), triggering an immune response which includes the release
of Aβ. Though quite different, these diverse noxious stimuli can
be generalized in information terms as being pathogen-/damage-
associated molecular pattern (PAMP/DAMP) information stimuli.
Significantly, these stimuli need not be applied directly to the brain;
for example, multiple animal studies have shown that bacterial
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lipopolysaccharides (LPS) given peripherally can centrally affect
the brain (Banks and Robinson, 2010). However, stimuli that are
in the brain [e.g., stroke and head trauma (Jassam et al., 2017)],
or anatomically close to the brain [e.g., Porphyromonas gingivalis
bacteria in the nasopharyngeal-olfactory cavity (Olsen et al., 2016)]
may be more potent displayers of PAMP/DAMP informational
motifs.

Once a risk factor information trigger aberrantly activates the
innate immune system within the brain, additional immunological
information errors join the process to enable disease elaboration.
Normally, there is a homeostatic balance between pro-inflammatory
and anti-inflammatory cytokines within the brain leading to a
balanced overall inflammation information state. However, in AD,
this balance is skewed leading to excessive pro-inflammatory cytokine
messages and culminating in cytotoxic immunotoxicity (Su et al.,
2016).

7. Information as a therapeutic for
Alzheimer’s disease

This realization, that AD can be formalized as an informational
disease construct, emphasizes the need to incorporate non-
pharmacological approaches when designing therapeutic strategies
for AD. Traditionally, therapeutic tactics have pursued a “fight fire
with fire” mindset; accordingly, an informational disease should
be treated with “information” as a therapeutic modality. Using
information as a therapeutic is not without precedent but does
require broadening conventional attitudes, particularly within the
context of neurotherapeutics for AD.

The brain is the most complex human organ, and dementia
is one of the most complex diseases of this organ. From a
comparative perspective, few would argue that arterial hypertension
is mechanistically much simpler than AD; and yet unlike the
situation with AD, no one expects a single “magic bullet” pill for
hypertension. Elevated blood pressure is managed comprehensively
by risk reduction, lifestyle modification, and often through the use
of multiple complementary drugs targeting different receptors in
the mechanistic cascade of hypertension. An analogous integrated
approach needs to be practiced for AD. Information can be
incorporated into this multi-faceted therapeutic stratagem for AD
in multiple ways.

The concept of “therapeutic information” can be employed
from both a prophylactic risk reduction perspective and as a
treatment for active on-going disease. For risk reduction, both neural
and immunological information manipulation can be exploited.
Cognitive reserve is the hypothesis describing the mind’s resistance
and resilience to damage of the brain [the mind is a complex function,
an algebraic sum of many functions of the brain (Hansotia, 2003)].
Cognitive reserve indicates the adaptability of cognitive processes
that helps to explain differential susceptibility of individual’s cognitive
abilities to cope better with brain pathology (Stern et al., 2020).
The term endeavors to account for the observation that during
later life, those higher in experiential resources [e.g., information
acquisition through education and information storage as knowledge
(Ruthirakuhan et al., 2012)] enjoy neuroprotective benefits and
reduced cognitive decline in aging and disease (Stern, 2012). As
a possible mechanism for cognitive reserve, neural reserve theory
posits an interindividual variability in brain networks that serve as

a basis of any task (Stern, 2009, 2012; Šneidere et al., 2020). An
individual engages neural reserve in completion of a specifically
challenging task such that neural activity would work more efficiently
and thus consume less energy (Šneidere et al., 2020). For an individual
who suffers from brain pathology (e.g., AD and traumatic brain
injury), alternate brain structures or network (which are unrelated
but relatively intact) can replace for the specific performance
(Šneidere et al., 2020). Interestingly, it was reported that the density
of noradrenergic neurons in the locus ceruleus may be a structural
component of neural reserve (Wilson et al., 2013). Although the
precise type of information required for an optimal cognitive reserve
benefit remains incompletely elucidated, multilingualism has been
suggested as a protective factor against dementia and AD (Duncan
et al., 2018). It is intriguing that Kim et al. (2019) suggested potential
neurological mechanisms by which bilingualism delays cognitive
decline associated with AD based on evidence of clinical and
structural changes: enhancement of neurogenesis, synaptogenesis,
and functional connectivity and increases in white matter integrity
and gray matter density. In terms of immunological information,
identifying information triggers that herald the initiation of the AD
process would be of value in devising public health policy to reduce
AD prevalence. As an example, it has been recently suggested that
air and noise pollution can be risk factors for AD and dementia
(Carey et al., 2018; Younan et al., 2019). Long-term exposure to
airborne pollutants (nitrogen dioxide and particulate matter) was
associated with higher levels of brain Aβ deposition and cerebrospinal
fluid (CSF) neurofilament light protein in a population of cognitively
unimpaired adults with increased risk of AD (Alemany et al., 2021)
and in older adults with cognitive impairment (Iaccarino et al.,
2021). Moreover, animal experiments have associated chronic noise
exposure with tau hyperphosphorylation and AD-like pathological
changes. For instance, it was reported that noise pollution can
induce hyperphosphorylated tau and formation of its pathological
neurofibrillary tangle in the rat hippocampus and prefrontal cortex
and impair the learning and memory ability of mice (Cheng et al.,
2011; Cui et al., 2012). The impact of noise on the immune
system is comprehensively reviewed in Zhang et al. (2021). The
brain’s immune response to the molecular pattern information
triggered by pollutant exposure indicates the value of recognizing and
avoiding dangerous environmental triggers. All these observations
support the effectiveness of therapeutic information in preventing,
minimizing, or delaying the chances of neurodegeneration-induced
loss of information and occlusion of information flow in the brain.

As a treatment for active on-going disease, information
manipulation may also be a consideration. Multiple forms of
cognitive therapy and cognitive behavioral therapy (CBT) have
produced mixed results (Carrion et al., 2018), and, although a
definitive conclusion on their utility has yet to be reached, they
have potential worthy of additional study: [1] Cognition-oriented
treatments (e.g., Cognitive Retention Therapy or the Ashby Memory
Method) attempt to restore cognitive deficits by reality orientation
(via presentation of information about person, place, or time) and
cognitive retraining (via presentation of information with which
to exercise mental abilities). [2] Stimulation-oriented treatments
[e.g., Cognitive Stimulation Therapy (Rai et al., 2018)] attempt
to improve mood, behavior, and function through information-
enriched recreational activities, exercise, music, art, and pet therapies.
Information manipulation within an AD-afflicted brain may also
be achieved by surgical approaches [e.g., deep brain stimulation of
the fornix to ameliorate cognitive symptoms (Hescham et al., 2017),
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or vagus nerve stimulation to improve both cognition and
microglial function (Sjogren et al., 2002; Kaczmarczyk et al., 2018)]
or pharmacologically [e.g., administration of the anti-epileptic
drug levetiracetam to improve cognition and to reduce neuronal
overexcitation mediated by excitatory neurotransmitters (Sanchez
et al., 2012; Sanz-Blasco et al., 2016)].

A rational multimodal approach to AD should conceivably
include therapies at multiple structural levels within the disease
mechanism. Consequently, adding information-based therapies
to conventional pharmacological approaches would be rational
polytherapy (akin to risk management, lifestyle modification, and
pharmaceutics in the treatment of hypertension).

8. Discussion

Neurons communicate with one another across synapses in a
probabilistic manner via interconversion between electrical messages
(i.e., action potentials) and chemical signals (i.e., neurotransmitters).
The nervous system is an example of discrete communication
over a noisy channel. The stochastic nature of the reactive and
diffusive processes involved in neurotransmission characterizes
synapses as an unreliable and noisy channel whose information
capacity may be vulnerable to other sources of noise. Mounting
evidence indicates that in AD synaptic transmission is prone
to errors in the presence of soluble Aβ oligomers, which can
interfere with the encoding process in the presynaptic neuron
(e.g., synaptic vesicle dynamics and probability of neurotransmitter
release) and the decoding process in the postsynaptic neuron (e.g.,
hyperactivation). Aβ-induced synaptic dysfunction is a causative
factor of communication failure among neurons in AD, and this
contributes to the notion of AD as an informational disease in the
sense that the original message cannot be transmitted intact from one
neuron to the other.

Starting from the definition of information as a physical entity,
this article also reviewed some significant examples of the theoretical
attempts to formalize the relationship between information and
energy in the context of neurobiology for a unified theory of the
physical brain, and to build mathematical models for information
transfer at synapses via neurotransmission. Can we integrate Aβ-
mediated defects in synaptic transmission as a set of parameters into
their models? To answer this question, we believe that a detailed
comprehension of the physiological roles of Aβ peptides in the brain
and their pathological contributions to the progression of AD is
required at both microscopic and macroscopic scales. In addition, we
hope that rethinking AD as an informational disease may give a useful
insight on potential therapeutic targets and strategies.

Cytokines in the immune system are analogous to
neurotransmitters in the neural system. There are structural
and functional similarities between neural and immunological
information with both fundamentally contributing to brain anatomy
and pathology in health and disease. Many risk factors for AD
trigger an immune response, including the release of Aβ, and they
can be generalized in information terms as being PAMP/DAMP
information stimuli. These stimuli need not be applied directly to the
brain, and there is a homeostatic imbalance which leads to excessive
pro-inflammatory cytokine messages and culminating in cytotoxic
immunotoxicity in AD.

The success of unification of all the major hallmarks of AD
within the proposed framework is completely determined by the

level of our current understanding of relevant neuropathological
mechanisms as well as a proper selection of the communication
system (or process) to model. For example, mutual information has
been used to evaluate functional brain connectivity and quantify
the probability of information transmission over brain connections
between different cortical regions (Wang et al., 2015; Sayood, 2018;
Si et al., 2019). How information theory has been used to study
cognition over the last seven decades is well described in the
comprehensive reviews by Sayood (2018) and Crupi et al. (2018).
Also, it was reported that fatty acids can regulate the number of
receptors on microglial cells and thus the inflammatory stage of
microglia (Desale and Chinnathambi, 2020). In the simplest form,
the switching of microglial phenotypes can be modeled with a
binary asymmetric channel with M1 (classical) and M2 (alternative)
phenotypes as inputs and outputs and fatty acids as error sources. In
a similar fashion, we believe that information theoretical approaches
can be constructed to model within the proposed framework other
significant hallmarks of AD, including accumulation of tangles of
abnormally hyperphosphorylated tau (Mazanetz and Fischer, 2007),
degeneration of noradrenergic neurons of the locus coeruleus (Chen
et al., 2022) and cholinergic neurons in the basal forebrain (Auld
et al., 2002), and development of insulin resistance (Ferreira et al.,
2018).

We need to go beyond the perhaps naïve expectation that a
single magic-bullet drug is an attainable goal for AD. Accepting the
inherent complexity of brain and brain disease, especially dementia,
demands that we embrace a “full court press” when tackling AD, at all
levels of the structural hierarchy, including therapeutic information,
and that we adopt a multi-modal strategy when implementing these
informational approaches.
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