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Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID

patients have overlapping neurological, autonomic, pain, and post-exertional

symptoms. We compared volumes of brainstem regions for 10 ME/CFS (CCC or

ICC criteria), 8 long COVID (WHO Delphi consensus), and 10 healthy control (HC)

subjects on 3D, T1-weighted MRI images acquired using sub-millimeter isotropic

resolution using an ultra-high field strength of 7 Tesla. Group comparisons

with HC detected significantly larger volumes in ME/CFS for pons (p = 0.004)

and whole brainstem (p = 0.01), and in long COVID for pons (p = 0.003),

superior cerebellar peduncle (p = 0.009), and whole brainstem (p = 0.005). No

significant differences were found between ME/CFS and long COVID volumes.

In ME/CFS, we detected positive correlations between the pons and whole

brainstem volumes with “pain” and negative correlations between the midbrain

and whole brainstem volumes with “breathing difficulty.” In long COVID patients

a strong negative relationship was detected between midbrain volume and

“breathing difficulty.” Our study demonstrated an abnormal brainstem volume in

both ME/CFS and long COVID consistent with the overlapping symptoms.

KEYWORDS

myalgic encephalomyelitis/chronic fatigue syndrome, brainstem, magnetic resonance
imaging (MRI), pain, breathing difficulty, long COVID

Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex illness
that affects multiple body systems and is characterized by a range of symptoms including
post-exertional neuroimmune exhaustion (PENE), fatigue, pain, breathing difficulties, and
difficulties with concentration and cognitive function (Baker and Shaw, 2007; Carruthers
et al., 2011; Stussman et al., 2020). ME/CFS affects 17 to 24 million people worldwide (Lim
et al., 2020). There is an absence of a laboratory diagnostic test for ME/CFS, instead diagnosis
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follows clinical case criteria and exclusion of other illnesses
that may account for the symptoms. Over three decades,
up to 30 case definitions have been published; however, the
three more commonly recognized definitions include Fukuda
criteria (Fukuda, 1994), Canadian Consensus Criteria (CCC)
(Carruthers et al., 2003), and International Consensus Criteria
(ICC) (Carruthers et al., 2011).

Recently, coronavirus 2019 (COVID-19) caused by the novel
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) has infected more than 600 million and caused the deaths of
over six million people worldwide (World Health Organization
[WHO], 2022). Studies show that up to 43% of people infected
by SARS-CoV-2 do not recover fully and develop post-COVID
conditions, also known as long COVID (Davis et al., 2021; Chen
et al., 2022). Long COVID is defined by the World Health
Organisation (WHO) as the continuation or development of new
symptoms 3 months after the initial SARS-COV-2 infection, with
these symptoms lasting for at least 2 months with no other
explanation (World Health Organization [WHO], 2021). The most
frequently reported symptoms in the long COVID patients are
fatigue, pain, post-exertional malaise, breathing difficulties, and
cognitive dysfunction (“brain fog”) (Davis et al., 2021; Komaroff
and Bateman, 2021; Mantovani et al., 2021; Nalbandian et al.,
2021) that are all common core symptoms of ME/CFS (Davis
et al., 2021). Recent studies showed that 13–58% of long COVID
patients met ME/CFS criteria (González-Hermosillo et al., 2021;
Jason and Islam, 2022; Twomey et al., 2022) and symptoms like
fatigue and disability score, autonomic dysfunction, and hand grip
strength are similar in ME/CFS and long COVID patients (Kedor
et al., 2022). A systematic review of long COVID and ME/CFS has
shown that there is a high degree of similarity of fatigue, reduced
daily activity, and post-exertional malaise between long COVID
and ME/CFS (Wong and Weitzer, 2021). Furthermore, 36.4% of
hospitalized COVID-19 patients presented neurological symptoms
such as impaired consciousness, dizziness, and headache (Mao
et al., 2020). This has stimulated researchers to investigate the effect
of SARS-CoV-2 on the central nervous system in long COVID
patients.

Magnetic resonance imaging (MRI) is non-invasive, can detect
subtle changes in brain structure, and has been used to study
brain dysfunction in ME/CFS and COVID patients. Recently,
an ME/CFS study demonstrated increased hippocampal subfield
volumes (Thapaliya et al., 2022b) and reduced caudal middle
frontal volume and precuneus thickness (Thapaliya et al., 2022a).
Global differences in gray and white matter volume were observed
in ME/CFS (de Lange et al., 2005), although not in all studies
(Barnden et al., 2011). Voxel-based morphometry (VBM) reported
a decrease in the pons and midbrain volume and an increase in
the amygdala and insula volumes in ME/CFS patients (Finkelmeyer
et al., 2018). An MRI study in COVID-19 patients showed reduced
gray matter thickness in the para-hippocampal gyrus, anterior
cingulate cortex, and temporal lobe (Douaud et al., 2022). COVID-
19 patients also have higher gray matter volume in the left Rolandic
operculum, bilateral olfactory cortices, bilateral insulas, bilateral
hippocampi, and right cingulate gyrus (Lu et al., 2020) and lower
mean diffusivity in the left insula, cingulate gyri, right precuneus,
right thalamus, and superior frontal-occipital fasciculus (Lu et al.,
2020). MRI scans before and after COVID-19 infection showed an

increased volume in the putamen, temporal cortex, fusiform and
para-hippocampal gyrus (Salomon et al., 2021).

Recent studies have shown that COVID-19 survivors will
develop symptoms of long COVID in all cohorts, even in young
adults, students, children (Greenhalgh et al., 2020; Yelin et al.,
2021; Yong, 2021a). Progression from COVID infection into long
COVID may result from tissue damage, viral persistence, and/or
chronic inflammation that remains unresolved after acute COVID-
19 (Baig, 2020; Greenhalgh et al., 2020; Yelin et al., 2021; Yong,
2021a). Another potential cause could be persistent brainstem
dysfunction (Yong, 2021b). Autopsy studies in the brainstem of
deceased COVID-19 patients have shown shrunken neurons and
inflammation (Al-Dalahmah et al., 2020), hemorrhages (Bradley
et al., 2020), positive SARS-CoV-2 RNA (Deigendesch et al., 2020;
Fabbri et al., 2021), and perivascular and interstitial encephalitis
and neurodegeneration (von Weyhern et al., 2020). Notably long
COVID symptoms overlap with ME/CFS in which brainstem
dysfunction has been reported. The symptom severity of ME/CFS
was associated with brainstem dysfunction (Barnden et al., 2016).
MRI studies showed lower mean diffusivity (Thapaliya et al.,
2021), higher signal intensity (Barnden et al., 2018; Thapaliya
et al., 2020), and impaired brainstem connectivity (Barnden
et al., 2019) in the brainstem regions of ME/CFS patients. The
brainstem regulates respiratory, cardiovascular, gastrointestinal,
and neurological processes and its impairment can explain the
overlapping symptoms of ME/CFS and long COVID. Brainstem
invasion by viruses (Deigendesch et al., 2020; Fabbri et al., 2021),
pathological immune, or vascular activation (Al-Dalahmah et al.,
2020; Fabbri et al., 2021) might lead to brainstem dysfunction in
ME/CFS and long COVID.

Despite several studies showing a similar symptom
presentation between ME/CFS and long COVID, structural
change in the brainstem using MRI is yet to be investigated. The
specific aims of this pilot study were to (a) quantify volumes of
brainstem subregions and the whole brainstem in ME/CFS and
long COVID and compare them to healthy controls (HC), and (b)
explore the relationship between brainstem volumes and clinical
symptom severity in ME/CFS and long COVID patients.

Materials and methods

Participant recruitment

The study was approved by the Griffith University Human
Research Ethics Committee (ID: 2022/666) and written informed
consent was obtained from all individuals. This cross-sectional
investigation was conducted at the National Centre for
Neuroimmunology and Emerging Diseases (NCNED) on the
Gold Coast, Queensland, Australia. Eligible participants were
contacted using the NCNED research registry database. ME/CFS
patients were considered eligible if they fulfilled the CCC and/or
ICC definitions for diagnosis, had received a formal diagnosis
of ME/CFS by a physician, and did not report a history of
COVID-19 infection. Participants with long COVID reported
symptoms persisting for at least 3 months following COVID-19
infection according to the WHO working case definition. HC
reported no diagnosis of a chronic health condition or evidence of
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underlying illness and had no current or prior COVID-19 infection.
Participants were aged between 18- and 65-years. Medical history
was requested to identify comorbid manifestations or exclusionary
diagnoses including mental illness, malignancies, autoimmune,
neurological, or cardiovascular diseases. Female participants were
excluded if they were pregnant and/or breastfeeding. Finally, 10
ME/CFS patients fulfilling the CCC and ICC criteria (Carruthers
et al., 2011), eight long COVID as defined by the WHO clinical
case definition (World Health Organization [WHO], 2021) and 10
age-matched HC subjects were included in this study (see Table 1
for demographic information).

Symptom presentation and clinical
measures

Symptom presentation was collected using the NCNED
Research Registry questionnaire developed by NCNED with the
Centres for Disease Control and Prevention (CDC) Symptom
Inventory Questionnaire distributed online through LimeSurvey.
The presence and severity of each symptom was assessed on a five-
point scale: (1) very mild; (2) mild; (3) moderate; (4) severe; and
(5) very severe. Validated patient-reported outcome measures were
used to determine participant quality of life (QoL) and functional
capacity. The 36-item short form health survey (SF-36) (Alonso
et al., 1995) has been frequently employed in previous observational
studies to assess QoL among people with ME/CFS (Eaton-Fitch
et al., 2020), as well as, more recently, among people with the long
COVID condition (O’Kelly et al., 2022). Eight QoL domains were
assessed including physical functioning, role limitations due to
physical health problems, bodily pain, general health perceptions,
vitality, social functioning, role limitations due to personal or
emotional health, and emotional wellbeing/mental health. Survey
item scores were assigned a value between 0 and 100, before scores
were averaged for each domain.

For subsequent correlation analysis, the severity measure
of “pain” was extracted from SF36v2, while breathing scores
were obtained via the NCNED Research Registry questionnaire.
Symptom severity of 10 ME/CFS and eight long COVID patients
have been provided as a Supplementary material.

MRI scans and data processing

Magnetic resonance imaging was performed on a 7 T whole-
body MRI research scanner (Siemens Healthcare, Erlangen,
Germany) with a 32-channel head coil (Nova Medical Wilmington,

Wilmington, NC, USA). We acquired T1-weighted data using a
Magnetization prepared 2 rapid acquisition gradient echo sequence
(MP2RAGE) as in Thapaliya et al. (2019). In brief, MP2RAGE data
were acquired sagittally using the following parameters: repetition
time (TR) = 4,300 ms, echo time (TE) = 2.45 ms, first inversion time
(TI1) = 840 ms, TI2 = 2,370 ms, first flip angle (FA1) = 5◦, FA2 = 6◦

and resolution = 0.75 mm3 with matrix size = 256× 300× 320.
MP2RAGE data were processed similarly to our previous

publications (Thapaliya et al., 2022a,b). In brief, MP2RAGE
images were anatomically segmented using FreeSurfer version 7.1.1
(Fischl, 2012) 1using the default FreeSurfer command “recon-
all” on a Macintosh computer (Operating system: Catalina,
RAM = 36GB, and core: 8). The “recon-all” processing includes
motion correction, non-linear spatial normalization to Talairach
space, intensity normalization, removal of non-brain tissue, cortical
percolation, sub-cortical segmentation, gray and white matter
boundary tessellation, automated topology correction, and surface
deformation. Detailed information about the pipeline can be
found at.2

Brainstem subregions were segmented using the FreeSurfer
7.1.1 brainstem module (Iglesias et al., 2015) as shown in Figure 1.
Using this module, the brainstem was segmented into the midbrain,
pons, superior cerebellar peduncle (SCP), and medulla oblongata.
Brainstem subregions for all participants were visually checked for
distortion-free segmentation.

Statistical analysis

Multivariate general linear model (GLM) statistical analysis
was performed to test brainstem subregions and whole brainstem
volume differences between ME/CFS, long COVID patients, and
HC using SPSS version 28. After confirmation of homogeneity
using Levene’s test, the multivariate GLM was used to test for
three group differences. Correction for multiple group comparisons
was implemented using the Bonferroni method. Then Spearman
correlations were performed between brainstem subregion and
whole brainstem volumes and clinical severity measures for
ME/CFS and long COVID patients. The normality condition for
data was checked using the Shapiro-Wilk method available in SPSS
before the correlation. Age and sex were included as covariates for
group comparisons and correlation analysis.

1 https://surfer.nmr.mgh.harvard.edu/

2 https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all

TABLE 1 Demographic and clinical characteristics of patients with ME/CFS, long COVID, and HC.

ME/CFS
(n = 10)

Long COVID
(n = 8)

HC
(n = 10)

P-value

Age 46.4± 15.2 43.2± 10.7 42.3± 14 0.53a , 0.29b , 0.69c ,

F/M 6/4 5/3 7/3 N/A

Pain 38± 20.4 37.8± 16.4 87± 19.7 <0.001a , <0.001b , 0.98c

Breathing difficulty 0.8± 1.13 1.8± 1.6 N/A 0.15c

Superscripts a, b, and c are the p-values for ME/CFS vs. HC, long COVID vs. HC, and ME/CFS vs. long COVID, respectively.
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FIGURE 1

Demonstrates brainstem subregions of a healthy participant.
Subregions are color coded.

Results

Group comparison: ME/CFS vs. HC

The brainstem subregion volumes were larger in ME/CFS
patients compared with HC (see Table 2). After adjusting for
multiple comparisons, volumes remained significantly larger in the
pons (p = 0.004) and whole brainstem (p = 0.01) (see Figure 2 and
Table 2).

Group comparison: Long COVID vs. HC

In long COVID patients, after adjusting for multiple
comparisons, we observed significantly larger volumes in the
pons (p = 0.003), SCP (p = 0.009), and whole brainstem (p = 0.005)
(see Figure 2 and Table 3). The medulla (p = 0.042) and midbrain
(p = 0.026) volumes were not significantly larger compared with
HC (see Table 3) after adjusting for multiple comparisons.

Group comparison: ME/CFS vs. long
COVID

Although brainstem subregion volumes were smaller in
ME/CFS patients compared with long COVID (see Table 4), these
differences were not statistically significant (p < 0.05).

Brainstem subregion volume correlations
with pain and breathing

We demonstrated that subregion and whole brainstem volumes
in ME/CFS and long COVID patients are significantly associated

with clinical measures of “pain,” and “breathing difficulty” (see
Figure 3 and Table 5). We observed a significantly strong positive
relationship between “pain” and volume of pons (r = 0.83,
p = 0.011) and whole brainstem (r = 0.85, p = 0.008) (see Table 5).
There was also a strong negative relationship between “breathing
difficulty” and midbrain (r =−0.78, p = 0.023) and whole brainstem
(r = −0.78, p = 0.022) volumes in ME/CFS patients (see Figure 3).
Furthermore, we found a very strong negative relationship between
“breathing difficulty” and midbrain volume (r =−0.91, p = 0.03) in
long COVID patients (see Figure 3 and Table 5).

Discussion

This study reports volumetric differences in the whole
brainstem and four subregions in ME/CFS, long COVID, and HC.
We showed that pons, SCP, and whole brainstem volumes were
significantly larger in long COVID patients compared with HC.
Similarly, pons and whole brainstem volumes were significantly
larger in ME/CFS patients compared with HC. Interestingly, no
brainstem subregion volumes were significantly different between
ME/CFS and long COVID patients between ME/CFS and long
COVID patients. To the authors’ knowledge this is the first
investigation to demonstrate the overlap between ME/CFS and
long COVID metrics using MRI. We also demonstrated that “pain”
and “breathing difficulty” are strongly associated with brainstem
volumes in ME/CFS and long COVID.

Group comparisons

Our study found significantly larger volumes for whole
brainstem, pons, and SCP in ME/CFS and long COVID patients.
The brainstem contains multiple small and dispersed neuron
structures in the midbrain, pons, and medulla (Naidich et al.,
2009) which together they constitute the reticular activation system
(RAS). RAS nuclei connect with each other and to the body and
subcortical and cortical structures (Guyton and Hall, 2011). RAS
neurons influence cortical function via two different pathways.
Firstly, RAS neuron projections deliver neurotransmitters directly
or indirectly (e.g., via hypothalamus, basal forebrain) to the cortex
(Saper and Fuller, 2017), and secondly RAS neurons generate
oscillatory electrical signals that facilitate the coherence of cortical
oscillations necessary for attention, sensory perception, problem
solving, and memory (Garcia-Rill et al., 2013). Excitatory midbrain
nuclei and inhibitory medulla nuclei constitute a circuit that
controls both cortical arousal levels (cognition, wake/sleep, pain,
respiration) and gait selection (e.g., walking or running) in response
to inputs from multiple brain centers (Stornetta, 2008; Nicholls
and Paton, 2009). Therefore, structural changes in the brainstem of
ME/CFS and long COVID patients could result in severe and varied
deficits in brain function.

ME/CFS vs. HC group comparison

We observed a larger volume for the whole brainstem and
pons in ME/CFS patients compared with HC. Previous studies
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TABLE 2 For ME/CFS, and HC, the mean and standard deviation of volumes for the brainstem subfields.

Volume in mm3 P-value 95% confidence interval

Lower Upper

Regions

ME/CFS HC

Medulla 3110.3± 155.7 ↑ 2756.1± 440.6 0.166 −238.7 830.8

Pons 13889.5± 333.5 ↑ 11461.3± 1776.9 0.004* 444.1 4227.1

Midbrain 5331.6± 295.5 ↑ 4792.1± 507.1 0.056 −151.5 1220.1

SCP 270.01± 83.81 ↑ 217.10± 42.25 0.054 −13.2 110.0

Whole brainstem 22601.4± 488.7 ↑ 19226.7± 2644.3 0.01* 261.7 6167.0

↑ Indicates a larger volume in ME/CFS than in HC. *Represents difference from HC statistically significant (p < 0.05) after adjusting for multiple comparisons. SCP, superior cerebral peduncle.

FIGURE 2

Shows the estimated mean volumes and their standard deviations (bars) for the pons and whole brainstem regions (left) and SCP (right) across
ME/CFS (red), long COVID (green), and HC (blue) participants. ME/CFS and long COVID mean volumes were both significantly larger than HC
(p < 0.05) in the pons and whole brainstem region. SCP volumes were only significantly larger than HC in long COVID. Error bars indicate one
standard deviation. SCP, superior cerebellar peduncle.

TABLE 3 Volume means and standard deviations for long COVID and HC for the brainstem subregions and the whole brainstem.

Volume in mm3 P-value 95% confidence interval

Lower Upper

Regions

Long COVID HC

Medulla 3302.4± 696.7 ↑ 2756.1± 440.6 0.042 −95.0 1052.9

Pons 14120.3± 2305.8 ↑ 11461.3± 1776.9 0.003* 569.0 4629.6

Midbrain 5456.1± 889.2 ↑ 4792.1± 507.1 0.026 −55.4 1416.7

SCP 292.27± 83.81 ↑ 217.10± 42.25 0.009* 6.8 139.1

Whole brainstem 23171.1± 3750.7 ↑ 19226.7± 2644.3 0.005* 662.5 7001.1

Long COVID volumes were statistically different from HC (p < 0.05). ↑ Indicates a larger volume in long COVID than HC. SCP, superior cerebral peduncle, *represents statistical significance
after adjusting for multiple comparisons with the Bonferroni method.

in ME/CFS patients have reported lower mean diffusivity in the
pons (Thapaliya et al., 2021), and higher T1/T2 signal intensity
in the medial lemniscus and cortical spinal tract (Thapaliya
et al., 2020) that is sensitive to the level of myelination or iron.
A functional MRI study reported impaired connectivity within
the brainstem and to the hippocampus and thalamus of ME/CFS
patients (Barnden et al., 2019). In ME/CFS patients, decreased

myelin-sensitive T1-weighted spin echo signals were detected in
the brainstem (Barnden et al., 2018) and the brainstem perfusion
ratios were reduced (Costa et al., 1995). The brainstem contains
the nuclei of the reticular activation system which control arousal,
the sleep/wake cycle, gait, and memory via cortical connections
and cardio-respiratory function (Costa et al., 1995; Garcia-Rill
et al., 2013, 2016). Therefore, brainstem dysfunction is consistent
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TABLE 4 Volume means and standard deviations volumes for ME/CFS and long COVID for the brainstem subfields and whole brainstem and their
statistical inference.

Volume in mm3 P-value 95% confidence interval

Lower Upper

Regions

ME/CFS Long COVID

Medulla 3110.3± 155.7 ↓ 3302.4± 696.7 0.407 −741.6 375.9

Pons 13889.5± 333.5 ↓ 14120.3± 2305.8 0.734 −2240.2 1712.7

Midbrain 5331.6± 295.5 ↓ 5456.1± 889.2 0.603 −862.9 570.2

SCP 270.01± 83.81 ↓ 292.27± 83.81 0.335 −88.9 39.8

Whole brainstem 22601.4± 488.7 ↓ 23171.1± 3750.7 0.610 −3702.7 2467.8

↓ Indicates a smaller volume in ME/CFS patients than long COVID. No significant volumetric differences were obtained between ME/CFS and long COVID. SCP, superior cerebral peduncle.

FIGURE 3

Shows the strong correlation between brainstem region volumes and clinical measures for ME/CFS and long COVID patients. We observed
statistically significant relationship between the pons, brainstem volumes and “pain” score in ME/CFS patients (A,B). We also found statistically
significant relationship between midbrain volume and “Breathing difficulty” score in ME/CFS (C) and long COVID (D) patients. Y-axis is the volume
and x-axis are the clinical scores.

with the symptoms experienced by ME/CFS patients including
cognitive dysfunction, sleep disturbance, orthostatic intolerance,
and dyspnea.

Long COVID vs. HC group comparison

We also found larger volumes of the whole brainstem, pons,
and SCP in long COVID patients compared with HC. Such
volume increases may reflect edema of inflammatory responses,
neurodegeneration, and/or viral invasion (Yong, 2021b). Autopsy
studies of the brain have detected SARS-CoV-2 RNA and proteins
in the brainstem of COVID-19 patients (Deigendesch et al.,
2020; Matschke et al., 2020). Higher concentrations of SARS-
CoV-2 are consistent with the high expression of Angiotensin-
converting enzyme 2 which is the receptor SARS-CoV-2 uses
to infect host cells in the brainstem (Letko et al., 2020;

Zhou et al., 2020). Other autopsy studies showed inflammation,
neuronal cell loss, and axonal degeneration in the brainstem of
COVID-19 patients (Matschke et al., 2020; von Weyhern et al.,
2020). Activated microglia and astrocytes, leukocyte infiltration,
and micro-thrombosis have also been reported in the brainstem
of COVID-19 patients (Deigendesch et al., 2020; Schurink et al.,
2020; Meinhardt et al., 2021; Mukerji and Solomon, 2021).
A microscopy study showed more tissue damage in the pons in
COVID-19 patients than in controls (Bulfamante et al., 2021),
and MRI also showed severe damage to the brainstem in two
COVID-19 patients (Manganelli et al., 2020). Abnormal diffusion
(lower fractional anisotropy) was reported in the SCP for multiple
sclerosis patients with cerebellar symptoms and this correlated with
cognitive performance (Nicoletti et al., 2017). The SCP has large
sensory and motor nerve tracts that connect the cortex and pons
and facilitate refined motor movements, learning of new motor
skills, and balance (Khonsary, 2022). However, the function of
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TABLE 5 Correlation between brainstem region volumes and clinical
measures in ME/CFS and long COVID.

Brainstem region Clinical measure r P

ME/CFS

Pons Pain 0.83 0.011

Brainstem Pain 0.85 0.008

Midbrain Breathing difficulty −0.78 0.023

Brainstem Breathing difficulty −0.78 0.022

Long COVID

Midbrain Breathing difficulty −0.91 0.03

r, correlation coefficient. The Spearman correlation test was used to perform correlation
analysis using SPSS software version 28.

this region needs to be investigated in different diseases. Damage
to the brainstem, in particular the respiratory neurons of the
dorsal medulla, could cause respiratory failure which is a key
symptom of COVID-19 patients (Boutou et al., 2021a,b; Huang
et al., 2021). Brainstem dysfunction has been demonstrated in
chronic migraine headache (Aurora and Brin, 2017; Chong et al.,
2017) which also occurs in long COVID (Membrilla et al., 2021).
Therefore, structural changes in the brainstem are associated with
the heterogeneous changes in brain function that correspond to the
key symptoms of long COVID.

ME/CFS vs. long COVID group
comparison

We did not find significant differences in the brainstem
volumes of ME/CFS and long COVID patients which is consistent
with the overlapping presentation of both cohorts (Sukocheva et al.,
2021; Marshall-Gradisnik and Eaton-Fitch, 2022). Cardiovascular
and respiratory symptoms of ME/CFS and long COVID are
controlled by neuronal circuits between the hypothalamus and
the brainstem (Benarroch, 2018). The symptom overlap between
ME/CFS and long COVID patients is consistent with by our current
findings of similar abnormalities in the brainstem. Further, a recent
investigation demonstrated the biological overlap of ME/CFS and
long COVID through transient receptor potential melastatin 3
(TRPM3) ion channel dysfunction (Sasso et al., 2022). TRPM3 ion
channel dysfunction in the pathology of both ME/CFS and long
COVID suggests further research is required to determine whether
the illnesses are separate. TRPM3 channels are widely expressed
through multiple cell and tissue types and are highly expressed
in the brainstem, thus may account for a common pathology in
ME/CFS and long COVID (Held and Tóth, 2021; Ragozzino et al.,
2021).

Correlations with clinical measures

We detected significant correlations between clinical measures
(pain and breathing difficulty) and volumes of the whole
brainstem and its subregions in ME/CFS and long COVID
patients. Pain is regarded as one of the major symptoms of
ME/CFS (Bourke et al., 2014). Our study shows a significantly
strong positive correlation between “pain” and pons and whole

brainstem volumes in ME/CFS patients (see Figure 3 and Table 5)
indicating that larger brainstem volumes are associated with
higher pain severity. The brainstem regions have several nuclei
that receive ascending and descending signal pathways that
inhibit or facilitate pain by upward or downward regulation of
neurotransmission (Mills et al., 2021). Several brainstem nuclei
including periaqueductal gray in the midbrain, dorsal and median
raphe nuclei, parabrachial nucleus, and locus coeruleus in the
pons region are involved in pain processing (Napadow et al.,
2019). Functional connectivity differences were observed between
brainstem nuclei in fibromyalgia patients (Ioachim et al., 2022).
Recently, a study showed that the hippocampal subfield volumes
were associated with pain levels in ME/CFS patients (Thapaliya
et al., 2022b).

Breathing difficulty is another common symptom experienced
by ME/CFS and long COVID patients (Ravindran et al., 2013),
(Mancini et al., 2021). It has been reported that 30–50% of
COVID-19 patients experience breathing difficulty (Mandal et al.,
2021; Shah et al., 2021). We showed that smaller midbrain
and whole brainstem volumes were associated with more severe
“breathing difficulty” in both ME/CFS and long COVID patients
(see Figure 3 and Table 5). Breathing difficulties in ME/CFS and
long COVID are associated with brainstem volume changes that
may reflect changes to the respiratory and cardiovascular neuronal
circuits in the brainstem (Benarroch, 2018). The brainstem has a
ventral respiratory column that controls rhythmic breathing (Smith
et al., 1991; Moreira et al., 2011), a pontine respiratory group
that controls the transition between expiration and inspiration
(Stornetta, 2008), and the caudal ventrolateral medulla that controls
inspiration (Nicholls and Paton, 2009). Therefore, brainstem
dysfunction may contribute to the respiratory-related symptoms in
ME/CFS and long COVID.

Limitations

This study does have some limitations. This is a pilot study with
a relatively small sample size that will affect the power of the study
to detect brainstem volume differences and their association with
clinical measures. Another limitation is that pain and breathing
scores were obtained using self-reported questionnaires, which
by their subjective nature may limit the interpretation of our
findings. This study was a cross-sectional study; therefore, further
investigations with a larger cohort and longitudinal studies are
recommended to test progressive changes in the brainstem volume
in ME/CFS and long COVID patients.

Conclusion

In this pilot study, volumetric differences in brainstem regions
were detected in ME/CFS and long COVID patients relative to
HC. Clinical measures for “pain” and “breathing difficulty” showed
a strong relationship with pons, midbrain, and whole brainstem
volumes in ME/CFS and long COVID patients. Interestingly,
volumes of the whole brainstem and its subregions were not
significantly different between ME/CFS and long COVID patients.
This is consistent with ME/CFS and long COVID having similar
brainstem abnormalities which will contribute to their neurological
and cardio-respiratory symptoms.
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