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Psychotropic drugs and transcranial magnetic stimulation (TMS) are effective for 
treating certain psychiatric conditions. Drugs and TMS have also been used as 
tools to explore the relationship between brain function and behavior in humans. 
Combining centrally acting drugs and TMS has proven useful for characterizing 
the neural basis of movement. This combined intervention approach also 
holds promise for improving our understanding of the mechanisms underlying 
disordered behavior associated with psychiatric conditions, including addiction, 
though challenges exist. For example, altered neocortical function has been 
implicated in substance use disorder, but the relationship between acute 
neuromodulation of neocortex with TMS and direct effects on addiction-related 
behaviors is not well established. We  propose that the combination of human 
behavioral pharmacology methods with TMS can be leveraged to help establish 
these links. This perspective article describes an ongoing study that combines 
the administration of delta-9-tetrahydrocannabinol (THC), the main psychoactive 
compound in cannabis, with neuroimaging-guided TMS in individuals with 
problematic cannabis use. The study examines the impact of the left dorsolateral 
prefrontal cortex (DLPFC) stimulation on cognitive outcomes impacted by THC 
intoxication, including the subjective response to THC and the impairing effects 
of THC on behavioral performance. A framework for integrating TMS with human 
behavioral pharmacology methods, along with key details of the study design, are 
presented. We also discuss challenges, alternatives, and future directions.
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Highlights

-  Combining drug administration and noninvasive brain stimulation has proven useful for 
characterizing the neural basis of movement.
-  Characterizing the neural basis of addiction behavior is challenging and the links between 
neocortical function and addiction related behavior are poorly understood.
-  Integrating noninvasive brain stimulation into a behavioral pharmacology framework can help 
establish a better understanding of the neural basis of addiction behavior.
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1. Introduction

Psychotropic drugs and transcranial magnetic stimulation 
(TMS) are effective for treating psychiatric conditions, including 
major depressive disorder (Perera et  al., 2016; Cipriani et  al., 
2018), obsessive–compulsive disorder (Pittenger and Bloch, 2014; 
Rapinesi et al., 2019), post-traumatic stress disorder (de Moraes 
Costa et  al., 2020; Harris and Reece, 2021) and tobacco use 
disorder (Nagano et al., 2019; BrainsWay, 2020). Drugs acting on 
the central nervous system (CNS) and TMS have also been used 
as tools to explore the relationship between brain function and 
behavior. A prominent example is prior work combining TMS 
with centrally acting drugs to characterize the neural basis of 
motor behavior (Korchounov and Ziemann, 2011; Ziemann, 
2013). With this pharmaco-TMS approach, the ability of specific 
TMS protocols to directly modulate cellular activity in the brain 
to produce acute changes in behavior is established (Chipchase 
et  al., 2012). Next, pharmacologically selective drugs are 
administered to determine their impact on TMS-induced 
behavior, thereby uncovering mechanisms of motor function. This 
approach has provided extensive evidence of the acute interactions 
between TMS and CNS drugs on behavior (Ziemann, 2011; 
Nitsche et al., 2012) and these findings support the use of these 
combined interventions to improve our understanding of the 
neural basis of psychiatric conditions, including substance use 
disorder (SUD).

SUD is described as a chronic, relapsing condition characterized 
by continued drug use despite its negative consequences. SUDs have 
been linked to abnormal function in brain networks related to reward, 
stress, and self-control (Koob and Volkow, 2016; Uhl et  al., 2019; 
Ceceli et al., 2022). As highlighted in several prominent review articles 
non-invasive brain stimulation has shown promise as an intervention 
for addiction (Feil and Zangen, 2010; Gorelick et al., 2014; Yavari 
et al., 2016; Dunlop et al., 2017; Coles et al., 2018; Hanlon et al., 2018; 
Ekhtiari et al., 2019; Steele, 2020a,b). As such, there is substantial 
interest in using TMS to probe function in brain regions thought to 
underly facets of SUD, but challenges exist. Unlike the relatively well 
understood relationship between primary motor cortex function and 
motor behavior, the effect of neocortical neuromodulation with TMS 
on addiction-related behavior is not well established (Spagnolo and 
Goldman, 2017). The combination of TMS with abused drugs using 
human behavioral pharmacology methods can be leveraged to help 
establish this link.

The primary goals of this brief perspective article are to (1) present 
a simple framework for integrating noninvasive brain stimulation with 
behavioral pharmacology techniques to better understand cognitive 
mechanisms and associated neural function and (2) provide some 
considerations for such an approach applied to the study of addiction. 
We  use an ongoing study in our laboratory for illustration that 
combines delta-9-tetrahydrocannabinol (THC), the main psychoactive 
compound in cannabis, with functional magnetic resonance imaging 
(fMRI)-guided TMS to examine THC intoxication in individuals 
reporting problematic cannabis use. First, a simple framework for 
integrating TMS with human behavioral pharmacology is provided. 
Next, key details of the study are presented. We  then discuss 
challenges, alternatives, and future directions. We envision that the 
information presented here will aid similar future approaches to 
advance the understanding and treatment of addiction.

1.1. Framework for integrating TMS with 
clinical pharmacology

A drug yields its initial effect on select molecular targets 
according to the wide spanning topography of its neurotransmitter 
system (Figure 1A, left). TMS yields its initial effect on more molar 
targets with diverse molecular physiology (Figure 1A, right). In 
network models of the brain, function in specialized and 
interacting regions underlies the behaviors that define SUDs 
(Watts and Strogatz, 1998; Sporns and Honey, 2006; Sporns et al., 
2007; Telesford et al., 2011; Park and Friston, 2013). We theorize 
that the combination of a centrally acting drug and TMS will have 
a greater impact on network function to alter SUD outcomes 
(Figure 1B).

Prior pharmaco-TMS studies have typically established a 
TMS-behavior effect and then determined the impact of a drug on 
that effect, but here we describe how the effects of an abused drug 
on SUD-related behaviors can be established with human behavioral 
pharmacology methods and then used to investigate the role of a 
particular brain region on those behaviors using TMS. Human 
behavioral pharmacology methods have been used for over 50 years 
to reveal mechanisms of addiction and develop effective 
pharmacotherapies (Comer et  al., 2010). In a typical behavioral 
pharmacology study, a dose–response (D-R) function is generated 
to characterize the relationship between a range of doses of an 
abused drug and a relevant behavioral response (Figure  1C). 
Pharmacologically selective intervention drugs can then 
be  administered to assess shifts in drug D-R functions, which 
reveals information about the neurotransmitter systems involved in 
the behavior as well as the potential therapeutic use of the 
intervention drug (Brunton and Knollmann, 2023). This approach 
can be adapted for TMS, such that the influence of region-specific 
TMS on the efficacy, potency, and sensitivity of a drug effect on 
behavior can reveal the importance of that region in observed 
behavior (see Figure 1 legend for more detail). This design can also 
be  used to inform the potential use of that TMS protocol as 
a therapeutic.

1.2. Participants

Cannabis use disorder is the focus of this study because rates of 
use and CUD diagnoses are on the rise (SAMHSA, 2021). Moreover, 
social acceptance of cannabis use and the availability of high potency 
commercial cannabinoid products (including novel analogs such as 
delta-8-THC) are at an all time high (Chandra et al., 2019; Daniller, 
2019; Hartman, 2022; Johnston et al., 2022).

Participants are non-treatment seeking young adults aged 
18–34 years old with problematic cannabis use, which is 
operationalized as (1) consuming cannabis on a daily/near daily basis 
(≥20 days/month) and (2) meeting hazardous use criteria according 
to the CUDIT-R (Adamson et al., 2010), and/or meeting CUD criteria 
according to the DSM-V (First et al., 2015). Exclusion criteria include 
medical screening outcomes that are abnormal or have the potential 
to interfere with study participation, including past or current serious 
physical disease, brain injury, or seizures. Past or current psychiatric 
disorder(s), including SUD other than cannabis or nicotine, and metal 
implants contraindicated for MRI.
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FIGURE 1

Framework for integrating noninvasive brain stimulation with behavioral pharmacology. (A) A drug yields its initial effect on molecular targets according 
to the wide spanning topography of its neurotransmitter system (left). Drugs of abuse are known to modulate function in dopaminergic neurons 
originating in the brainstem and projecting to striatal and neocortical brain regions. Whereas dopaminergic modulation in the ventral striatum has been 
largely linked to the reinforcing effects of abused drugs, modulation of the prefrontal cortex has been linked to deficits in executive functioning ability, 
including compromised learning, memory, and attention. TMS yields its initial effect on more molar targets with diverse molecular physiology (right). 
For example, stimulation of the medial prefrontal cortex (mPFC) can modulate the firing rates of primary neurons and interneurons containing a 
diverse array of excitatory and inhibitory neurotransmitters. Importantly, interactions in the effects of drugs and TMS can exist based on their ability to 
both modulate neurophysiology. (B) Across a neural network, function in specialized and interacting regions (nodes, hubs, modules) underlies the 
complex experiences and behaviors associated with problematic drug use (left). The combined administration of a psychotropic drug and noninvasive 
brain stimulation can interact within a region and/or across a neural network to have an impact on addiction-related outcomes (right). In a simple 
example, if decreased mPFC function is observed in response to a drug and associated with compromised learning ability, then pairing that drug with 
an excitatory stimulation protocol targeting the mPFC may recover learning ability. It is possible for interactions in modulation to occur in primary and 
secondary regions across a network. Studying such interactions holds promise for better understanding the cognitive mechanisms and associated 
brain function thought to underlie drug-related behavior. (C) In behavioral pharmacology, a drug dose–response (D-R) function characterizes the 
relationship between a drug’s dose and its biological impact on a behavioral response (black line). Potency, efficacy, and slope are the primary 
characteristics of the function. Potency describes the amount of a drug that must be taken to achieve a specific level of response, such as 50% of the 
maximum effect. Potency is measured by the lower concentration or dose necessary to produce a given response. Efficacy refers to a drug’s greatest 
effect. A drug that is more effective than another produces greater changes in a response. Sensitivity to changes in drug dose is reflected in the slope. 
A more sensitive system is represented by a steeper slope, whereas a less sensitive system is represented by a flatter slope. D-R functions can also 
be used to assess the safety of interventions, as well as to compare the efficacy of various interventions. The impact of TMS on a drug D-R function 
(red line) can reveal interactions in intervention modalities on cognitive outcomes and reveal knowledge about the involvement and plasticity of 
potential neural mechanisms targeted by TMS. In the current example, TMS delivered to a neural target decreases the sensitivity, potency, and efficacy 
of the drug effect on a behavioral response. P, posterior; A, anterior; S, superior; I, inferior.

https://doi.org/10.3389/fnins.2023.1150109
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wesley and Lile 10.3389/fnins.2023.1150109

Frontiers in Neuroscience 04 frontiersin.org

1.3. Study outcomes

This study examines the role of the left dorsolateral prefrontal 
cortex (DLPFC) on THC intoxication defined by the impairing effects 
of THC on decision-making, working memory, and subjective 
outcomes. CUD is largely characterized by maladaptive decision-
making, such as choosing to use cannabis at the exclusion of other 
behaviors and despite negative consequences (Zehra et  al., 2018). 
Individuals with CUD frequently make decisions while intoxicated, 
which is problematic because cannabis/THC impairs decision-making 
performance (Liguori et al., 1998; Ramaekers et al., 2000; Lane et al., 
2005b) and associated cognitive functions such as working memory and 
attention (Kelly et al., 1990; Greenwald and Stitzer, 2000; Ilan et al., 
2004; Lane et  al., 2005a). Moreover, impaired decision-making in 
cannabis users has been positively associated with cannabis use 
frequency and negative consequences of use (Gonzalez et al., 2012). 
Decision-making is being assessed using a probabilistic reinforcement-
learning (RL) choice task (Rutledge et al., 2009). In this task, two options 
signaled by distinct cues are available and choosing either could result 
in the delivery of monetary reward, but the probabilities of the options 
differ, and change unpredictably during the task. Working memory is 
assessed using the N-Back task, which measures performance under 
different working memory loads. Network function during this task has 
been linked to increased future cannabis (Cousijn et al., 2014).

A Visual Analogue Scale (VAS) subjective effects questionnaire is 
included because the positive subjective effects of drugs are a measure 
of their abuse potential [i.e., likelihood of maintaining sustained 
nonmedical use; (Griffiths et al., 2003)]. With respect to cannabis, 
prior research found that individuals who displayed a more positive 
initial subjective experience with cannabis had a shorter latency to 
subsequent use, greater lifetime use and were more likely to develop 
disordered use (Davidson and Schenk, 1994; Fergusson et al., 2003; Le 
Strat et al., 2009). Our version of the task includes positive (e.g., like 
drug), negative (e.g., nauseated) and cannabis/THC-specific (e.g., 
high) items (Wesley et al., 2018).

1.4. Intervention protocols

The synthetic version of THC, dronabinol, is administered orally 
under double-blind conditions. Dronabinol is FDA-approved to treat 
HIV/AIDS-induced anorexia and chemotherapy-induced nausea and 
vomiting, but it is being used here as a pharmacological probe to 
establish THC-behavior effects. The off-label use of FDA-approved 
medications is commonplace in behavioral pharmacology studies. Oral 
administration was chosen to help maintain participant and research 
staff blindness and to eliminate expectations that might accompany 
other routes of administration. Participants receive over-encapsulated 
commercial dronabinol; placebo capsules contain a behaviorally inert 
substance (e.g., corn starch). The active doses of THC (10 and 30 mg) 
were chosen based on previous oral THC administration studies (Lile 
et al., 2010a, b, 2011, 2012, 2013, 2015). For comparison, the starting 
therapeutic dose is 2.5–5 mg, administered 4–6 times per day, which 
can be increased to 10-20 mg per dose. Plasma concentrations for oral 
THC peak between 2 and 4 h (Hollister et al., 1981). The half-life of 
THC is 19-36 h, but the duration of the behavioral effects is roughly 
4–6 h (e.g., Lemberger et al., 1972; Hollister et al., 1981).

TMS is administered with the MagVenture Cool-B65 active/sham 
coil under double-blind conditions. The active protocol is intermittent 

theta burst stimulation (iTBS) applied to the left dorsolateral 
prefrontal cortex (DLPFC). The iTBS600 protocol is considered 
“excitatory” based on its ability to facilitate motor evoked potentials 
in the motor cortex (Huang et al., 2005; Wischnewski and Schutter, 
2015). It consists of 20 trains of 3 pulses delivered at 50 Hz repeating 
at 200 ms intervals with 2 s on (30 pulses/train) and 8 s off over 190 s 
(Huang et  al., 2005; Wischnewski and Schutter, 2015). Ten initial 
trains are administered that proportionally ramp up to the desired 
stimulation intensity. iTBS is delivered at 80% resting motor threshold 
(RMT) and expected to modulate function for approximately 20–60 m 
based on previous motor effects (Huang et al., 2005; Wischnewski and 
Schutter, 2015). Sham stimulation involves positioning the coil over 
the stimulation target with the active side facing outward. For both 
sham/active conditions, electrodes are placed approximately 4–5 cm 
apart on the scalp on either side of the stimulation trajectory. 
Electrodes pass subcutaneous currents in synchronization with the 
stimulation protocol to generate skin and auditory sensations that 
further facilitate blinding.

The left DLPFC was chosen as the TMS target because of existing 
data implicating this region in the cognitive impairing and subjective 
effects of cannabis/THC. Previous fMRI studies, including our own, 
have demonstrated that the left DLPFC is involved in decision-
making, working memory, and attention processes (Wesley et  al., 
2011, 2014; Wesley and Bickel, 2014). Fronto-striatal circuits that 
involve the DLPFC have also been implicated in reinforcement-based 
computational models of learning and memory (Lipton et al., 2019; 
Volkow et al., 2019; Averbeck and O'Doherty, 2022; Liebenow et al., 
2022). Consistent with a role in CUD, left DLPFC function predicted 
cannabis versus money choice (Bedi et al., 2015). Combining positron 
emission tomography or fMRI with left DLPFC TMS has 
demonstrated that stimulating this region causes molecular and 
functional changes, respectively, in executive control and striatal brain 
regions (Strafella et al., 2001; Pogarell et al., 2007; Cho and Strafella, 
2009; Hanlon et al., 2013; Gorelick et al., 2014; Caparelli et al., 2022). 
The ability of TMS to modulate glutamate and dopamine function in 
mesocorticolimbic circuits is consistent with its use as a tool to link 
brain activity with abuse-related behavior and as a potential treatment 
for drug use disorder, including CUD (Gorelick et al., 2014; Hanlon 
et al., 2018; Steele, 2020b; Kearney-Ramos and Haney, 2021).

1.5. Experimental procedures and data 
analysis

A detailed account of all procedures is beyond the scope of this 
communication, so focus is given to those most relevant for TMS and 
drug combination studies enrolling individuals reporting nonmedical 
drug use. The study proper consists of 7 outpatient laboratory visits 
over approximately 3–5 weeks: 1 training/neuroimaging session and 6 
sessions in which THC and iTBS are co-administered. Daily check-in 
and -out procedures follow those detailed elsewhere (Wesley et al., 
2018). Briefly, field sobriety tests are conducted, and expired-breath 
samples are collected to detect recent alcohol use. Urine is tested for 
recent use of abused drugs with qualitative, commercially available 
kits. Participants must agree to abstain from nonmedical use of drugs 
other than cannabis for the duration of the study. Participants must 
also agree to abstain from using cannabis and alcohol for 12 h and 
ingesting solid food and caffeine for 4 h prior to each visit. They are 
provided a standard, fat- and caffeine-free snack during study visits.
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The first visit lasts approximately 3–4 h and establishes the target 
for individualized TMS delivery (Figure 2A). Participants are trained 
on the decision-making and working memory tasks before performing 
them in the MRI scanner. For each participant, brain activity during 
each task is preprocessed and analyzed in standard brain space with 
fixed effects general linear models (Wesley et al., 2014, 2016, 2017). A 
left DLPFC explicit mask is used to isolate function associated with 
evaluating wins on the decision-making task and correct high-load 
performance on the working memory task (relative to task-specific 
control events). Results are reverse transformed into a participant’s 
native brain space, along with standard space locations of the EEG f3 
scalp spot and the primary motor cortex location. The latter is used to 
initiate a grid search for calculating RMT. The stimulation target is the 
left DLPFC location of overlap closest to the skull that represents 
“good” task performance. Immediately after scanning, data are 
analyzed, RMT is calculated, and one train of active iTBS is 
administered to familiarize participants with the procedure. 
Neurotargeting is performed with commercially available equipment 
(Brainsight; Rogue Research Inc., Montreal, Quebec, Canada).

Six experimental sessions are conducted to test all possible 
combinations of THC (0, 10, and 30 mg) and iTBS (sham and active) 
(Figure  2B). These sessions last approximately 7 h each and are 
separated by a minimum of 2 days. Based on our previous THC 
administration studies (Lile et  al., 2015; Wesley et  al., 2018) and 
protocols from previous iTBS studies (Chung et al., 2018), 2 days was 
deemed sufficient to prevent the accumulation of carryover effects. Of 
note, while the minimum time between sessions was 2 days, most 
sessions in the ongoing study are separated by one to 2 weeks further 
mitigating the potential for carryover effects. Combinations are 
randomized except that 30 mg and active iTBS is not administered 
prior to 30 mg and sham iTBS, for safety. First, a baseline task 
assessment is completed, followed by capsule administration. The 
stimulation protocol is administered approximately 3 h after capsule 
administration, corresponding to the estimated peak effects of THC, 
followed by completion of the task battery. Vital signs are monitored 
every hour throughout experimental sessions. Prior to discharge, 
participants are assessed for residual drug effects and cautioned about 
potential impairing effects on subsequent activities.

FIGURE 2

Example study design. (A) Functional Magnetic Resonance Imaging (fMRI) data are acquired during completion of decision-making and working 
memory tasks. For each participant, fMRI data are preprocessed and analyzed in standard space with fixed effects general linear models. Function 
associated with win evaluation on the decision-making task (Win Evaluation > Control Evaluation) and correct high-load working memory on the 
working memory task (High-Load > Low-Load) are isolated within a left dorsolateral prefrontal cortex (Left DLPFC) search volume. Results are reverse 
transformed into a participant’s native brain space, along with standard space locations of the EEG f3 scalp spot and the primary motor cortex location. 
Of the potential stimulation targets identified (3 shown), the target closest to the skull is selected for modulation. (B) Across six separate experimental 
sessions, all combinations of THC (0, 10, and 30  mg) and iTBS (sham, active) are tested. First, a baseline task assessment is completed, followed by 
capsule administration. iTBS is administered approximately 3  h after capsule administration, corresponding to the estimated peak of THC effects (green 
line). This is immediately followed by reassessment with the task battery.
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Primary analyses focus on elucidating the involvement of the left 
DLPFC in the acute cognitive impairing and subjective effects of 
THC. To this end, the ability of active iTBS to impact the dose-
dependent effects of THC on targeted outcomes is determined. Daily 
baseline assessments are used to calculate change scores for each 
outcome. Then, a THC (0, 10, and 30 mg) D-R curve for each iTBS 
condition (sham and active) is generated for each outcome. 
We hypothesize that if left DLPFC function is involved in the acute 
impairing and/or subjective effects of THC, then activation of this 
region by iTBS will reverse the effects of THC, as indicated by a shift in 
the THC D-R curve for targeted outcomes.

2. Discussion

A significant challenge in conducting research that involves TMS 
and the administration of abused drugs to human subjects is the 
expertise required. In addition to foundational training in 
experimental psychology, pharmacology, physiology, anatomy, 
neuroscience, and statistics, these studies require additional training 
in, and adherence to, Human Subjects Protections, Responsible 
Conduct of Research and Good Clinical Practice standards, as well 
as certification in TMS delivery. The neuroimaging and 
neurobehavioral modeling described here requires additional 
training and technical skills. Thoughtful design choices must 
integrate knowledge across a range of medical, scientific, and 
technical disciplines. Therefore, multidisciplinary teams working in 
highly collaborative and effective research and training environments 
are best suited for this work.

The study described here tests two active THC doses and a single 
active iTBS dose, and the inclusion of appropriate control conditions 
(placebo THC and sham TMS) doubles the number of experimental 
conditions and study sessions. Ideally, several active doses of each 
intervention modality would be  administered, alone and in 
combination, to better capture the relationship between TMS and 
THC on abuse-related behaviors. However, increasing the number of 
conditions would extend study enrollment and likely increase study 
dropout. A between-subjects design could be  utilized, but would 
be  less rigorous, require more participants, and complicate 
interpretation of individual differences thought to be critical in SUD 
(George and Koob, 2017). Exciting new preclinical/clinical research is 
focused on establishing TMS D-R effects in neocortical targets using 
different stimulation modalities/protocols and neuroimaging 
techniques (INNN, 2022), which will guide future study designs by 
narrowing the parameter space for testable protocols to pair with drug 
administration. Furthermore, the integration of TMS with valid 
preclinical behavioral pharmacology models would inform future 
clinical research.

The findings from the current study may be less generalizable to 
the treatment of substance use disorders in clinical settings, given that 
participants are non-treatment seeking and that high rates of 
psychiatric comorbidities exist in substance-using populations. A 
related design consideration is whether to use acute administration of 
TMS or a clinical treatment protocol (i.e., daily/weekly and/or 
accelerated TMS) to examine the role of targeted regions in SUD 
(Ekhtiari et  al., 2019; Steele et  al., 2019). Using clinical treatment 
protocols would help to compare results from laboratory studies and 
clinical efficacy trials but raises further concerns about study retention 
due to the additional time required. Further, studies enrolling 

treatment-seeking individuals could not include abused drug 
administration, though putative pharmacotherapies could 
be combined with TMS in those trials to determine their efficacy to 
treat SUD, which represents another valuable TMS and drug 
administration approach.

This example study includes a limited number of behavioral 
outcomes, but there are several other outcomes relevant to SUD and 
results might differ in individuals seeking treatment. For example, 
craving is thought to be an important driver of continued drug use 
and clinical studies have demonstrated the ability of various 
stimulation modalities/protocols targeting prefrontal regions to 
impact craving in non-treatment-seeking and treatment-seeking 
individuals (Hanlon et al., 2015; Hone-Blanchet et al., 2015; Zhao 
et al., 2020). Interactions between drugs and stimulation modalities/
protocols on craving and other outcomes could be  examined in 
future work.

Lastly, we selected iTBS to combine with THC in our ongoing 
study because of its ability to directly impact activity in a relatively 
small neocortical functional target, but other stimulation modalities/
protocols could also be considered. For example, transcranial electric 
current simulation has been paired with neuroimaging has been 
shown to impact SUD outcomes (Yavari et al., 2016; Ekhtiari et al., 
2022). Future studies combining non-invasive brain stimulation and 
pharmacologically selective drugs might also target functional 
connectivity related to SUD-relevant outcomes.
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