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Information in conventional digital computing platforms is encoded in the steady 
states of transistors and processed in a quasi-static way. Memristors are a class 
of emerging devices that naturally embody dynamics through their internal 
electrophyiscal processes, enabling nonconventional computing paradigms with 
enhanced capability and energy efficiency, such as reservoir computing. Here, 
we report on a dynamic memristor based on LiNbO3. The device has nonlinear 
I-V characteristics and exhibits short-term memory, suitable for application in 
reservoir computing. By time multiplexing, a single device can serve as a reservoir 
with rich dynamics which used to require a large number of interconnected 
nodes. The collective states of five memristors after the application of trains of 
pulses to the respective memristors are unique for each combination of pulse 
patterns, which is suitable for sequence data classification, as demonstrated in a 
5 × 4 digit image recognition task. This work broadens the spectrum of memristive 
materials for neuromorphic computing.
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Introduction

The basic workings of the digital computer remain much the same as they were decades ago: 
information is represented as binary bits as embodied in the steady states of transistors and 
processed in a quasi-static way. As transistor scaling that has driven advances in digital 
computing at an exponential rate since 1960s is approaching its physical limits, it is now 
delivering performance improvements at a slower pace. A promising alternative is performing 
computing based on intrinsic device dynamics, such that each device functionally replaces 
elaborate digital circuits (Zhang et al., 2019; Kumar et al., 2022).

Memristors are a class of emerging devices that naturally embody dynamics through their 
internal electrophysical processes (Chua, 1971; Strukov et al., 2008; Zhang et al., 2019; Kumar 
et al., 2022). As their name suggests, memristors are resistors with memory, exhibiting history-
dependent resistances. Memristors can be classified into two types according to the retention of 
their memory: volatile memristors, whose memory disappears at zero bias, and nonvolatile 
memristors, whose memory is retained at zero bias. Of these two types of memristors, volatile 
memristors, with their electrically excited resistance states being dynamically evolvable over 
short periods of time after the electrical stimulations have ceased (short-term memory), are of 
particular interest for emulating biological neurons in the domain of neuromorphic computing 
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that draws inspiration from the biological neural networks to address 
the limitations of the conventional digital computing.

Reservoir computing (RC) is an artificial recurrent neural 
network-based computing framework that maps input time-series 
data to higher dimensional spaces through the dynamics of a 
collection of randomly interconnected nonlinear nodes called a 
reservoir (Jaeger, 2001; Maass et  al., 2002). The interconnection 
weights in the reservoir remain fixed. The states of the reservoir are 
read out through an output layer for classification. Only the 
connections in the output layer are required to be trained. Because of 
this training procedure, RC is easy to use and capable to generalize.

Traditionally, the reservoir uses a large number of nodes to create 
complex recurrent dynamics. Appeltant et al. (2011) proposed a novel 
method that reduces the usually required large number of elements to 
a single nonlinear node with delayed feedback. Since then, there has 
been extensive research interest in implementing RC in electronic and 
optical hardware, of which memristive implementations are very 
attractive because even a single volatile memristor can be used as a 
reservoir (Du et al., 2017; Moon et al., 2019; Zhong et al., 2021; Liu 
et  al., 2022a,b; Zhong et  al., 2022). The key rationale is that the 
collection of interconnected nodes that form delayed feedback loop in 
the spatial domain is equivalent to a number of dynamically coupled 
virtual nodes in the temporal domain, generated by time-multiplexing 
a single physical dynamic node (e.g., volatile memristor).

LiNbO3 (LNO) is a widely used material in integrated and guided-
wave optics (Zhu et  al., 2021) and an emerging material for 
neuromorphic computing (Wang et al., 2017; Yakopcic et al., 2017; 
You et al., 2019; Huang et al., 2021; Liang et al., 2021; Tong et al., 
2021). Tong et al. (2021) used the nonvolatile ferroelectric polarization 
in crystalline LNO gate dielectric for tuning the channel conductance 
that represents synaptic weight. Two-terminal LNO devices have also 
been shown to exhibit nonvolatile resistive switching behavior that 
mimics long-term synaptic plasticity (Wang et al., 2017; Yakopcic 
et al., 2017; You et al., 2019; Huang et al., 2021; Liang et al., 2021). In 
this work, we demonstrate that is also a useful material for making 
volatile memristors. Comprehensive electrical measurements are 
conducted to reveal the filamentary nature of the resistive switching 
and the short-term memory behavior in the device. Taking advantage 
of the short-term memory effect, we  demonstrate a memristive 
reservoir by time multiplexing the device for digit recognition.

Results and discussion

Figure  1A shows the schematic structure of the Pt/LNO/Au 
memristor (see Methods). Figure 1B shows a typical I-V curve of the 
device obtained under cyclic quasi-DC voltage sweeping with the 
compliance current (CC) set to 10 μA (see Methods). The device can 
be bi-directionally switched from a high resistance state (HRS) to a 
low resistance state (LRS) when the voltage of either polarity exceeds 
each respective threshold value. When the voltage intensity decreases 
to some hold value (smaller than the threshold value), the device 
undergoes spontaneous transition from the LRS to HRS, indicating 
that the device is a volatile memristor. The I-V characteristics of the 
device are nonlinear, exhibiting nonlinearity (defined as the ratio 
between the conductance read at the stop voltage 5 V and that read at 
a half) of about 102 in the positive direction and 2 in the negative 

direction. Figure 1C shows the I-V curves obtained under consecutive 
positive voltage sweepings. It is seen that the volatile switching 
behavior under the CC of 10 μA is reproducible in 50 cycles.

To gain further insights into the switching mechanism, LNO 
memristors with different sizes are fabricated. Figure 1D shows the 
I-V curves for five devices obtained under positive voltage sweepings. 
Though the sizes are different, all devices exhibit volatile switching 
characteristics. Regardless of the size of the device, the device switches 
to its LRS at around 2 V. Figure 1E shows the dependence of the LRS 
and HRS currents (read at 5 V) on device size. While the HRS current 
increases with increasing device size, the LRS current remains 
relatively unchanged. This is an indication of the filamentary nature 
of the volatile switching. Figure 1F shows the I-V curves of the device 
(2 × 2 μm2) obtained under positive voltage sweepings with different 
stop voltages. It can be  seen that the LRS current (read at 2.2 V) 
increases with the stop voltage, which can be understood as due to the 
formation of thicker conducting filament under stronger voltage.

Pulse train measurements are also performed. As shown in 
Figure 2A, under the pulse frequency of 333 Hz and intensity of 3 V, 
the current response to each voltage pulse remains almost unchanged. 
This is because the filament grown under the voltage pulse has been 
ruptured spontaneously during the pulse interval; or in other words, 
the memory of the device has faded away over the interval. When the 
pulse intensity increases to 4 V while keeping its frequency unchanged, 
the current response becomes stronger as the number of pulses 
increases. By further increasing the intensity to 5 V, the current 
response is dramatically enhanced because of the highly nonlinear I-V 
relationship but saturates after the first few pulses. We also investigate 
effect of pulse frequency on the switching behavior. As shown in 
Figure 2B, under the pulse frequency of 91 Hz and intensity of 4 V, the 
current increases almost linearly with each pulse. This linearity can 
be  observed more clearly under higher pulse frequencies. The 
increasing current response with each pulse under the condition of 
large pulse intensity or high pulse frequency is an indication that the 
consecutive switching events are dynamically coupled. This can 
be understood as due to the short-term memory effect of the volatile 
memristor. To be more specific, though filament dynamically decays 
during the pulse interval, large pulse intensity and high pulse 
frequency make it more likely for a fraction of the filament to be still 
present at the arrival of the immediately following pulse. Therefore, 
filament re-growth does not start from scratch but from the last 
residual, resulting in increasing current response.

Based on the dynamic nature of the volatile LNO memristor, 
we create a RC system and demonstrate the digit recognition task. As 
shown in Figure 3A, the white and black binary pixel information of 
a 5 × 4 grey-scale image are encoded in voltage pulses of 5 V and 0 V, 
respectively. To ensure dynamical coupling between consecutive 
multiplexing events, the pulse width is chosen to be 1 ms and the pulse 
interval is chosen to be  2 ms that is short enough to prevent the 
memory of the device from completely fading away over the period. 
Each row as a four-timeframe input stream is fed into a memristor. In 
this way, a spatial image is transformed to time series data. As shown 
in Figure 3B, there are in total 10 different row patterns in these 5 × 4 
binary digit images. We  explicitly show in Figure  4 the temporal 
evolutions of the states of a LNO memristor upon receiving pulse 
trains encoding these row patterns. Figure 5 shows the evolution of 
the mean currents passing through this memristor upon receiving 
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FIGURE 1

(A) Schematic structure of the Pt/LNO/Au memristor. (B) Typical I-V characteristics of the LNO memristor. (C) Fifty-cycle endurance test of the LNO 
memristor. (D) I-V characteristics of five LNO memristors with different sizes. (E) The currents passing through five LNO memristors with different sizes 
in their respective LRSs and HRSs. (F) I-V characteristics obtained by varying the stop voltage during the sweeping.
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FIGURE 2

(A) Evolutions of the currents passing through the memristor upon receiving trains of pulses with different pulse amplitudes. (B) Evolutions of the 
currents passing through the memristor upon receiving trains of pulses with different pulse frequencies.
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trains of pulses with different possible patterns. Standard deviations 
and standard errors of the means are obtained over 30 trials.

For digit recognition, only five LNO memristors are used, each 
serving as a component reservoir for mapping the corresponding 
input row data into high-dimensional space. By collectively processing 
the temporal features in these five input pulse streams, information of 
the image is extracted. After receiving the input streams, the collective 
reservoir state (i.e., the current values obtained from five memristors 
at the last time point) is dependent on the input temporal patterns and 
therefore can be used to analyze the input. Figure 6 shows the mean 
current evolutions of these five memristors in recognizing these 10 
digits. Table 1 lists the p-values for Hotelling’s T-square tests that show 
differences between all collective reservoir states corresponding to 
different digit images.

For these pairs of digits, we see that their collective reservoir states 
are significantly different, verifying the reservoir’s ability to separate 
them. The output layer applies a transformation to the reservoir state 
through a weight matrix and subsequent nonlinear activations. The 
training is implemented in software. Specifically, the softmax function 
is used as the activation function to normalize the output of the 
network to a probability distribution of 10 possible outcomes. The 

current values obtained from five memristors at the last time point are 
fed into the readout network for digit recognition. The weight matrix 
of the size of 5 × 10 is trained in a supervised way using the Moore-
Penrose pseudo-inverse method. The cost is calculated from the 
categorical cross-entropy.

Conclusion

In summary, we have demonstrated a Pt/LiNbO3(LNO)/Au 
volatile memristor whose resistive switching has a filamentary 
nature according to size-dependent resistance measurements. The 
device exhibits short-term memory as revealed from the pulse 
train measurements. The pulse-induced switching events can 
be dynamically coupled by using relatively strong pulses and short 
pulse intervals. By time multiplexing, a single LNO memristor 
serve as a reservoir whose pattern-sensitive dynamic responses to 
pulse trains can be used for sequence data classification. We have 
used the dynamic characteristics of the volatile memristor in 
reservoir computing to achieve digit recognition. This work 

FIGURE 3

(A) Schematic of the memristive RC system for digit recognition. (B) Binary images for digit 0–9.
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FIGURE 4

Evolutions of the currents passing through the memristor upon receiving trains of pulses with different patterns. Measurements are conducted for 30 times.
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FIGURE 5

Evolutions of the mean currents passing through a memristor upon receiving trains of pulses with different possible patterns, where (A) error bars are 
standard deviations, (B) error bars are standard errors of the means, over 30 trials.
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FIGURE 6

Evolutions of the mean currents passing through five memristors upon receiving trains of pulses with different possible patterns. The error bars are 
standard deviations over 30 test trials.

provides a new vision of LiNbO3 for neuromorphic electronic 
devices beyond optics.

Experimental section

Device fabrication

Pt (30 nm)/LiNbO3(100 nm)/Au (30 nm) were fabricated on a 
SiO2/Si substrate by photolithography (Karl Suss MA8/BA8 Mask 
Aligner) and magnetron sputtering (AJA sputtering system), followed 

by a lift-off process. The pressure during sputtering of all three 
materials is 3 mTorr, the power for depositing two electrode films is 
50 W, and the power for depositing LiNbO3 films is 70 W. All of these 
deposition processes are operated under room temperature in an 
ultrapure argon atmosphere.

Electrical measurements

The device measurements were carried out using a semiconductor 
parameter analyzer (B1500A, Agilent), and a waveform generator/fast 

TABLE 1 p-values for Hotelling’s T-square tests that show differences between all collective reservoir states corresponding to different digit images.

p-value Digit0 Digit1 Digit2 Digit3 Digit4 Digit5 Digit6 Digit7 Digit8 Digit9

Digit0 4.206e-45 4.659e-66 5.396e-47 4.062e-43 1.461e-50 9.325e-57 2.356e-42 3.935e-27 3.388e-30

Digit1 4.206e-45 2.506e-39 2.180e-61 1.391e-63 5.248e-50 4.807e-47 1.032e-59 3.450e-51 5.387e-45

Digit2 4.659e-66 2.506e-39 2.438e-40 1.865e-44 5.766e-82 1.526e-76 1.307e-35 8.767e-79 3.801e-51

Digit3 5.396e-47 2.180e-61 2.438e-40 4.080e-67 1.817e-55 1.005e-50 1.777e-55 2.722e-54 7.244e-45

Digit4 4.062e-43 1.391e-63 1.865e-44 4.080e-67 1.287e-38 1.633e-38 4.218e-71 7.733e-41 1.902e-34

Digit5 1.461e-50 5.248e-50 5.766e-82 1.817e-55 1.287e-38 1.689e-47 3.968e-47 3.670e-45 2.439e-26

Digit6 9.325e-57 4.807e-47 1.526e-76 1.005e-50 1.633e-38 1.689e-47 6.242e-49 2.617e-45 2.835e-40

Digit7 2.356e-42 1.032e-59 1.307e-35 1.777e-55 4.218e-71 3.968e-47 6.242e-49 3.205e-47 2.145e-42

Digit8 3.935e-27 3.450e-51 8.767e-79 2.722e-54 7.733e-41 3.670e-45 2.617e-45 3.205e-47 1.712e-24

Digit9 3.388e-30 5.387e-45 3.801e-51 7.244e-45 1.902e-34 2.439e-26 2.835e-40 2.145e-42 1.712e-24
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measurement unit (B1530A, Agilent). For I-V and pulsed tests, Au is 
connected to the tip and Pt is grounded.
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