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Background: Hippocampal sclerosis (HS) is the most common pathological type

of temporal lobe epilepsy (TLE) and one of the important surgical markers.

Currently, HS is mainly diagnosed manually by radiologists based on visual

inspection of MRI, which greatly relies on MRI quality and physician experience.

In clinical practice, non-thin MRI scans are often used due to the time and

e�ciency needed for the acquisition. However, these scans can be di�cult for

junior physicians to interpret accurately. Thus, the rapid and accurate diagnosis of

HS using real-world MRI images in clinical settings is a challenging task.

Objective: Our aim was to explore the feasibility of using computer vision

methods to diagnose HS on real-world clinical MRI images and to provide a

reference for future clinical applications of artificial intelligence methods to aid

in detecting HS.

Methods: We proposed a deep learning algorithm called “HS-Net” to discriminate

HS using real-world clinical MRI images. First, we delineated and segmented a

region of interest (ROI) around the hippocampus. Then, we utilized the fractional

di�erential (FD) method to enhance the textures of the ROIs. Finally, we used a

small-sample image classification method based on transfer learning to fine-tune

the feature extraction part of a pretrained model and added two fully connected

layers and an output layer. In the study, 96 TLE patients with HS confirmed by

postoperative pathology and 89 healthy controls were retrospectively enrolled.

All subjects were cross-validated, and models were evaluated for performance,

robustness, and clinical utility.

Results: The HS-Net model achieved an area under the curve (AUC) of 0.894, an

accuracy of 82.88%, an F1-score of 84.08% in the test cohort based on real, routine,

clinical T2-weighted fluid attenuated inversion recovery (FLAIR) sequence MRI

images. Additionally, the AUC, accuracy and F1 scores of our model all increased

by around 3 percentage points when the inputs were augmented with the ROIs of

the textures enhanced using the FD method.

Conclusions: Our computational model has the potential to be used for the

diagnosis of HS in real clinical MRI images, which could assist physicians,

particularly junior physicians, in improving the accuracy of discrimination.

KEYWORDS

real-world clinical MRI images, hippocampal sclerosis, fractional di�erential, deep
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1. Introduction

Epilepsy is one of the most common chronic neurological

diseases, affecting more than 70 million people worldwide,

accounting for 0.5% of the global disease burden, and affecting

a broad population of people of all ages, races, social classes and

geographic locations (Fiest et al., 2017; Feigin et al., 2019; Thijs

et al., 2019; Trinka et al., 2019; Beghi, 2020). For most patients

with epilepsy, treatment with antiepileptic drugs is the mainstay

of treatment, with the aim of stopping seizures as early as possible

without causing side effects that can affect quality of life. However,

more than half of patients taking epilepsy drugs still have seizures,

according to surveys in the United States in 2013 and 2015 (Tian

et al., 2018). Although antiepileptic drugs may suppress seizures

in up to two-thirds of patients, up to one-third of patients with

epilepsy may still have drug-resistant epilepsy. For drug-resistant

epilepsy, especially for focal epilepsy, surgical resection of the

epileptogenic foci may be a more effective method. With surgery

to remove or disconnect restrictive brain regions, patients can

achieve complete seizure control or at least stop them. In carefully

selected groups, 50–80% of individuals were seizure-free after

surgery (Ryvlin et al., 2014). Surgery appears to be cost-effective and

superior to optimal medical therapy in terms of epilepsy control

and quality of life (Wiebe et al., 2001; Engel et al., 2012; Picot et al.,

2016; Dwivedi et al., 2017). The benefits of successful surgery also

include a reduced risk of injury or premature death, opportunities

to drive, greater independence, and potentially improved career

choices. Therefore, surgical treatment decisions are critical for the

treatment of drug-resistant focal epilepsy.

Temporal lobe epilepsy (TLE) in drug-resistant focal epilepsy

is the most common type of epilepsy in children and adults

(Goubran et al., 2016). TLE is mostly associated with lesions of

the temporal cortex, and the most common pathological type is

hippocampal sclerosis (HS), accounting for approximately 50–83%

of TLE cases (Mueller et al., 2007). More than 70% of HS epilepsy

patients can be cured by surgical resection of the hippocampus

(Granados Sanchez and Orejuela Zapata, 2018). Therefore, HS

serves as a major histopathological hallmark and major underlying

etiology of TLE (Blumcke et al., 2017). Notably, misdiagnosis of

HS early in the disease course may lead to surgical delays, which

are associated with cumulative brain damage, cognitive decline,

and increased risk of disability and death, as well as significant

socioeconomic consequences (Wiebe et al., 2001). Therefore, one of

the keys to choosing a surgical treatment path for TLE is to quickly

and accurately discriminate HS.

At present, MRI is mainly used as a standard imaging tool

to detect and diagnose epilepsy foci, and more than half of

patients with drug-resistant focal epilepsy can be diagnosed with

epileptogenic foci (Berg et al., 2009; Hakami et al., 2013; Duncan

et al., 2016). Among them, the imaging features of HS on MRI

may include marked atrophy on coronal T1-weighted images,

hyperintensity on T2-weighted and FLAIR images, and loss of

definition of the internal structures of the hippocampus (Coras

et al., 2014). In the diagnosis of HS in China, radiologists mainly

use MRI to visually diagnose HS and perform a visual inspection or

quantitative measurement of lesions such as hippocampal atrophy

and hippocampal signal increase. The accuracy of diagnosis

depends on the doctor’s experience and imaging quality. Physicians

with imaging experience in diagnosing epilepsy are quite different

in terms of diagnosing HS from those with little or no relevant

experience (Azab et al., 2015). Regarding the quality of MRI, some

studies have shown that the performance of 3.0T MR in detecting

HS is better than that of 1.5T MR (Coan et al., 2014).

Considering that in the actual diagnosis process, especially

in primary hospitals, clinical facilities rarely have 3.0T and

higher-performance MR instruments, the conventional acquisition

equipment is 1.5T MR, and most of the obtained medical images

are of low resolution (LR). In the initial screening test, considering

acquisition time, cost, and efficiency, conventional MR imaging

sequences have mainly been used, with slice thicknesses ranging

from 3 to 10 mm, with intervals, and few thin-slice sequences

(i.e., slice thicknesses ≤ 1 mm) without intervals. Furthermore,

as for the doctors’ experience, it is impossible for primary hospital

physicians or junior physicians to have enough solid experience to

accurately discriminate HS. This is a great challenge for physicians

in primary hospitals or junior doctors to diagnose HS with

conventional MR sequences, while it is the key to whether patients

can be promptly transferred to high-level hospitals or undergo

surgical treatment.

With the development of computer vision technology and

artificial intelligence, there are an increasing number of studies

using computer-aided discrimination of HS. Current studies

mainly use MRI sequences with thin thickness (≤ 1 mm thickness)

of good quality 3T MR images to extract imaging histology

features and later construct machine learning classification models

(Mo et al., 2019). Other studies have used computer vision

techniques to automatically measure features such as hippocampal

volume and symmetry in MRI and construct machine learning

classification models to discriminate HS (Mettenburg et al., 2019).

Furthermore, some studies have used deep learning to reconstruct

low-resolution MRI images into high-resolution images for HS

differential diagnosis (Cao et al., 2021). Based on our knowledge,

no studies based on real clinical MRI common sequences using

computer vision or deep learning to discriminate HS have been

published.

This study attempted to mimic the real clinical diagnosis

process of HS, construct a deep learning model, namely, HS-

Net, using real-world clinical routine MRI sequences with

pathological findings as the gold standard to assist primary

hospital physicians or junior doctors in rapidly discriminating

HS in patients with TLE, explore the feasibility of using deep

learning algorithms to discriminate HS from conventional MRI

sequences, and provide radiological evidence for the actual clinical

identification of HS.

2. Materials and methods

2.1. Study design

This study explores the use of computer vision to assist

clinicians in discriminating HS based on a real clinical diagnostic

process. As shown in Figure 1, in the actual diagnostic process,

the physician first asks the patient about his or her condition
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FIGURE 1

The process of real clinical diagnosis and AI-assisted diagnosis for HS discrimination.

and determines whether a head MRI is needed. If there are

no special symptoms or needs, the doctor will prescribe a non-

thin, routine head MRI in consideration of acquisition time

and efficiency in most cases. Subsequently, the radiologist will

determine whether the patient has HS by observing MRI findings

based on his or her knowledge and experience. The accuracy of

HS diagnosis relies on MRI quality and physician experience and

is prone to miss milder lesions in bilateral HS, mild HS, and

focal abnormalities of the hippocampus. Junior doctors may not

have enough good experience to discriminate HS. We therefore

designed an artificial intelligence (AI)-assisted diagnostic module

in the HS discrimination stage and built a computer vision-

based deep learning network namely HS-Net to assist radiologists

(especially junior radiologists) in the discrimination of HS. This

study design was close to clinical practice, using clinically real MRIs

for HS discrimination, rather than thin-layer high-resolution MRIs

collected intentionally for research.

2.2. Data source and study population

The Ethics Committee of the West China Hospital, Sichuan

University approved the research. The Institutional Review

Board (IRB) did not require informed consent from the

patients. Because this was a retrospective study, we did not

use any identifying information of the patients. Moreover, we

kept the patient information confidential. The protection and

treatment of patient data in our research complied with the

Helsinki Declaration.

We used the database from Hospital Information System (HIS)

and Picture Archiving and Communication System (PACS) from

West China Hospital of Sichuan University. The database includes

inpatient and outpatient diagnoses and MRI images. Referring to

the inclusion criteria of other studies (Mo et al., 2019), participants

were retrospectively selected from the dataset of patients with drug-

resistant mesial TLE (mTLE) between 2009 and 2020 according to

the following inclusion criteria:

1. Anterior temporal lobectomy or selective

amygdalohippocampectomy;

2. Resected hippocampal specimen suitable for histological

analysis based on the International League Against Epilepsy HS

classification scheme (Blümcke et al., 2016);

3. A definite postoperative histopathological diagnosis of

hippocampal sclerosis;

4. Presurgical general MRI scans including at least sagittal or

coronal T2-FLAIR images without motion artifacts, aliasing, or

rippling related to eye movement.

At the same time, we excluded patients with any of the

following conditions:

1. Type III focal cortical dysplasia (FCD) on histopathology (e.g.,

HS with FCD in the temporal lobe);

2. History of dystocia hypoxia, encephalitis, or severe traumatic

brain injury;

3. Intracranial lesions (malformations of cortical development,

epidermoid cysts, tumors, vascular malformations);

4. Encephalomalacia and no severe or diffuse brain atrophy;

5. Reoperations.

For the control group, healthy normal controls (HCs)

with no history of any neurological disorders and no MRI

abnormalities were selected. All participants had the following

clinical information in the current study: age, sex, and lateralization

of the affected hippocampus.

2.3. MRI acquisition and ROIs enhancing

MRIs in all participants were acquired on a 1.5-T Siemens

Verio scanner including a T2-FLAIR sequence. Because the slice

thicknesses of plain sequences were between 3 and 7 mm, the

number of MRI slices containing hippocampal regions varied for

each subject. Because this study focused on the hippocampus, we

selected only MRI slices that contained the hippocampal region

and depicted a region of interest (ROI) along the edge of the

hippocampus. For HS patients, we depicted only the hippocampus

with HS, while for HCs, we randomly depicted one hippocampus.

To better match the actual clinical diagnostic process, slice selection

and ROI mapping were performed by two junior doctors (< 3
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FIGURE 2

Fractional di�erential operator. Illustration inspired by Hui et al. (2020). In our experiments, the order v was set to 2.2 and the parameter c was set to

13. The coe�cient of f(x) was “1”, the coe�cient of f(x− 1) was v and the coe�cient of f(x− 2) was (−v)(−v+1)
2

.

years). To reducemeasurement bias and ensure accuracy, a surgeon

with 10 years of experience in epileptic HS surgery examined

the slice selection and ROI depiction. Such slice selection and

ROI depiction mimicked the perspective of the junior doctors

at the time of diagnosis, allowing the ROI in the deep learning

model to be consistent with the ROI observed by the junior

surgeon. We counted the number of slices included per subject

and the lateralization of the affected hippocampus in HS patients.

To facilitate the training of the subsequent models, we used

a rectangular box to segment the ROI region and resize the

rectangular image to 224*224 size as the input of the deep learning

network.

We designed a texture enhancement method with reference

to the Grunwald–Letnikov (G-L) fractional differential (FD)

definition (De Oliveira and Tenreiro Machado, 2014) to enhance

the textures of the rectangular ROIs. The enhancement process

involves constructing a fractional differential operator and

convolving each ROI with this operator. First, we construct the

fractional differential operator using three equations as:

aDt
vf (x) = lim

h→0
h−v

(t−a)/h∑

j=0

(−1)j
Ŵ(v+ 1)

j!Ŵ(v− j+ 1)
f (x− jh) (1)

aDt
vf (x) =

1

hv

n−1∑

j=0

(−1)j
Ŵ(j− v)

Ŵ(−v)Ŵ(j+ 1)
f (x− jh) (2)

dvf (x)

dx
≈ f (x)+ (−v)f (x− 1)+

(−v)(−v+ 1)

2
f (x− 2)

+ · · · +
Ŵ(−v+ 1)

(n− 1)!Ŵ(−v+ n)f (x− n+ 1)
(3)

Equation (1) represents the v-order G-L definition of f (x)

on [a, t], where Ŵ(·) is a gamma function. Equation (2) is the

discretized form of the G-L definition which divides the continuous

interval [a, t] equally into unit intervals h, where n = (t −

a)/h. Equation (3) is the expansion of Equation (2) where h

= 1 (unit interval) is known. We constructed the fractional

differential operator based on the expanded coefficients of Equation

(3), following the construction of the fractional differential mask

(Hui et al., 2020). We show a fractional differential operation in

eight symmetric directions of a 5 × 5 neighborhood in Figure 2.

The parameter c at the center point position is referred to as

the compensation parameter. The two parameters v and c are

adjustable. In our experiments, the order v was set to 2.2 and the

parameter c was set to 13.

To summarize, Figure 3 part 1 illustrates the entire image

preprocessing process of the HS-Net model.

2.4. Model structure, training process, and
implementation

To discriminate hippocampal sclerosis, our HS-Net model uses

a classical convolutional neural network, VGG16 (Simonyan and

Zisserman, 2014), as the backbone network, which is commonly

used in deep learning frameworks for image classification. By

using multiple small convolutional kernels, VGG16 automatically

mines the deep features of an image while expanding the receptive

field. After all convolutional layers of the VGG16 network, we

put the extracted deep features of the hippocampal region into

2 fully connected layers and a SoftMax activation function to

discriminate HS. In Figure 3 part 2, we show the model structure
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FIGURE 3

The overall procedure of the proposed pipeline. The proposed pipeline consists of two parts: (1) Acquisition of ROIs of hippocampal regions and

enhancement of the ROIs’ textures using the fractional di�erential (FD) method. (2) Construction of the HS-Net model, including the use of input

images with two channels using raw ROIs and one channel using enhanced ROIs, a backbone network for fine-tuning feature extraction, and two

fully connected layers plus a SoftMax activation function to discriminate HS.

and training process. At the same time, we also use two other

lightweight classical CNN frameworks, ResNet18 (He et al., 2016)

andMobileNetV2 (Sandler et al., 2018) as comparisons to select the

best results.

In this study, our model training process contained two

strategies that contributed to the accuracy of the results: loading

pretrained models and fine-turning.

Due to the sample size limitation, it was difficult for us to

train all parameters of the deep learning network from scratch.

To make our model have a certain image recognition ability

before training, we chose the pretrained VGG16 model with

weight parameters from the large image dataset ImageNet (Deng

et al., 2009). Many research experiments show that by using

the low and middle layers of the pretrained model as feature

extractors and the top layer or near top layer of the model as

classifiers, the image classification accuracy can be improved to

some extent.

Additionally, a fine-tuning strategy was used in this study.

We froze all the convolutional layers in the early training phase

when the learning rate was high and only fine-tuned the final fully

connected layer. As the learning rate decreased to a certain level

and the loss function became more stable, we allowed the whole

network to undergo some fine-tuning by no longer freezing the

convolutional layers.

In the actual training of the model, we treated each ROI

slices as a separate sample for model training. We used all ROI

slices as the total data set, with 80% of the ROI slices as the

training set and the remaining 20% of the ROI slices as the

test set. In particular, the ROI slices of the same subject were

either all classified as training data or all classified as test data,

avoiding the model accuracy overestimation caused by the ROI

slices of the same subject being partly used for training and partly

used for testing. In the training set, we performed 10-fold cross-

validation to validate the results. Then we tested the results in
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the testing set which was not at all involved in the training. To

address the issue of insufficient training samples and improve the

model’s generalization ability, this study implemented a random

preprocessing of data augmentation (Shorten and Khoshgoftaar,

2019) by horizontal flipping or scaling the training ROI slices.

Besides, raw ROI slices are grayscale maps with only one channel.

However, for VGG16, ResNet18, and MobileNetV2 models, the

input images should have three channels. Tomeet this requirement,

we copy each original ROI slice once as the second channel of the

input, and the corresponding ROI slice enhanced by FD as the

third channel. As a result, we construct a three-channel input image

for each sample that includes the two original ROI slices and the

corresponding ROI slice enhanced by FD.

The model was trained using the Adam algorithm to optimize

the loss function of the updated network parameters. The training

process used 80 epochs in total. In the first 40 epochs, the

convolutional layers were frozen, and the batch size was set to 32,

while in the last 40 epochs the convolutional layers were unfrozen,

and the batch size was set to 24. The learning rate (LR) was

initially set to 0.00001 and used an exponential decay strategy. All

experiments were completed in 2 h on one Tesla V100 GPU. All

codes were implemented based on the PyTorch framework. The

overall procedure of the proposed pipeline in this study is shown

in Figure 3.

3. Results

3.1. Basic information

A total of 183 subjects were included in this study according

to the inclusion and exclusion criteria, and a total of 735 MRI

slices containing hippocampal regions were screened. Among the

subjects, there were 94 patients with HS, including 396 slices,

and 89 HCs, including 339 slices. The basic information of these

subjects is shown in Table 1. The number of MRI slices containing

hippocampal regions for each subject ranged from 2 to 15, and the

distribution of the number of slices is shown in Figure 4.

3.2. Model results

In this section, we presented the results of the proposed

method applied on the test set including a comparison study

of different backbone networks and an ablation study of

enhancing ROIs through fractional differential. To facilitate the

subsequent description, we denoted the proposed HS-Net as “HS-

Net(CNN+FD)”, which represents an HS-Net that uses a CNN

backbone network with enhanced ROIs using the FD method. We

also referred to “HS-Net(CNN)” as an HS-Net that uses a CNN

backbone network and does not include the enhanced ROIs.

Firstly, we trained the HS-Net model using VGG16 as the

backbone network to discriminate HS. We also used ResNet18

and MobileNetV2 as the backbone networks for HS-Net models

to compare the results. Table 2 showed the results for the HS-

Net models using the three backbone networks. Table 2 shows

the results for each of these models. The HS-Net model using

VGG16 with enhanced ROIs [HS-Net(VGG16+FD)] achieved the

TABLE 1 Basic characteristics of the HS patients and HCs.

HS HC Total

No. of subjects 94 89 183

Sex

Female 49 50 99

Male 45 39 84

Age [Mean (SD)] 26.49 (9.00) 47 (17.27) 36.47 (17.08)

No. of slices 396 339 735

Lateralization of the

a�ected hippocampus

Left 204 178 382

Right 192 161 353

SD, standard deviation.

best performance with 82.88% accuracy, 84.08% F1 score, and 0.894

AUC. TheHS-Netmodel using ResNet18 with enhanced ROIs [HS-

Net(ResNet18+FD)] achieved the second-best performance, with

an AUC and accuracy that were lower than HS-Net(VGG16+FD)

by 5 and 2 percentage points, respectively. The HS-Net model using

MobileNetV2 with enhanced ROIs [HS-Net(MobileNetV2+FD)]

had the worst performance.

Additionally, we conducted an ablation study to evaluate the

impact of enhancing the texture of ROIs by the FD method on the

performance of the HS-Net model. The results in Table 2 shows

that the accuracy and F1 score of all three models decreased when

the inputs removed the enhanced ROIs. Specifically, the accuracy

and F1 score of the HS-Net model using Vgg16 or ResNet18

decreased by almost 3 percentage points, while using MobileNetV2

decreased by almost 5 percentage points. Figure 5A illustrates the

ROC curves for comparing the HS-Net models with and without

enhanced ROIs. All three models with enhanced ROIs achieved

better AUCs than the models without enhanced ROIs, with only

the difference between the ROC curve of HS-Net(ResNet18+FD)

and HS-Net(ResNet18) being less than one percentage point. This

suggests that the fractional differential (FD) method is an effective

technique for enhancing the texture of ROIs and improving the

performance of the HS-Net model. Figure 5B shows the calibration

curves to compare the performance of the HS-Net model using

three different backbone networks and the effect of inputs with

and without enhanced ROIs on the model performance in the HS-

Net under each backbone network. The calibration curves of the

HS-Net models were all close to the diagonal, and the HS-Net

models with enhanced ROIs were closer to the diagonal. In the

Supplementary material, we present a comparison of the effects of

different values of v and c in the FD method on the experimental

results in Supplementary Table 1.

To investigate the influence of enhanced ROIs using the FD

method on attention maps for HS-Net, we utilized the gradient-

weighed class activation mapping (Grad-CAM) method described

in Selvaraju et al. (2017); Aggarwal et al. (2023) to visualize the

attention maps of HS-Net(VGG16+FD) and HS-Net(VGG16). To

generate the attention maps, we first derived the Grad-CAMs of

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1180679
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jiang et al. 10.3389/fnins.2023.1180679

FIGURE 4

Distribution graph of the number of slices.

TABLE 2 The results of the HS-Net models in discriminating HS.

AUC Accuracy (%) F1 core (%) Precision (%) Recall (%)

With enchanced ROIs

HS-Net (VGG16+FD) 0.894 82.88 84.08 84.62 83.54

HS-Net (ResNet18+FD) 0.842 80.82 80.82 88.06 74.68

HS-Net (MobileNetV2+FD) 0.827 79.45 81.93 78.16 86.08

Without enchanced ROIs

HS-Net (VGG16) 0.859 80.14 81.53 82.05 81.01

HS-Net (ResNet18) 0.836 77.40 78.71 80.26 77.22

HS-Net (MobileNetV2) 0.778 74.66 74.48 81.82 68.35

FD, fractional differential. The bold values in the table represent the optimal results within each column.

the last convolution layer before the fully connected layers in HS-

Net and then projected these weighed Grad-CAMs back to the

raw ROIs based on their original coordinates. Additionally, we

displayed the raw ROIs from the T2 flair sequence MRI and the

enhanced ROIs using the FDmethod, providing a clear comparison

between the two. Figure 6 shows these ROIs and attention maps at

the same time. As shown in the first three rows of Figure 6, the ROIs

enhanced using the FD method exhibited an inverted gray level

that complemented the gray features of the raw ROIs. Moreover,

the FD method enhanced the details of the gray areas in the raw

ROIs, particularly when the gray areas were dominant and lacked

distinctive features, such as texture features. As shown in the last

two rows of Figure 6, the attention areas of HS-Net(VGG16+FD)

are more concentrated and larger than those of HS-Net(VGG16).

Furthermore, the attention areas of HS-Net(VGG16) are more

affected by the gray level of the original image, with a greater

focus on the junctions where gray changes are more evident, while

disregarding the white matter area where the gray changes are less

obvious.

Overall, our proposed HS-Net model using the VGG16

framework as the backbone network and enhanced ROIs by the

fractional differential method showed promising results in the

discrimination of HS in clinical routine MRI images.

4. Discussion

In this retrospective study, we found that a deep learning

algorithm based on real clinical MRI common sequences

performed moderately well in discriminating HS. The algorithm

in the test had an AUC of 0.89 and an accuracy of 82.88%. In

addition, The HS-Net models using the other two classical CNN

backbone network in this study, ResNet18 andMobileNetV2, had a

slightly lower performance than the HS-Net model using VGG16,
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FIGURE 5

Evaluation of the proposed models: (A)The receiver operating characteristic (ROC) curves of the HS-Net models, with a larger area under the curve

(AUC) indicating better model classification prediction. (B) The calibration curves of the HS-Net models, with a curve closer to the diagonal indicating

more accurate model classification predictions. FD, fractional di�erential.

FIGURE 6

Visualizations of ROIs and attention maps for several test images. The first three rows depict raw MRIs from T2 flair sequences with ROIs. The first

row displays the raw MRIs with ROIs, while the second row shows the resized raw ROIs. The third row depicts the enhanced ROIs, which have been

processed using the FD method. The last two rows present attention maps that use Grad-CAM to highlight the di�erent attention areas between

HS-Net(VGG16) and HS-Net(VGG16+FD). A deep red denotes high attention.

but both achieved moderate performance for the feasibility goal

of this study. These results suggest that it is feasible to use deep

learning algorithms on real clinical MRI common sequences to

assist in the discrimination of HS.

The main purpose of texture enhancement is to highlight

detailed information and is a very important data augmentation

technique for MRI images with poor quality in real clinical

situations. Traditional enhancement methods, such as histogram
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equalization, integer-order differential techniques, and frequency

enhancement filters, increase contrast or highlight contours, but

they often result in the loss of significant low frequency texture

information and tend to sharpen contour information (Hui et al.,

2020). In contrast, fractional differentials have been shown to

effectively compensate for this drawback by preserving low-

frequency information, making them an effective method for

enhancing texture of medical images (Jalab and Ibrahim, 2013;

Li and Xie, 2015; Wang et al., 2019). Thus, we consider using

fractional differential to enhance our ROIs. From our experimental

results, it can be seen that the use of ROIs enhanced by the FD

method indeed improved the performance of the model, regardless

of which feature extraction network was used in the model. Our

ROIs specifically target the hippocampal region, which is inherently

small in volume and hence, can provide limited information to the

model. However, as depicted in Figure 6, the ROIs enhanced by

the FDmethod contain significantly more texture details compared

to the raw ROIs. Combining the FD method-enhanced ROIs with

the raw ROIs for model training equates to providing the model

with better quality images and more detailed information, which

ultimately improves the accuracy of the model. Furthermore, it

is clear from Figure 6 that the model with FD-enhanced ROIs

has a higher concentration of highlighted regions in the attention

map, focusing not only on the transition regions with significant

grayscale changes but also on the regions where the texture is

enhanced by FD. It can be seen that the addition of FD-enhanced

ROIs can indeed help the model to learn the features of the

hippocampal sclerotic region.

The number of MRI slices containing hippocampal regions of

each subject in the study is shown in Figure 4. Most of the MRI

slices of the subjects had only 3–5 slices containing hippocampal

regions in real clinical MRI sequences. Among them, the minimum

number of slices containing hippocampal regions was only 2

per person, while the maximum number of slices containing

hippocampal regions was 15 per person. It seems that in the actual

clinical diagnosis of HS, physicians do not require patients to

undergo MRI thin sequence scans, and there are no standards to

specify the MRI slice thickness and interval width used for HS

diagnosis. However, existing discriminatory studies of HS have

largely used scientifically finely designed high-resolutionMRI thin-

layer sequences. For example, Mo et al. (2019) reported the use

of radiomics and machine learning algorithms to discriminate

HS on high-resolution MRI sequences with a layer thickness of

1 mm and no interval scans with an AUC of more than 99%.

Although the results of Mo et al. (2019) are better than those of

our investigation, such studies require fine experimental material

that cannot be easily used in the clinical setting. This limits the

generality and generalizability of HS discriminant studies. Our

study can compensate for the lack of practical clinical application

since we used real clinical MRIs and is well-suited to be developed

into a clinical tool that can be flexibly embedded into a diagnostic

system to assist junior doctors or primary hospital physicians in

real-world clinical diagnosis of HS.

Since our main goal of this study is to explore the feasibility

of deep learning algorithms to discriminate HS based on real

clinical MRI common sequences, the studies all use a very classical

lightweight CNN structure. With the development of deep learning

algorithms, we can add some novel algorithmic modules, such as

attention mechanisms and contrast learning, to improve the model

effect based on the existing model in a targeted way. If we increase

the sample size in the future, we can replicate the model framework

consistent with this study and try to use more complex models

to further optimize the model performance. In our study, we

utilized non-thin MRIs commonly used in clinical practice, and we

designed scenarios that reflect real reading situations to distinguish

hippocampal sclerosis. This article presents the first step toward

application, which is to validate the feasibility of our model and the

materials used. For future applications and implementations, we

aim to improve the accuracy and generalization ability of themodel,

as well as enhance its computing speed, reduce computing power

and memory requirements, and develop application software.

Additionally, we plan to consider automatic pushing to make it

more accessible for primary hospitals.

There are some limitations of this study. First, the data were

obtained only from the West China Hospital, which may limit

the generalizability of the algorithm. Further external validation of

our study is needed. The generalization ability of the model may

need to be enhanced. However, this may not affect the feasibility

of the main goal of our study, which is to use deep learning to

discriminate HS based on MRI common sequences used in actual

clinical diagnosis. Second, our study is currently only at the stage

of validating feasibility. Therefore, the algorithm in its current

form cannot be used directly in clinical practice yet. The algorithm

needs to be further developed and validated in the context of the

actual HS diagnosis process. Third, in the present study, we did not

consider other health or medical-related data other than imaging

data. And these data may indeed influence the model’s judgment

of hippocampal sclerosis (Mo et al., 2019). This study is an initial

exploratory attempt to use deep learning methods for hippocampal

sclerosis judgments on common non-thin MRI sequences used in

real clinical practice. Based on the feasibility demonstrated in this

study, our next study will add other health or medical-related data

and fuse multimodal data of patients to synthesize the judgment

of hippocampal sclerosis to further improve the accuracy and

interpretability of the model. And we need to increase the study

sample along with the clinical variables and increase the feature

engineering part, because if there are too many variables and not

enough model samples will lead to overfitting of the model. Fourth,

our model only made the discrimination of hippocampal sclerosis

or not, and did not give the severity of hippocampal sclerosis or the

grade of sclerosis, so it could not provide more strong evidence to

support the choice of treatment options. Therefore, another follow-

up study of ours is to collect different severity levels of hippocampal

sclerosis samples and build a multi-level classification model or

severity scoring model. Fifth, our data are consistent with real

clinical use and are not deliberately collected or finely designed.

So our HS patients and HCs were collected over a large time span

from 2009 to 2020, and scanner may indeed be upgraded, e.g., from

1.5T to 3.0T. However, the MRI materials included in our study

were all 1.5-T scanners, differing only in the year of collection.

And for deep learning, we would like to have multiple types of

MRI as input to improve the generalization ability of the model.

Besides, we observed that the ages of HS patients and HCs were

not precisely matched. The age range of HCs was broader and

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1180679
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jiang et al. 10.3389/fnins.2023.1180679

encompassed the age range of HS patients, which better reflects

the age distribution of a realistic normal population. However, this

difference in age distribution may have introduced some bias in

the model’s discrimination ability. We will address this issue by

continuing to collect more samples to reduce the age difference

between the two populations and improve the model’s stability.

Finally, the differences reflected in our model results are numerical,

not statistical.

5. Conclusion

Our HS-Net model has been developed to discriminate HS

using non-thin MRI sequences commonly used by radiologists in

real clinical diagnosis. The performance of the model (AUC =

0.89) confirms the feasibility of using deep learning and textures

enhanced by the fractional differential method to discriminate HS

from common clinical MRI sequences. This research supports the

potential use of a deep learning-based tool for initial screening of

HS in primary hospitals with limited MRI scanning capabilities,

which may assist in guiding further diagnostic testing, medical

visits, or referrals to specialized hospitals.
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