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Changes in the frequency composition of the human electroencephalogram are

associated with the transitions to epileptic seizures. Cross-frequency coupling

(CFC) is a measure of neural oscillations in di�erent frequency bands and brain

areas, and specifically phase–amplitude coupling (PAC), a form of CFC, can be

used to characterize these dynamic transitions. In this study, we propose amethod

for seizure detection and prediction based on frequency domain analysis and PAC

combined with machine learning. We analyzed two databases, the Siena Scalp

EEG database and the CHB-MIT database, and used the frequency features and

modulation index (MI) for time-dependent quantification. The extracted features

were fed to a random forest classifier for classification and prediction. The seizure

prediction horizon (SPH) was also analyzed based on the highest-performing band

to maximize the time for intervention and treatment while ensuring the accuracy

of the prediction. Under comprehensive consideration, the results demonstrate

that better performance could be achieved at an interval length of 5min with an

average accuracy of 85.71% and 95.87% for the Siena Scalp EEG database and

the CHB-MIT database, respectively. As for the adult database, the combination

of PAC analysis and classification can be of significant help for seizure detection

and prediction. It suggests that the rarely used SPH also has a major impact on

seizure detection and prediction and further explorations for the application of

PAC are needed.

KEYWORDS

electroencephalogram (EEG), phase-amplitude coupling (PAC), frequency-domain
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1. Introduction

Epilepsy is a chronic brain disorder, characterized by recurrent seizures. The reason

for the pathological dynamics is the abnormally synchronous discharge of groups of, in

particular, cortical neurons (Tsipouras, 2019). Seizure onset can lead to loss of consciousness,

disorders of mood, and, in extreme cases, even death of the patients (Yang et al., 2021). It

affects nearly 50 million people worldwide (Acharya et al., 2017; World Health Organization

Epilepsy, 2023). Seizures can be treated through drug treatment, surgical intervention, and

neuromodulation (He et al., 2021; Mueller et al., 2022). However, in the process of treatment,

inconsistent availability of clinical data, the complexity of epilepsy etiology, and the lack

of standard diagnostic procedures often make diagnosis and follow-up treatment difficult.

Thus, exploring effective methods to detect and predict seizure onset is an important
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The electroencephalogram (EEG) measures the electrical

activity of the brain and is thus an important examination tool for

the clinical diagnosis of neurological disorders including epilepsy

andAlzheimer’s disease (Cho et al., 2017; Yu et al., 2020). According

to the collection method, there are two common types of EEG

recordings, namely, scalp electroencephalography (scalp EEG) and

intracranial electroencephalography (iEEG) (Jayakar et al., 2016).

In humans, oscillatory brain activity occurs in a variety of frequency

bands reflecting electrophysiological signals generated by large

ensembles of synchronized neuronal firing (Jensen and Colgin,

2007). Specifically, the amplitude of high-frequency oscillation has

been suggested as a biomarker of the seizure onset area (Charupanit

et al., 2020). In clinical practice, the diagnosis is typically based

on a patient’s clinical representation and available multimodal

data. However, this has some disadvantages, particularly being

time-consuming (Vidyaratne and Iftekharuddin, 2017; Duan et al.,

2022). Concerning the EEG, in addition to contributions from

neural activity, the signals contain interfering signals from other

sources, which may make the diagnosis difficult. There is a need

for reliable algorithms, specifically for automatic seizure onset

detection as recorded in the EEG.

In recent years, researchers have designed various methods

to extract various features from EEG recordings. There are three

main analysis methods, namely time domain analysis, frequency

domain analysis, and time–frequency domain analysis. In terms

of frequency domain analysis, researchers have extracted various

features, including mean frequency and root mean square, and

achieved an excellent result on seizure detection. Cross-frequency

coupling (CFC) is a method to dynamically measure interactions

of neural oscillations in different frequency bands and between

brain areas. CFC also appears to detect neural correlates of various

cognitive states (Liu et al., 2018). Three types of algorithms,

namely phase–amplitude coupling (PAC), phase–phase coupling

(PPC), and amplitude–amplitude coupling (AAC), are common

methods for CFC analysis (Munia and Aviyente, 2021). Among

them, PAC, which quantifies the interplay between the amplitude

of high-frequency oscillations and the phase of low-frequency

oscillations, has recently become a topic of interest (Munia and

Aviyente, 2019). In the context of epilepsy, it was shown that

interictal PAC is helpful for the localization of the epileptogenic

zone (Motoi et al., 2018; Ma et al., 2021). Although most studies

emphasized PAC analysis for seizure onset zone (SOZ) detection,

few studies have also applied it to the (temporal) detection and

prediction of seizure onset (Edakawa et al., 2016; Grigorovsky

et al., 2020; Yamamoto et al., 2021). Due to the non-linearity and

non-stationarity of EEG signals, the synchronization process of

epilepsy is also discussed to analyze the mechanism as well as the

complex underlying dynamics of seizure (Fan and Chou, 2019).

For quantitative analysis, functional brain networks and graph

theory have provided opportunities to understand the complex

mechanism changes (Yu et al., 2018; Akbarian and Erfanian, 2020;

Fallahi et al., 2021; Liu et al., 2021). The network metrics including

the efficiency, clustering, small worlds, and modular organizations

are themeaningful information to extract the topological properties

of the brain network.

Recently, machine learning with powerful computing ability

has made available algorithms to potentially improve classical data

analysis. A variety of machine learning models have been proposed

for classification. Common classification algorithms include the

support vector machine (Hussain, 2018), decision trees, K-nearest

neighbor (Jukic et al., 2020), and random forest (Sun Q. et al.,

2021). In Sun Q. et al. (2021), the authors combined the random

forest algorithm with time domain and non-linear characteristics

for seizure detection and were able to obtain a high accuracy

of state classification. Similar methods based on the random

forest algorithm have been applied to differentiate between types

of seizures and achieved a good performance (Basri and Arif,

2021). Amethod combining machine learning and functional brain

networks has been adopted by researchers in more and more fields.

Yu et al. (2019) applied it to automatically identify acupuncture

manipulations and with the support vector machine algorithm,

the highest accuracy can be obtained. With the improvement and

optimization of algorithms and models, deep learning has also

gradually been applied to the study of epilepsy. Convolutional

Neural Network (CNN) has stood out and was applied in many

research in terms of image recognition (Ryu et al., 2021; Wang

et al., 2022). Compared with the conventional CNN, Graph

Convolutional Network (GCN) can preserve rich marginal features

having the advantage of explaining the connective relationships

between features (Chen et al., 2021; Jia et al., 2022; Li et al., 2022).

The deep learning method acquires abundant EEG data. However,

rare public datasets can provide such an amount of EEG data which

is a wicked problem.

In the context of seizure detection and prediction, the main

goal is to classify the interictal stage and the preictal stage (Snyder

et al., 2008; Yang et al., 2021). To achieve that, the seizure prediction

horizon (SPH) and the seizure occurrence period (SOP) were

suggested (Maiwald et al., 2004). The SOP is a time period when

a seizure is predicted to occur and the SPH is the interval from

the alarm to the beginning of the SOP. A correct prediction is

achieved when a seizure onset occurs after the SPH and within

the SOP. Recently, studies have addressed the problem of the

length of SPH and SOP. Wang et al. compared the prediction

effect of SOP between 30 and 60min with the SPH of 5min

achieving an excellent performance (Wang et al., 2022). Moreover,

Aarabi et al. conducted prediction experiments on iEEG data

with an SOP of 30 and 50min and an SPH of 10 s (Aarabi and

He, 2017). Additionally, Zhang et al. acquired a high sensitivity

by setting SPH to zero. In contrast, few studies emphasized

the length of SPH which was also called the intervention time

(Wang et al., 2022). In clinical practice, it was still important

to find an appropriate SPH to leave enough time for providing

effective intervention.

In this study, we propose a method for epileptic seizure

onset detection and for the classification of preictal and

interictal states. Frequency domain analysis is performed

on two databases, the Siena Scalp EEG database and the

CHB-MIT database. Based on the single-channel analysis,

the length of SPH is adjusted to find the optimal SPH for

potential treatment.

2. Material and methods

This section describes the database used for the experiment

and the method, which can be categorized into three
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FIGURE 1

The flowchart. (A) The pre-processing module includes filtering and Independent Components Analysis (ICA); (B) The feature extraction module

includes frequency domain and PAC, and the machine learning module performs the classification; and (C) The optimization module adjusts the

length of SPH to find the optimal SPH. The data I in (A) are the raw EEG data from chb01 in the CHB-MIT database and the Data II are the output of

the pre-processing module.

major parts: first, the EEG signal is preprocessed; second,

features including single-channel PAC, peak frequency, and

median frequency are extracted; and third, the random

forest classifier is applied for classification. The flowchart

of the proposed method in this study is illustrated in

Figure 1.
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TABLE 1 Data of the patients in the Siena Scalp EEG database.

Patient Gender Age (years) EEG Chan. Seiz.

1 M 46 29 2

3 M 54 29 2

5 F 51 29 3

6 M 36 29 5

7 F 20 29 1

9 F 27 29 3

11 F 58 29 1

12 M 71 29 4

13 F 34 29 3

14 M 49 29 4

16 F 41 29 2

17 M 42 29 2

EEG Chan., the number of EEG channels; Seiz., the number of seizures; F, Female; M,

Male. For comparison, the patient numbers here are marked in the original database

without modification.

2.1. Database

Two databases were used in this study: the Siena Scalp EEG

database and the CHB-MIT database.

The Siena Scalp EEG database (https://www.physionet.org/

content/siena-scalp-eeg/1.0.0/) collected by the Unit of Neurology

and Neurophysiology at the University of Siena (Detti et al., 2020).

It consists of scalp EEG recordings from 14 patients including nine

men (ages 36–71) and five women (ages 20–58). The recordings

were captured with a sampling rate of 512Hz, with electrodes

arranged on the international 10–20 system. In total, this database

has a component of 47 seizures on about 128 recording hours. In

the study, we used 29 channels (“Fp1”, “F3”, “C3”, “P3”, “O1”, “F7”,

“T3”, “T5”, “Fc1”, “Fc5”, “Cp1”, “Cp5”, “F9”, “Fz”, “Cz”, “Pz”, “F4”,

“C4”, “P4”, “O2”, “F8”, “T4”, “T6”, “Fc2”, “Fc6”, “Cp2”, “Cp6”,

“F10”, and “Fp2”). Table 1 reports the details of the data.

The second database is the CHB-MIT database (https://www.

physionet.org/content/chbmit/1.0.0/) which contains the widely

used scalp EEG recordings from 23 patients at Children’s Hospital

Boston (Shoeb, 2009; Truong et al., 2018; Yang et al., 2021). Among

them, chb21 was obtained 1.5 years after case chb01, from the

same female subject, and chb24 with incomplete information was

added to the database later. The records were captured at a rate

of 256 samples per second sampling by 16-bit resolution using the

International 10–20 Electrode Position System. A total of 983 h of

consecutive EEG recordings and 198 seizures are available in the

database. In most cases, files contain only 1 h of digitized EEG

signal, although files belonging to case chb10 are 2 h, and files

belonging to cases chb04, chb06, chb07, chb09, and chb23 are 4 h.

In this study, we used 22 channels (“FP1-F7”, “F7-T7”, “T7-P7”,

“P7-O1”, “FP1-F3”, “F3-C3”, “C3-P3”, “P3-O1”, “FP2-F4”, “F4-

C4”, “C4-P4”, “P4-O2”, “FP2-F8”, “F8-T8”, “T8-P8”, “P8-O2”, “FZ-

CZ”, “CZ-PZ”, “P7-T7”, “T7-FT9”, “FT9-FT10”, and “FT10-T8”)

contained in most records. Table 2 reports the details of the data.

TABLE 2 Data of the patients in the CHB-MIT database.

Patient Gender Age (years) EEG Chan. Seiz.

1 F 11 23 7

2 M 11 23 3

3 F 14 23 7

4 M 22 23 4

5 F 7 23 5

6 F 1.5 23 10

7 F 14.5 23 3

8 M 3.5 23 5

9 F 10 23 4

10 M 3 23 7

11 F 12 23 3

12 F 2 23 40

13 F 3 23 12

14 F 9 23 8

15 M 16 31 20

16 F 7 28 10

17 F 12 28 3

18 F 18 22 6

19 F 19 28 3

20 F 6 28 8

21 F 13 28 4

22 F 9 28 3

23 F 6 23 7

24 - - 23 16

EEG Chan., the number of EEG channels; Seiz., the number of seizures; F, Female; M, Male.

2.2. Pre-processing

To obtain valid features of the signal, pre-processing including

filtering and ICA is essential. By appropriate filtering, the noise

in EEG data can be effectively reduced. In other words, in a

given frequency band, EEG signals can be filtered to improve the

corresponding signal-to-noise ratio. The raw EEG signals were

contaminated by power line contributions at 60Hz and 50Hz for

the CHB-MIT and the Siena, respectively. Therefore, a notch filter

was utilized to remove this power-line interference. The filtered

data were processed by ICA to remove physiological artifacts, e.g.,

eye movements and other muscular noise. For further analysis, the

preprocessed EEG data were decomposed into the classical EEG

frequency bands using a fifth-order Butterworth bandpass filter.

We followed the definition of SPH and the SOP mentioned in

Maiwald et al. (2004), Zhang and Parhi (2016), and Shokouh Alaei

et al. (2019) as illustrated in Figure 2 for state division. The seizure

onset may not occur immediately and exactly after the SPH, which

indicates the uncertainty of the prediction. To better achieve the

prediction, we assumed that the seizure onset was followed by the

SPH in our experiments. For an effective and practical prediction,
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FIGURE 2

The schematic diagram of the seizure prediction horizon (SPH) and

the seizure occurrence period (SOP).

the SPH should not be too long. At the same time, from a clinical

perspective, the SPH ought not to be too close to the seizure onset

to allow for an intervention of patients. In the case of seizure

clusters, we focus on the leading seizure. Thus, when a second

seizure starts soon after the previous seizure, we considered them

as only one seizure.

According to Truong et al. (2018) and Sun B. et al. (2021), the

preictal length was set to 30min. Referring to Ryu et al. (2021), the

SPH existed before the ictal state, and the time after the preictal

state was assumed to be 5min. At the same time, the rest of the

recording was defined as an interictal state. The final partition of

each state is shown in Figure 3. PN00 and PN10 in the Siena Scalp

EEG database have insufficient preictal and interictal data. After

removal, 12 subjects from this database were used.

For a specified EEG sequence, an EEG window length of 30-s

with a slide step of 15-s was used to obtain 30-s segments of EEG

signals (Truong et al., 2018).

2.3. Feature extraction

The single-channel PAC was calculated. For comparison, two

common frequency domain features, namely, peak frequency and

median frequency, were also extracted (Sánchez-Hernández et al.,

2022).

Traditionally, PAC can be calculated as follows (Dupré la Tour

et al., 2017). First, a bandpass filter is performed to decompose

the EEG signal x(t) on each channel into low frequency fx and

high frequency fy, and the range is divided into delta (0.5–4Hz),

theta (4–8Hz), alpha (8–13Hz), beta (13–30Hz), and gamma

(30–80Hz), which are the commonly used frequency bands for

human EEG (Liu et al., 2021). Second, the Hilbert transform is

applied to obtain the phase sequence 8x of a low-frequency band

and the amplitude sequence ay of a high-frequency band. Third, a

metric is used to quantify the correlation between 8x and ay. In

this study, the modulation index (MI) is chosen, which is robust

against noise and short data epochs and overall the commonly

used measurement method (Hulsemann et al., 2019; Munia and

Aviyente, 2019; Liu et al., 2021; Ma et al., 2021).

To calculate the value of MI, we refer to Tort et al. (2008),

in which 18 bins of 20◦ each are used (−180◦-180◦). The average

amplitude of the high-frequency component is computed and

normalized as follows:

P
(

j
)

=

f y(j)
∑N

i=1 f y(i)
(1)

where f y(j) is the average of ay within each bin, N is the total

number of bins, and the range of j is [1,N] (Fujita et al.,

2022). Subsequently, the Shannon entropy is calculated by the

following formula:

H (P)=−

N
∑

j=1

P
(

j
)

logP(j) (2)

Here, P is the vector of the normalized averaged amplitude in

each bin and N is the total number of bins. The Shannon entropy

depends on the number of bins and so does the MI. According

to Tort et al. (2008) and Hulsemann et al. (2019), 18 bins

were employed.

PAC is significantly associated with the deviation from the

uniform distribution. The Kullback–Leibler distance, a measure

for the disparity of the distributions, is calculated by the

following formula:

KL (U,X)=logN−H(P) (3)

where U is the uniform distribution, X is the distribution of the

data, N is the total number of bins, and logN is the maximum

entropy value. The final MI is computed as follows:

MI=
KL(U, X)

logN
(4)

where KL (U,X) is the Kullback–Leibler distance according to Eq.

3 and N is the total number of bins.

We used the Welch function to obtain the signal power

spectrum for each band, and the peak frequency and median

frequency were calculated to characterize the highest peak in the

power spectral density (Sánchez-Hernández et al., 2022).

2.4. Classification

A classical machine learning algorithm was employed for the

classification based on the extracted features. As an ensemble

learning algorithm, the random forest classifier stands out among

traditional classifiers (Basri and Arif, 2021). It is based on ensemble

decision trees trained by the bagging method. For an input sample,

M trees will have M classification results. The algorithm then

integrates all the classification voting results and designates the

category with the most votes as the final output.

For the input data D, max–min normalization was used

according to the given formula:

Dscaled =
D− D.min(axis=0)

D.max(axis=0)−D.min(axis=0)
∗ (max−min)

+ min (5)

Where max and min are the maximum and minimum values of the

given mapping range. In our experiments, the mapping range was

set to be (−1, 1).
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FIGURE 3

The ictal, SPH, preictal, and interictal states. (A) An example of a segmented EEG signal. The rightmost line is a landmark of the epileptic seizure

onset. The SPH is set 5min before seizure onset, the preictal state is 30min earlier than SPH, and the interictal state follows the preictal state. (B) A

schematic diagram of the segmentation.

TABLE 3 Workstation configuration.

Library Version

Numpy 1.18.5

Scipy 1.4.1

Scikit-learn 0.24.1

MNE 0.23.0

As for the parameters adjustment, three parameters, namely,

estimator, min-sample-split, and max-depth, were selected, and the

grid search method was applied to find the best parameter value.

For the division of the data into the training and testing sets, the

k-fold cross-validation method was employed for k=10 (Sameer

and Gupta, 2020). Based on the seizures, the extracted features were

randomly divided into 10 equal parts, nine of which were used for

training and one for testing.

2.5. Statistical analysis

In this study, the analysis was conducted on a workstation with

the Python 3.8.8 configuration as shown in Table 3. The overall

goal was to classify the interictal and preictal states and to predict

the ictal state. To evaluate the performance of the model, four

evaluation metrics were calculated, namely, accuracy, precision,

recall, and F-1 score, given as follows:

Accuracy =
TP+TN

TP+TN+FP+FN
(6)

Precision =
TP

TP+FP
(7)

Recall =
TP

TP+FN
(8)

F-1 score =
2∗Precision∗Recall

Precision+Recall
(9)

The true positive (TP) is the number of segments that are

correctly classified as preictal. The true negative (TN) is the

number of segments that are correctly identified as interictal.

The false positive (FP) represents the number of segments that

are incorrectly classified as preictal, and the false negative (FN)

represents the segments that are incorrectly recognized as interictal.

3. Results

3.1. The performance of seizure detection
and prediction based on frequency domain
analysis

The average results of a single-channel frequency domain

analysis based on the different sub-bands are provided in Figure 4.

From the results of both databases, it can be seen that a better

performance occurs at high frequencies, i.e., either the beta or
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FIGURE 4

The seizure detection and prediction average results are based on the single-channel frequency domain analysis and PAC analysis, respectively. (A)

The average results of the Siena Scalp EEG database are based on a single channel. (B) The average results of the CHB-MIT database are based on

the single channel. The data on the diagonal represent the results of frequency domain analysis and the data on the lower triangle represent the

results of PAC analysis.
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gamma frequency band. For the Siena Scalp EEG database, the

best performance was obtained in the gamma band, followed by

the beta band. For the CHB-MIT database, an accuracy of 95.87%

was achieved with the gamma band. Similarly, a high accuracy also

can be obtained with the beta band. By comparing the results of

different frequency bands, the performance weakens from the high-

to low-frequency band, which suggests that the high-frequency

band has more valid information for classification. Particularly in

the CHB-MIT database, we observe that all evaluation metrics have

improved a lot. For patients in the Siena Scalp EEG database, the

EEG data came pre-processed by high-pass filtering at either 1.6Hz

or 5.3Hz. We, therefore, excluded the delta band and evaluated the

other four bands.

3.2. The e�ect of seizure detection and
prediction based on phase–amplitude
coupling analysis

For further exploration, the MI was computed and the average

PAC results are shown in Figure 4. Based on the results, the beta-

gamma leading AC has the best performance on both databases.

To be specific, the highest average accuracy of 85.71% was obtained

on the Siena EEG database, while an average accuracy of 89.42%

was achieved on the CHB-MIT database. Apart from that, it can

be found that beta-theta leading PAC also had a good performance

on the Siena EEG database. For the Siena Scalp EEG database, the

average accuracy was enhanced by 4.13% from 81.58% to 85.71%;

for the CHB-MIT database, the average accuracy improved by

5.76% from 83.66% to 89.42%.

Figure 5 illustrates the MI pseudo-color graph of interictal and

preictal for all electrode channels with the 30-s slide windows

moved. PAC presented a different characteristic in the interictal

and preictal state. As shown in Figure 5, the interictal PAC was rare

and weak, while the preictal PAC bursts rhythmically during some

periods of time, which were indicated by red rectangle boxes. Also,

PAC can occur on different channels at different times, indicating

that the PAC varied with time.

Comparing the results of the single-channel frequency domain

analysis with the PAC, we can find some nuances in both databases.

For the Siena EEG database, the adult database, the best result was

obtained by applying the PAC method; for the CHB-MIT database,

the child database, the single gamma frequency band achieved the

best performance. More interestingly, for the CHB-MIT database,

the delta band with other high-frequency bands and PAC can

improve the results compared with the single delta band.

3.3. The results of seizure detection and
prediction based on the analysis of optimal
SPH

The above results are based on the SPH of 5min (Truong et al.,

2018; Ryu et al., 2021; Wang et al., 2022). In this section, we adjust

the length of SPH to between 10 and 15min, respectively, to analyze

the influence on seizure detection and prediction caused by the

length of SPH. Based on the above results, the following analysis

is conducted on the gamma band (frequency domain analysis)

and the beta-gamma PAC, the optimal frequency band, for the

CHB-MIT database and the Siena EEG database, respectively.

Supplementary Tables 1, 2 show the accuracy, precision, recall,

and F-1 score for each patient from two databases according to the

length of SPH. For each patient, there are three major outcomes.

First, for most patients, a higher accuracy can be achieved when the

SPH of 5min was used. Second, some patients had better accuracy

with the SPH of 10 or 15min. Third, there was no difference for

different lengths of SPH. For the first two cases, we selected patient

01 and patient 05 from the Siena EEG database, for example. The

former obtained an accuracy of 87.12% and 79.53% at an SPH of 5

and 15min, respectively. The latter obtained an accuracy of 81.47%

and 88.73% at an SPH of 5 and 10min, respectively. In the third

case, for some patients from the CHB-MIT database, high accuracy

can be obtained at these three interval lengths. What needed to

be noticed was that some patients (e.g., 11 from the CHB-MIT

database) have very few valid seizures considering the definition of

the SOP and SPH displayed in Figure 2 and results do not vary with

the interval length. There was no result with an SPH of 15min due

to the lack of a preictal state in the data.

An average accuracy, precision, recall, and F-1 score are

illustrated in Figure 6. Combining the results of the two databases,

comprehensively, we find that the best performance was obtained

with an SPH of 5min. Although, the accuracy at the SPH of

5min does not have a predominant advantage on both databases.

There was, in terms of numerical results, a slight difference among

the SPH of 5, 10, and 15min. Supplementary Figures 1, 2 plot

the results of the Kruskal–Wallis test between 5min, 10min, and

15min SPH from the two databases. The p-values of the two

databases are all more than 0.05. It suggests that at a certain range,

the change of SPH has no significant effect on the accuracy of

detection. Therefore, it is necessary to take the time expense to cure

the patients and the feeling of the patients into consideration. If

the length of the SPH is extended, it can increase the psychological

stresses of patients. With a similar accuracy, thus, the SPH of 5min

can detect and predict the seizure faster and more efficiently.

4. Discussion and conclusion

In this study, frequency domain and PAC analysis are used to

classify the interictal and the preictal states for seizure detection

and prediction in EEG recordings from two cohorts of patients

with epilepsy. The PAC classification analysis with the random

forest classifier achieved better overall performance on the Siena

Scalp EEG database for adults compared to the pediatric CHB-

MIT database. In particular, the beta-gamma PAC stands out.

The frequency domain analysis had the best performance on

the pediatric CHB-MIT database. With both methods of feature

extraction, the results improved from low- to high-frequency

bands. In terms of the length of SPH, comprehensively, we found

that the best overall performance was obtained with an SPH of

5min, although some patients also had a good performance when

the SPH was 10 or 15min. Clinically, the highest accuracy does not

necessarily mean practicality, that is the length of the warning time

and the accuracy of the analysis need to be weighed against each

other. Overall, it is found in this study that applying the SPH of
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FIGURE 5

The MI pseudo-color graph of interictal (A) and preictal (B). The MI was computed in 30 s windows shifted by 15 s for all electrode channels of patient

07 in the Siena EEG database. The usually significant channels and time points of change were labeled by red rectangle boxed.

FIGURE 6

The average results of interval lengths of 5, 10, and 15min, respectively. (A) The average results of the Siena Scalp EEG database. (B) The average

results of the CHB-MIT database.

TABLE 4 The comparison of seizure detection and prediction with other algorithms based on the CHB-MIT database.

Authors Subjects Features Classifier SPH (minutes) Acc Pre Recall F-1

Ryu et al. (2021) 24 DWT DenseNet-LSTM 5 0.9328 - - 0.923

Hu et al. (2019) 24 MAS CNN 20 0.8625 - - -

This work 24 Peak frequency and median

frequency

Random forest 5 0.9587 0.95 0.95 0.95

Acc, Accuracy; Pre, Precision; F-1, F-1 score; DWT, discrete wavelet transform; MAS, mean amplitude spectrum; CNN, convolutional neural network.

5min can contribute to a better performance for seizure prediction,

which has greater value for clinical prevention.

There is growing evidence that oscillatory activity in the brain

plays a role in cognitive activities including sensory processing,

feedback processing, and working memory (Jensen and Colgin,

2007). Scalp EEG recording of epilepsy was used in this study,

which provides a general reflection of the activity of neurons on

the scalp surface, important for clinical diagnosis, focal potentials,

and postoperative review (Kobayashi et al., 2012; Tatum et al.,

2018). High-frequency oscillation is considered to be a distinctive

feature of the epileptogenic zone (Melani et al., 2013; Nariai

et al., 2017). The acquisition of scalp EEG is more uncertain than

that of iEEG. Artifacts from data preprocessing, muscle signals,

and other factors can interfere with the analysis. Despite the
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above-described interference occurring during processing, there

is a difference between the high-frequency activity caused by it

and the pathological high-frequency rhythm produced by seizures

(Kobayashi et al., 2004; Otsubo et al., 2007). Also, studies have

highlighted that ictal slow waves are associated with ictal gamma

rhythms. In spasms showing beta activity, the gamma rhythm is

superimposed with it (Melani et al., 2013). This is a characteristic

that is not present in non-pathological high-frequency rhythms.

Consequently, we added cross-frequency coupling features to the

frequency domain features to help predict seizures.

With unique coupling properties, CFC has been widely

investigated in this context. Due to the distinctive and persistent

PAC, researchers put much attention to its analysis during the

seizure. However, the PAC of the interictal period and the preictal

period are also of importance. Fujita et al. (2022) indicated that

compared with healthy controls, epilepsy patients have abnormal

PAC characteristics that can promote the discrimination between

epileptic and normal. Amiri et al. (2016) found that the increased

PAC is likely to be a sign of some fundamental abnormality in

the interictal state. Ma et al. (2021) came to the conclusion that

being paroxysmal, PAC of the interictal state and the preictal state

can be used for accurate location of the epileptogenic zone. Also,

the coupling of PAC can vary during the seizure. According to

our results, there are distinct differences between the PAC of the

interictal and the preictal state which is observed in Figure 5. It

suggests that the PAC can help to classify them, particularly in

the beta-gamma coupling band. Moreover, the proposed approach

yields better results in the higher frequency bands. This is consistent

with prior findings where the high-frequency range has a crucial

role in cognitive function (Cho et al., 2017).

The incidence rate of epilepsy is particularly high in infancy

and childhood. The characteristics of early infant EEG are

various spatially distributed activities, rather than the more typical

posterior rhythm in the mature EEG (Rosch et al., 2018). In

addition, the electrographic symptoms of seizures in children are

not as typical as those in adults. Lee and Lee (2013) indicated

that, in terms of clinical features and interictal EEG, there

were significant differences between patients who had temporal

lobectomy in childhood and those having the operation during

adulthood. Because the brain function of children is immature, it

can easily be affected by adverse factors inside and outside the skull,

potentially resulting in seizures. Most of the current studies have

used data from the CHB-MIT database, which contains data from

pediatric patients. Therefore, the Siena Scalp EEG database which

is made up of adult data was added to our investigation to give a

more comprehensive picture.

There are some limitations. First, our approach for seizure

prediction is suitable only for EEG signals recorded continuously

over a long period of time. The length of the data has a

great influence on the final performance. Another limitation is

that there are significant differences among different patients

whose characteristics and dynamics of the peri-ictal states vary

greatly (Yang et al., 2021). The proposed approach may thus not

be suitable for all types of epileptic seizures. As displayed in

Supplementary Tables 1, 2, it can be seen that, in terms of the

length of SPH, the variation of the results is not uniform for each

patient. A possible explanation for this is that they contain different

types of seizures. Consequently, further work could consider the

influence caused by the specific seizure type. Moreover, in the

process of research, we found that the PAC has temporal and

spatial differences. Since the two databases were public, however,

the experiments were lack of patients’ specific clinical information.

We compared the results of our work with previous studies

in terms of SPH. To the best of our knowledge, there are only a

few studies of SPH based on the CHB-MIT database. Table 4 gives

the details including subjects, feature extraction method, classifier,

SPH, and the four evaluation metrics based on the CHB-MIT

database. As shown in Table 4, the method combining DWT and

DenseNet-LSTM in Ryu et al. (2021) achieved an accuracy of 0.9328

and an F-1 score of 0.923. Hu et al. (2019) obtained an accuracy of

0.8625 with an SPH of 20min. Compared to this, our method with

an SPH of 5min has a better performance.

Currently, several studies have applied many frequency domain

features for seizure detection and prediction and obtained

valuable results. While PAC is more widely used for seizure

onset detection and dynamic network connections in epilepsy,

few studies have applied it to seizure prediction. Based on

the experiments, the integration of PAC and machine learning

may be a significant help to achieve an early warning of an

imminent seizure for the adult database. Although the signal-

channel PAC in our experiments is not absolutely predominant,

our results show that the proposed method has the potential

to become a reliable seizure detection and prediction tool for

auxiliary clinical diagnosis and prediction. Moreover, the length

of SPH is analyzed, and the results show that at a certain range,

an SPH of 5min has an overall performance on the seizure

prediction. In clinical, it can be helpful to give timely aid before

a seizure occurs. The next step will be to further explore the

application of PAC in EEG data of children with epilepsy and

to incorporate the algorithm into a practical EEG setting to

support early intervention and hopefully improve the quality of life

of patients.
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