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Positron Emission Tomography (PET) brain imaging is increasingly utilized 
in clinical and research settings due to its unique ability to study biological 
processes and subtle changes in living subjects. However, PET imaging is not 
without its limitations. Currently, bias introduced by partial volume effect (PVE) 
and poor signal-to-noise ratios of some radiotracers can hamper accurate 
quantification. Technological advancements like ultra-high-resolution scanners 
and improvements in radiochemistry are on the horizon to address these 
challenges. This will enable the study of smaller brain regions and may require 
more sophisticated methods (e.g., data-driven approaches like unsupervised 
clustering) for reference region selection and to improve quantification accuracy. 
This review delves into some of these critical aspects of PET molecular imaging 
and offers suggested strategies for improvement. This will be  illustrated by 
showing examples for dopaminergic and cholinergic nerve terminal ligands.
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1 Introduction

Positron emission tomography (PET) is becoming more common in both research and 
clinical settings. PET images are particularly useful due to the use of radioactive tracers, called 
radioligands, for quantifying and visualizing in vivo biologic processes at the molecular level. In 
clinics, PET is used as an imaging modality to diagnose many diseases (Evangelista et al., 2021; 
Akamatsu et al., 2023). PET imaging can target specific molecules or processes using selected 
radiotracers, and with appropriate modeling, can provide various quantitative metrics to 
elucidate these human physiological and pathological processes (DeLorenzo et al., 2009; Miller-
Thomas and Benzinger, 2017; Zhou et al., 2020; Kanel et al., 2022a,b; Kanel et al., 2023). The 
Distribution of Volume Ratio (DVR) is a widely used metric that compares the volume 
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distribution of regions with receptors to those without receptors, 
commonly applied to molecular radiotracers targeting 
neurotransmission systems or abnormal proteins like tau and 
amyloid-β. DVR serves as a simplified reference tissue model and is 
applicable when there is a well-defined kinetic model for a specific 
radiotracer, assuming knowledge and application of equilibrium in the 
PET acquisition protocol. The arterial input model (multi-
compartment modeling) is considered the gold standard for 
quantification of PET signals and should be applied for the initial stage 
of validation of radioligands when first brought to human use. 
However, because of the invasive nature of an arterial input line and 
possible side-effects, particularly in older, vulnerable populations, 
there is a need for more simplified, reference-based models 
(Turkheimer et al., 2012; Kanel et al., 2020; Nugent et al., 2020). There 
are a number of conditions that would qualify a reference region. One 
of the methods to identify qualified reference region is by using 
unsupervised cluster analysis. Another widely used metric, the 
standard uptake value ratio (SUVR), suffers in accuracy due to the 
variability of radiotracer kinetics and is limited by bias as much as, if 
not more than the DVR (Heeman et al., 2022). While PET imaging 
possesses notable strengths, such as its high sensitivity that enables the 
detection of minute amounts of a radiotracer, it also has a drawback: 
relatively low spatial resolution (>3 mm), especially when compared 
to Magnetic Resonance Imaging (MRI) (<1 mm). This spatial 
resolution is a function of PET instruments themselves (with some 
new model of ultra-high resolution (UHR) scanner available 
overcoming the problem) but also a function of signal-to-noise ratios 
of the radiotracers (Catana, 2019; Rausch et al., 2019; Van Sluis et al., 
2019). This limited spatial resolution gives rise to the partial volume 
effect (PVE) (Bettinardi et al., 2014), a phenomenon that introduces 
quantification biases and can result in misleading interpretations.

This manuscript addresses the main challenges related to PET 
imaging, particularly focusing on the complexities linked with partial 
volume effect correction (PVC) methods and the definition of the 
reference region in highly selective radiotracers 
(18F-Fluoroetoxybenzovesamical (FEOBV) and PE2I). These challenges 
hold regardless of the quantification methods used (DVR/SUVR). 
We also explore potential solutions to these challenges, namely UHR 
techniques and data-driven methods to determine more suitable 
reference regions, and how these solutions can drive advancements in 
PET quantification, especially in the study of smaller brain regions. The 
manuscript concludes by showcasing practical examples from current 
clinical practice and research, demonstrating how more sophisticated 
analytical approaches to molecular PET imaging can be beneficial to 
solve current diagnostic challenges (Erlandsson et al., 2012).

2 Perspectives on partial volume 
correction methods: do we need 
them?

Plenty of PVC methods have been developed with the aim of 
reducing or controlling the PVE (Rousset et al., 2007; Bettinardi et al., 
2014). PVC methods can be categorized as image-based or ROI-based, 
depending on whether they consider the entire image or only a 
portion of it. Image-based methods are more common, as they allow 
the creation of versatile PVC-corrected images (Bettinardi et  al., 
2014). For example, the well-known Müller-Gärtner (MG) method 

improves spatial resolution in brain PET images, especially in cortical 
regions, through MRI-based anatomical registration (Müller-Gärtner 
et al., 1992). While popular in neurodegenerative research, it does not 
address spill-in and spill-out effects in adjacent gray matter regions. 
Other image-based methods, like ‘iterative Yang’ (Erlandsson et al., 
2012), overcome this limitation by producing voxel-based PVC images 
and effectively correcting PVE in gray matter regions. However, they 
estimate values directly from PET data, thus making them primarily 
suited for high-resolution tomography (Lu et al., 2021). Despite the 
availability of several approaches, it is important to note that findings 
on their effectiveness vary, and standardized guidelines for their usage 
are lacking.

Some studies demonstrate improved quantitative analyzes across 
various experimental designs (Brendel et al., 2015; Rullmann et al., 
2016; Gonzalez-Escamilla et al., 2017; Yang et al., 2019; Lu et al., 2021; 
Schuster et  al., 2022), while others suggest that PVC may reduce 
interpretability by introducing noise (Thomas et al., 2011; Högenauer 
et al., 2016; Schwarz et al., 2019). Contrary to this, alternative studies 
have demonstrated that applying PVC does not alter the outcomes in 
both cross-sectional (Okkels et  al., 2023a) and longitudinal 
comparisons (Villemagne et al., 2011). Additionally, when different 
methods are applied to the same sample, the results exhibit significant 
heterogeneity (Greve et al., 2016; Shidahara et al., 2017), indicating a 
need for a more robust methodology. In certain situations, this lack of 
robustness may warrant forgoing PVC altogether to avoid introducing 
random noise and altering regional tracer uptake in an 
unpredictable way.

To better grasp the complexity surrounding whether PVC should 
be used, it is crucial to recognize that this decision may vary depending 
on the research question and experimental design. PVE becomes 
more pronounced when the size of the region of interest is small 
compared to the resolution of the PET camera (Hoffman et al., 1979). 
This issue is particularly evident in conditions like dementia, where 
extended atrophy further exacerbates PVE. Considering this, 
experimental designs that involve patients with significant atrophy 
(e.g., demented patients or those in advanced stages of 
neurodegenerative diseases) or imply potential changes in brain 
cortical thickness (longitudinal designs) could be ideal candidates to 
benefit from PVC approaches. The situation might change when 
dealing with cohorts of patients who do not exhibit severe atrophy 
(e.g., early-stage disease or healthy controls). Applying PVC might not 
be as beneficial in such cases and could introduce noise. This noise can 
result in increased variability in the data distribution, which cannot 
be solely attributed to the underlying condition being studied.

Another crucial factor in the decision whether to use PVC is the 
characteristics of PET radiotracers. Some radiotracers, like 18F-FEOBV 
PET (Okkels et al., 2023b), have high affinity and specificity for their 
target molecular mechanism. As a result, they tend to experience more 
controllable spill-over effects; signal spreading from a target region to 
surrounding areas and vice versa. However, certain radiotracers, like 
18F-Flortaucipir and 11C-Pittsburgh Compound-B PET (unspecific 
white matter binding), suffer from high off-target binding (Matsubara 
et al., 2016; Gonzalez-Escamilla et al., 2017), and controlling spill-over 
effects becomes more challenging. Applying PVC approaches might 
be necessary in this scenario regardless of the experimental design or 
the patients involved.

Despite the ongoing lack of consensus on PVC approaches, it is 
evident that all methods carry the potential to introduce uncontrolled 
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noise. The situation is particularly crucial in multicenter studies, 
where the utilization of various PET cameras with differing resolutions 
already poses a challenge to harmonization. These differences 
necessitate varied PVC approaches. As a result, applying PVC might 
compound disparities rather than alleviate them. Considering all the 
above, exploring alternative strategies to mitigate the PVE becomes 
essential. That said, considering the need for guidelines for PVC to 
improve data replicability and reliability, it becomes urgent to conduct 
methodological studies exploring different scenarios for various 
radiotracers. In the interim, researchers are encouraged to report 
results both with and without PVC, along with the details of the PVC 
method used and the rationale (Knudsen et al., 2020). By adopting 
these practices, we can enhance the evaluation of the PVC effect on 
results and pave the way for more reliable and interpretable PET 
quantification in neuroimaging studies.

3 Should we study small brain 
regions? Is it possible with new 
advancements in PET, MRI, and 
radiotracers?

While the study of system-level changes in neurodegenerative 
disorders holds immense value, the accurate quantification of 
specific volumes of interest remains a crucial aspect of research in 
this field. Precisely quantifying specific (small) brain regions can 
significantly contribute to understanding the brain areas involved in 
distinct neurodegenerative mechanisms. The field of neurology and 
radiology is about to experience a groundbreaking shift with the 
introduction of the new UHR brain PET scanner (Gaudin et al., 
2018; Doyon et al., 2023). This advanced technology has the potential 
to revolutionize the way we  study and diagnose neurological 
conditions such as neuro-oncology, epilepsy, dementia, 
cerebrovascular disease, and more. The UHR brain scanner boasts 
an unprecedented resolution that can accurately characterize brain 
regions that were previously indistinguishable without the use of 
MRI. With the use of pixelated detectors, the UHR brain scanner can 
reach a 1.25 mm isotropic spatial resolution, and reconstructed 
spatial resolutions ranging from 1.32 to 2.41 mm, and 3.96 to 
7.22 mm for radial images at 1 cm, and 10 cm from the center of the 
system field of view (FOV) respectively, which is a significant 
improvement over the current state-of-the-art reference for brain 
PET imaging (Gaudin et al., 2018; Doyon et al., 2023). As a result, 
several brain regions, like thalamic subnuclei, inferior and superior 
colliculi, and red nuclei can now be identified in a PET visually in 
UHR images. While the UHR PET scanner, like any new high-end 
technology, will likely be costly and take some time to become widely 
available, its introduction presents a promising step forward toward 
further advancements in neuroimaging. Previously, visualization and 
parcellation of these small regions were possible only in MRI images. 
We generate these parcellations by combining high resolution MRI 
images with brain metabolism data produced using a radioligand 
with a high signal-to-noise ratio, like 18F-FEOBV, a vesamicol analog 
that selectively binds to vesicular acetylcholine transporter (VAChT) 
in the brain. With the complimentary information garnered from 
MRI and PET, along with newly developed anatomic parcellation 
atlases of subthalamic nuclei (Iglesias et al., 2018), the cerebellum 
(Diedrichsen et  al., 2011), and brainstem (Iglesias et  al., 2015), 

we can effectively study smaller regions (Bohnen et al., 2021; Kanel 
et  al., 2022b; Okkels et  al., 2023a). One such approach involves 
manipulating the volume of the target region, focusing solely on the 
core voxels within the specific area and excluding those at higher risk 
of being influenced by surrounding regions (Bohnen et al., 2021). 
This can be achieved through morphological erosion/thresholding 
techniques without altering the molecular image itself (Bohnen 
et al., 2021). Furthermore, whenever possible, working within the 
subject space can help preserve volume integrity and reduce the risk 
of PVE in small regions. One should be careful by studying only 
small regions with a sufficiently high number of surviving voxels 
above a set post-erosion number to ensure the robustness of the 
findings. Another possible solution to consider is using only those 
voxels that have binding within the high approximately 20% for that 
particular region for calculating DVR or SUVR. One of the most 
important benefits of studying small regions is the ability to detect 
early changes associated with many diseases. For example, one study 
capitalized on 18F FEOBV PET’s high signal-to-noise ratio to 
distinguish LBD from PD. Cholinergic terminal reductions were 
most severe in limbic regions in dementia patients compared with 
PD, and least severe in occipital regions (Okkels et  al., 2023a). 
Findings like these demonstrate that by examining smaller, more 
specific regions, we  can better differentiate between potentially 
ambiguous disease pathologies and arrive at diagnoses earlier and 
more accurately. This provides potential avenues for earlier diagnoses 
and a better understanding of disease progression, both of which can 
significantly impact research and clinical settings.

4 Why choosing appropriate reference 
region is so important: looking at 
perspectives on reference regions on 
dopamine transporter tracers

The emergence of highly specific dopamine transporter tracers 
has significantly enhanced our means of studying the organization of 
the presynaptic dopaminergic system. Earlier radioligands, such as 
β-CIT, had high affinity for dopamine transporter (27 ± 2 nM), but also 
high affinities for serotonin (3 ± 0.2 nM) and norepinephrine 
(80 ± 28 nM) transporters (Emond et al., 2008). Modification of the 
β-CIT molecule to make it more selective to dopamine transporter 
yielded PE2I, which has high affinity for dopamine transporter 
(17 ± 7 nM), and very low affinities for serotonin (500 ± 30 nM) and 
norepinephrine (>1,000 nM) transporters (Emond et al., 2008). While 
such high selectivity should allow the study of dopaminergic system 
changes in low-binding regions, much of the focus to date has been 
on high-binding regions such as the striatum, due to its importance 
in the clinical context of movement disorders. Unfortunately, this 
heuristic approach has led to the neglect of several low-binding 
regions where dopaminergic innervation might nevertheless 
contribute to functional organization. Indeed, evidence exists about 
dopaminergic innervation in all lobes of the cerebral cortex (De 
Keyser et al., 1989; Berger et al., 1991; Lewis et al., 2001; Nagano-Saito 
et al., 2017; van Kempen et al., 2022), the cerebellum (Barik and de 
Beaurepaire, 1996; Melchitzky and Lewis, 2000; Hurley et al., 2003; 
Locke et al., 2018; Qian et al., 2018; Flace et al., 2021; Cutando et al., 
2022; Chen and Zhang, 2024), and limbic regions (Barili et al., 1998), 
which elevates the importance of re-evaluating quantification 
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methodologies to advance our understanding of the whole-brain 
dopaminergic system.

In the domain of semi-quantitative analysis in dopaminergic 
presynaptic molecular imaging, the cerebellum is a frequently selected 
reference region due to its presumed minimal dopaminergic 
innervation. Among the earliest studies cited to justify the use of 
cerebellum as a reference region for imaging of PE2I derived 
radioligands include human post-mortem autoradiography work on 
125I-PE2I (Hall et al., 1999) and PET imaging of 11C-PE2I in human 
and non-human primates (Halldin et al., 2003). Both studies failed to 
show appreciable signal within the cerebellum, and the latter also 
showed failure to displace 11C-PE2I binding via blocking using β-CIT 
and GBR-12909 competitive ligands within the cerebellum and 
cerebral cortex, but not within the striatum, leading the authors to 
conclude that PE2I binding in the cerebellum is predominantly 
non-specific. Later works on kinetic modeling of PE2I provided 
evidence to the contrary, with multiple studies showing that the 
cerebellum does not strictly meet the assumptions that underpin its 
use as a reference region (Jucaite et al., 2006; Hirvonen et al., 2008; 
Odano et  al., 2012). Some studies used only the hemispheric 
cerebellum as a reference region, excluding the midline vermis due to 
the potential presence of dopaminergic innervation (Varrone et al., 
2011). More recent post-mortem immunocytochemistry data in 
humans, however, suggest that the cerebellar hemispheres might also 
receive dopaminergic innervation (Flace et al., 2021), which calls into 
question the continued use of the cerebellum as reference region. 
Alternative low-binding reference regions, such as the occipital cortex, 
were considered for PE2I due to the low norepinephrine and serotonin 
transporter presence in those regions (Emond et al., 2008), but they 
suffer from the same flaws as the cerebellar reference regions, since the 
density of dopaminergic terminals in those regions cannot 
be quantified when they are used as a reference, and independent 
evidence suggests that dopaminergic innervation there might not 
be negligible (De Keyser et al., 1989; Berger et al., 1991; Lewis et al., 
2001; Nagano-Saito et al., 2017; van Kempen et al., 2022).

Arterial sampling is considered the gold standard method for 
kinetic modeling for several radiotracers (Rissanen et  al., 2015; 
Naganawa et al., 2020). Patients undergo serial blood sampling during 
the scan, then the obtained samples are analyzed to calculate the 
arterial input function (AIF) (Sari et al., 2018). Arterial sampling has 
been used for kinetic modeling in many studies involving several 
tracers, including PE2I (Jucaite et al., 2006), FEOBV (Petrou et al., 
2014), DTBZ (Chan et al., 1999), and others. However, the use of 
arterial sampling to obtain an AIF is invasive, and can be particularly 
challenging for patients (Smart et al., 2023). Data driven approaches 
present a promising path forward for non-invasive quantification 
methods. While some approaches, like Basis pursuit (DeLorenzo et al., 
2009) and supervised clustering (Jonasson et al., 2017), to determine 
better reference regions for PE2I have largely been unsuccessful, 
alternative approaches, such as the use of unsupervised clustering 
algorithms, have scarcely been attempted, and should be pursued 
more. Unsupervised clustering would classify voxels within a dynamic 
PET image based on similarity of their time activity curves, and these 
curve clusters can then be  examined to identify better reference 
regions (Zbib et al., 2015). These methods could be used to identify 
regions within the cerebellar hemisphere, or even vermis that, 
anatomically, are regionally devoid of dopamine, and examine them 
for their utility as reference regions. Applications of unsupervised 

clustering have been used to examine differences in dopamine 
transporter binding in patients with parkinsonism (Suh et al., 2020), 
but its applications remain to be validated. When used prudently in 
conjunction with the high-selectivity of the PE2I radioligand, these 
data-driven methods might pave the way for better, less invasive, 
quantification of dopamine innervation in low-binding regions and 
would expand the range of questions we are able to ask about the 
dopaminergic system beyond the striatum.

5 Dogmas in clinical nuclear medicine 
using binary readings based on 
striatal-only binary readings: is a 
diagnosis of subject with evidence of 
motor parkinsonism but without 
evidence of dopaminergic 
degeneration (SWEDD) sufficient to 
exclude an α-syncucleinopathy 
etiology?

Nigrostriatal dopaminergic denervation is a major 
pathobiology in Parkinson disease (PD) (Obeso et  al., 2017). 
Application of presynaptic nigrostriatal nerve terminal imaging 
in clinical trials has shown that up to 10% of persons clinically 
diagnosed as PD have a normal striatal uptake pattern and thus a 
SWEDD diagnosis (Erro et  al., 2016). SWEDDs may have 
essential, dystonic, psychogenic tremor syndromes or other 
causes. Patients who meet criteria for the so-called body-first PD 
subtype may initially present with an abnormal cardiac MIBG 
scan and apparently normal neostriatal binding. These patients 
risk receiving a SWEDD diagnosis years prior to developing the 
asymmetric or caudate-to-putamen striatal denervation gradients 
that are hallmarks of PD (Durcan et  al., 2023). Visually more 
subtle striatal dopamine binding changes in patients with 
so-called ‘ET-plus’ syndrome may also be  at risk of a binary 
SWEDD misdiagnosis. About 20% of octogenarians have evidence 
of dementia with Lewy bodies (DLB). A subset of about 8–10% of 
pathology-confirmed patients may lack nigrostriatal denervation 
and in turn may be  misdiagnosed as SWEDD. Furthermore, 
concomitant Alzheimer’s disease (AD) pathology, common in 
DLB (~50%), can contribute to SWEDD misdiagnoses. A recent 
study of 123I-FP-CIT SPECT imaging in patients with AD found 
reduced binding not in the neostriatum (putamen and caudate 
nuclei) but rather in areas targeted by the ventrotegmental-
mesocorticolimbic pathways, namely the ventral striatum, 
including the nucleus accumbens, hippocampus, and cingulum, 
when compared to controls (Sala et al., 2021). These observations 
show that judging SWEDD status merely based on the neostriatum 
(putamen and caudate nuclei), could increase the risk of 
misdiagnosing patients with Lewy body parkinsonism. 
Furthermore, special attention should be  paid to additional 
regions of interest such as the nucleus accumbens and the limbic 
dopaminergic projection areas innervated by the ventral tegmental 
area. Collectively, these findings suggest that the current common 
binary practice of interpreting neostriatal dopamine binding only 
as normal vs. abnormal may miss clinically relevant information 
in the assessment of not only PD, but also related Lewy 
body dementias.
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6 Conclusion

In the last two decades, advanced MR imaging techniques, 
including perfusion-weighted imaging (PWI), functional magnetic 
resonance imaging (fMRI), magnetic resonance spectroscopy 
(MRS), and diffusion-weighted imaging (DWI), and several PET 
imaging agents that target numerous metabolic pathways in the 
brain have expanded the tools available for studying the nervous 
system in the normal state and in various diseased states. With 
these advancements, we must recognize that each tool comes with 
its own strengths and weaknesses, and that there is no “one-size-
fits-all” approach to brain imaging. With the development of more 
selective tracers, like PE2I, it becomes necessary to consider using 
regions other than the cerebellum, or more selectively, specific 
regions within the cerebellum, based on the anatomical absence of 
dopamine nerve terminals, as reference, and use data-driven 
approaches like unsupervised clustering algorithms to identify 
more suitable regions. We must also exercise caution when using 
PVC. While effective in experiments involving patients with 
significant atrophy, PVC can introduce unnecessary noise in 
patients without atrophy and may not be necessary with images 
from radioligands with high level of affinity and specificity like 18F-
FEOBV. With the arrival of UHR PET scanners, development of 
high level of affinity and specificity radioligands, and with 
techniques that increase resolution through combining MR and 
PET technologies, exploration of even smaller, more specific brain 
regions will become possible. Examination of these smaller regions 
could give way to faster, more accurate diagnoses, bolstering our 
understanding of disease progression and ensuring that clinically 
relevant information is not missed when assessing patients with 
neurodegenerative disorders. The field of neuroimaging is 
progressing rapidly, and with each advancement comes an 
opportunity to elevate our understanding of neurodegenerative 
diseases. We must exercise caution when using these tools, however, 
so that we maximize the accuracy and impact of our discoveries.
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