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Purpose: This study aimed to validate a retrospective motion correction 
technique, Distributed and Incoherent Sample Orders for Reconstruction 
Deblurring using Encoding Redundancy (DISORDER), for pediatric brain 
morphometry.

Methods: Two T1-weighted MPRAGE 3D datasets were acquired at 3 T in thirty-
seven children aged 7–8 years: one with conventional linear phase encoding 
and one using DISORDER. MPRAGE images were scored as motion-free or 
motion-corrupt. Cortical morphometry and regional brain volumes were 
measured with FreeSurfer, subcortical grey matter (GM) with FSL-FIRST, and 
hippocampi with HippUnfold. Intraclass correlation coefficient (ICC) was used 
to determine agreement. Mann–Whitney U was used to test the difference 
between measures obtained using DISORDER and (i) motion-free and (ii) 
motion-corrupt conventional MPRAGE data.

Results: ICC measures between conventional MPRAGE and DISORDER data 
were good/excellent for most subcortical GM (motion-free, 0.75–0.96; motion-
corrupt, 0.62–0.98) and regional brain volumes (motion-free 0.47–0.99; 
motion-corrupt, 0.54–0.99), except for the amygdala and nucleus accumbens 
(motion-free, 0.38–0.65; motion-corrupt, 0.1–0.42). These values were less 
consistent for motion-corrupt conventional MPRAGE data for hippocampal 
volumes (motion-free 0.65–0.99; motion-corrupt, 0.11–0.91) and cortical 
measures (motion-free 0.76–0.98; motion-corrupt, 0.09–0.74). Mann–Whitney 
U showed percentage differences in measures obtained with motion-corrupt 
conventional MPRAGE compared to DISORDER data were significantly greater 
than in those obtained using motion-free conventional MPRAGE data in 22/58 
structures.
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Conclusion: In the absence of motion, morphometric measures obtained using 
DISORDER are largely consistent with those from conventional MPRAGE data, 
whereas improved reliability is obtained by DISORDER for motion-degraded scans. 
This study validates the use of DISORDER for brain morphometric studies in children.
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Introduction

Structural magnetic resonance imaging (MRI) provides detailed 
information about brain morphometry. However, obtaining high-quality 
MR images in children can be challenging. In a clinical setting, good 
quality MRI data are essential for accurate radiological assessment and in 
research, high quality imaging data are required to assess morphometry. 
Head motion, in particular, is a common cause of image degradation in 
pediatric research settings and motion-induced artifacts can significantly 
influence estimates of brain metrics derived from MRI (Reuter et al., 2015; 
Gilmore et al., 2021; Ai et al., 2021).

Multiple strategies are available for correcting intra-scan motion, 
including prospective and retrospective methods. Prospective 
methods track data describing the head pose, which is used to update 
the acquisition in real-time to ensure the field-of-view (FOV) remains 
aligned with the moving head (Maclaren et  al., 2013). These 
approaches are applicable across a wide range of sequences and 
scanners, however, they may require additional hardware and scanner 
modifications (Maclaren et al., 2013). Retrospective motion correction 
techniques first collect k-space data and then correct for the effects of 
motion following acquisition, during the reconstruction stage. In a 
pediatric cohort, a retrospective technique improved T1-weighted 
image quality and automated segmentation of cortical and subcortical 
structures compared to a prospective motion correction technique 
(Kecskemeti and Alexander, 2020). Retrospective motion correction 
techniques include Distributed and Incoherent Sample Orders for 
Reconstruction Deblurring by using Encoding Redundancy 
(DISORDER), a sampling re-ordering scheme in the phase encoding 
plane (Cordero-Grande et al., 2020; Cordero-Grande et al., 2016) 
which has been shown to improve image quality in a pediatric cohort 
(Vecchiato et  al., 2021). However, brain morphometric measures 
obtained from DISORDER data have not been evaluated.

In addition to the sequence used to acquire the images, the choice 
of software for automated segmentation of brain structures needs to 
be  considered. Several software packages are available for MRI 
structural analyses, including FreeSurfer [9], and FSL-FIRST 
(Patenaude et al., 2011). These segmentation tools have been used in 
cortical and subcortical GM morphometric analyses in pediatric 
studies (Biffen et al., 2020; Lidauer et al., 2022; Mayer et al., 2016; Pulli 
et al., 2022; Sandman et al., 2014; Schoemaker et al., 2016; Thompson-
Lake et  al., 2022). Previous work has suggested that FreeSurfer 
performs best in cortical analyses (Pulli et al., 2022), and FSL-FIRST 
is closer to manual segmentation in subcortical grey matter (GM) 
analyses in pediatric populations (Lidauer et al., 2022). HippUnfold is 
a recently developed hippocampal-specific segmentation approach 
(DeKraker et al., 2022) and has been used previously to delineate 
hippocampal subfields in a pediatric population (Ripart et al., 2023).

The aim of this study was to evaluate the use of DISORDER 
(Cordero-Grande et  al., 2020) in children aged 7–8 years. 

Conventional linear phase encoding and DISORDER Magnetization 
Prepared Rapid Gradient-Echo (MPRAGE) acquisitions were 
acquired. Brain morphometric measures were obtained using 
FreeSurfer (Fischl et al., 2002), FSL-FIRST (Patenaude et al., 2011) and 
HippUnfold (DeKraker et  al., 2022) and these measures were 
compared between the two MPRAGE acquisitions.

Materials and methods

Participants

Data for this study were acquired as part of the ICONIC (Impact 
of Congenital Heart Disease on Neurodevelopment in Childhood) 
study between August 2022 and August 2023. Research ethics 
committee approval was granted (Ref: 22/WA/0014). Informed, 
written parental consent was obtained and written assent was obtained 
from participants.

Magnetic resonance imaging acquisition

MRI was performed on a 3 T scanner (MAGNETOM Vida, Siemens 
Healthcare, Erlangen, Germany) located at St Thomas’ Hospital (London, 
UK). The children were asked to stay still during scanning while watching 
a movie of their choice. Two T1 weighted MPRAGE 3D image datasets 
were acquired in the sagittal plane; one with conventional linear phase 
encoding (referred to as conventional MPRAGE) (TR = 2,200 ms, 
TE = 2.46 ms, flip angle = 8°, FOV = 204 × 224 × 176, voxel size = 1.1 × 
1.07 × 1.07 mm3, acceleration factor = 2, acquisition time = 4.15 min) and 
one using the DISORDER scheme (TR = 2,200 ms, TE = 2.45 ms, flip 
angle = 8°, FOV = 210 × 224 × 176, voxel size = 1.1 × 1.07 × 1.07 mm3, no 
acceleration, acquisition time = 7.39 min). T2-weighted turbo spin echo, 
diffusion-weighted imaging, fluid attenuated inversion recovery imaging, 
and resting-state functional MRI were also acquired but not analysed as 
part of this study.

Motion correction

Rigid-body motion correction ability is sensitive to the k-space 
encoding order (Cordero-Grande et al., 2020; Cordero-Grande et al., 
2016). Combined with the aligned sensitivity encoding (SENSE) 
framework, which achieves intrascan motion estimation and 
correction by dividing k-space samples and accounting for different 
motion states in each temporal segment (Cordero-Grande et  al., 
2016), DISORDER aims to improve motion tolerance of volumetric 
structural brain MRI by ensuring that the acquisition of each shot of 
k-space contains a series of samples distributed incoherently 
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throughout k-space (Cordero-Grande et al., 2020). Since every shot 
contains samples distributed in k-space, low and high resolution 
information is available for motion estimation and chances are 
reduced for large, uncovered k-space areas after a given rotation 
compensation is applied in reconstruction (Cordero-Grande et al., 
2020). These significantly increase the ability to estimate head pose 
and obtain high-quality motion corrected reconstructions in the 
presence of rigid motion (Cordero-Grande et al., 2020).

For reconstruction, the motion parameters and the image are jointly 
estimated. Starting from a reconstruction assuming no motion, a first 
approximation of the motion parameters for each k-space shot is 
estimated. Then a new volume is reconstructed with the motion 
parameters, and the method alternates between motion estimation and 
reconstruction until convergence (Cordero-Grande et al., 2020; Cordero-
Grande et al., 2016). DISORDER reconstruction was performed using 
MATLAB R2018b (MathWorks, Inc., Natick, Massachusetts), and 
implemented based on its open-source implementation.1 Figure 1 shows 
MPRAGE data acquisitions from two subjects: (A, D) conventional 
MPRAGE, (B, E) uncorrected and (C, F) motion corrected MPRAGE 
acquired with the DISORDER scheme.

1 Available at https://github.com/mriphysics/DISORDER

Image quality evaluation

Image quality was visually inspected by a pediatric neuroradiologist 
with more than 10 years of experience and an experienced image analyst. 
Sagittal, coronal and axial views of the MPRAGE data were presented to 
the raters independently in a randomized and blinded fashion and the 
images were allocated a binary score: either (i) no evidence of motion 
(referred to as motion-free) or (ii) evidence of motion (referred to as 
motion-corrupt).

Image preprocessing

After motion correction, the MPRAGE data underwent 
intensity normalization using ANTs with parameters set to 
default (Tustison et al., 2010). Removal of Gibbs ringing artefacts 
was performed using a 3D extension to the unringing method 
proposed by Kellner and colleagues (mrdeGibbs3D)2 with 
parameters set to default (Bautista et  al., 2021; Kellner et  al., 
2016). Supplementary Figure 1 shows an example of an MPRAGE 

2 https://github.com/jdtournier/mrdegibbs3D

FIGURE 1

T1-weighted MPRAGE images from two subjects. (A–C) male, 7 years 11 months with good quality conventional MPRAGE data; (D–F) male,7 years 
9 months with motion-corrupt conventional MPRAGE data. (A,D) conventional MPRAGE (B,E) DISORDER before motion correction and (C,F) 
DISORDER after motion correction.
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dataset before and after Gibbs unringing. Following bias field 
correction and unringing, images were preprocessed using the 
Human Connectome Project (HCP) minimal preprocessing 
pipeline (Glasser et al., 2013).

MPRAGE data were aligned to MNI space using rigid registration 
(Glasser et al., 2013). After this alignment, an initial brain extraction was 
performed using linear and non-linear registration of the image to the 
MNI template (Glasser et al., 2013). The MPRAGE data were skull-
stripped using SynthStrip, a deep learning-based brain extraction tool 
(Hoopes et  al., 2022). Using an optimized version of FreeSurfer’s 
recon-all pipeline (FreeSurfer v7.3.2),3 (Glasser et al., 2013; Dale et al., 
1999; Fischl et al., 1999), brain tissue was segmented into white matter 
(WM), grey matter (GM) and cerebrospinal fluid (CSF), and white and 
pial cortical surfaces were reconstructed (Dale et al., 1999).

Metrics of interest

Subcortical GM volumes (thalamus, caudate nucleus, putamen, 
globus pallidus, amygdala, nucleus accumbens and brainstem) were 
segmented and volumes extracted using FSL-FIRST v6.0.5.2 (Patenaude 
et al., 2011).

Total hippocampal and hippocampal subfield volumes were 
segmented and volumes extracted using HippUnfold (DeKraker et al., 
2022). HippUnfold uses a U-Net neural network architecture to segment 
hippocampal GM and structures surrounding the hippocampus. 
Volumetric subfields were generated by filling the voxels between inner 
and outer surfaces with the corresponding subfield labels (DeKraker 
et al., 2022). Subfield segmentations include the cornu ammonis (CA1, 
CA2, CA3, CA4), subiculum, dentate gyrus (DG) and the stratum 
radiatum lacunosum and moleculare (SRLM) (Figure 2).

Volumes and surfaces generated using FreeSurfer were converted to 
standard formats used by Connectome Workbench, and a volume 
segmentation of the cortical ribbon was generated (Glasser et al., 2013). 
WM, ventral diencephalon, corpus callosum (anterior, mid-anterior, 
central, mid-posterior, posterior), lateral ventricles, third ventricle, 
fourth ventricle, cerebellar cortex, cerebellar WM and total cerebellum 
(cerebellar cortex + cerebellar WM) volumes were extracted 
using FreeSurfer.

Cortical GM measures (cortical surface area (SA), cortical GM 
volume, cortical thickness (CT), mean curvature, cortical 
gyrification) were also extracted using FreeSurfer. Cortical 
parcellations were computed based on the Desikan-Killiany atlas 
(Desikan et  al., 2006). Cortical thickness was calculated as the 
average distance between the GM/WM boundary and the pial 
surface at each vertex within each region of interest (ROI) (Dale 
et al., 1999). The surface area was calculated on the pial surface as 
the sum of the areas of each tessellation falling within a given ROI 
(Dale et al., 1999). Mean curvature is calculated as the average of 
the principal curvatures, which are derived from the inverse radius 
of circles at each point on the pial-white matter border. Global 
measures of CT, surface area, mean curvature and GM volume were 
calculated as averages or sum totals of these ROIs. To measure 
cortical gyrification, a local gyrification index value (lGI) was 

3 https://surfer.nmr.mgh.harvard.edu/

computed for every vertex on the pial surface of the brain (Schaer 
et  al., 2008; Schaer et  al., 2012). The lGI at each vertex of the 
reconstructed cortical surface was measured as the ratio between 
the inner buried contour of the cortex and the smoothed outer 
perimeter, resulting in individual gyrification maps (Schaer et al., 
2008; Schaer et al., 2012). The average value of all the individual 
vertex lGI values was used to calculate the mean lGI for each 
hemisphere (Schaer et al., 2008; Schaer et al., 2012).

Visual inspection of segmentations

Prior to statistical analysis, all segmentations were manually 
inspected using Freeview to ensure the accuracy of the cortical ribbon 
and tissue segmentation. Manual corrections were performed if 
delineation of the pial surface and WM boundary was poor, with 
defects spanning multiple slices. Edits were made according to 
instructions provided by FreeSurfer developers.4

Statistical analysis

Statistical analyses were performed and graphs were generated 
using R v4.2.25 and R-Studio.6 Data were assessed for normality 
using Shapiro–Wilk tests, skewness, and kurtosis values. Descriptive 
statistics are shown as mean and standard deviation for normally 
distributed data and median and range for variables with a skewed 
distribution. False discovery rate (FDR) was used to correct for 
multiple comparisons and pFDR < 0.05 was considered significant 
(Benjamini and Hochberg, 1995).

Intraclass correlation coefficients

Intraclass correlation coefficient (ICC) is an established measure 
of agreement between raters/measures. Here we calculated ICC as a 
measure of agreement for all morphological measures extracted from 
both MPRAGE acquisitions. The ICC is calculated as the proportion 
of overall variance that is explained by between-subject variance. ICC 
values greater than 0.90 indicate excellent reliability, values between 
0.75 and 0.9 indicate good reliability, values between 0.5 and 0.75 
indicate moderate reliability and values less than 0.5 are indicative of 
poor reliability (Koo and Li, 2016).

Percentage difference between brain 
morphometric measures

In order to assess the difference between morphometric measures 
obtained using DISORDER and (i) motion-free and (ii) motion-
corrupt conventional MPRAGE images, the percentage difference 
between measures was computed using the formula: Percentage 
difference = [(DISORDER – conventional MPRAGE)/conventional 

4 https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData

5 https://www.r-project.org/

6 https://rstudio.com/
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MPRAGE] ∗ 100 (Schoemaker et al., 2016). Negative values indicate 
an underestimation of measures obtained with DISORDER compared 
to the conventional MPRAGE, while positive values indicate an 
overestimation of measures obtained with DISORDER relative to 
conventional MPRAGE data. Mann–Whitney U was used to test the 
effect of motion on the percentage difference.

Sensitivity analyses

In order to assess whether participants with CHD biased the 
results, ICC and percentage difference analyses were repeated after 
removing individuals with CHD.

Hemispheric differences in brain 
morphometric measures

To assess hemispheric differences in morphometric measures, the 
percentage difference between left and right measures was computed 
using the formula: Percentage difference = [(Left – Right)/(Left + 
Right)] ∗ 100. Negative values indicate that the right morphometric 
measure is larger than the left, while positive values indicate that the 
left morphometric measure is larger than the right. Mann–Whitney 
U was used to test whether there were significant differences between 
the hemispheric percentage difference morphometric measures 
obtained using DISORDER and (i) motion-free and (ii) motion-
corrupt conventional MPRAGE data.

FIGURE 2

Hippocampal segmentation from one representative subject (female, 7 years 11 months). Motion-free conventional MPRAGE (A,E) and segmentation of 
the hippocampus using HippUnfold in the sagittal (B,F), axial (C,G), and coronal planes (D,H). Hippocampal subfields; subiculum (dark blue), CA1 (light 
blue), CA2 (green), CA3 (orange), CA4 (red), SRLM (purple).
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FIGURE 3

Cortical segmentations. The top row shows conventional MPRAGE acquisitions and the bottom row shows the DISORDER MPRAGE acquisition. (Ai,Aii) 
Female, 7 years 8 months no head motion. (Bi–Cii) Female, 8 years with severe head motion. (Ci) Motion corrupt conventional MPRAGE data created 
incorrect pial (red) and white matter (yellow) boundaries while DISORDER data (Cii) resulted in accurate cortical segmentations.

Results

Participants

Sixty children were enrolled in the ICONIC study between 
August 2022 and August 2023, including 12 children with 
congenital heart disease (CHD) and 48 healthy controls. Twenty-
three children were excluded from the analysis; conventional 
MPRAGE data not acquired (n = 20), MPRAGE with DISORDER 
data not acquired (n = 3). The final analysis included 37 children 
who underwent MR imaging at a median (range) age of 7.75 (7.5–
8.33) years (Table 1); 20 children with motion-free conventional 
MPRAGE data and 17 children with motion-corrupt conventional 
MPRAGE data.

The two raters were in complete agreement regarding image 
motion scores. Of the 17 children with motion-corrupt conventional 
MPRAGE data, 14 children had motion-free DISORDER data and 3 
children had DISORDER data with minimal motion following 
reconstruction. All 20 children with motion-free conventional 
MPRAGE data had motion-free DISORDER data following 
reconstruction. FreeSurfer’s reconstruction and segmentation failed in 
1 child with motion-corrupt conventional MPRAGE data however, 
FSL-FIRST and HippUnfold were able to segment subcortical GM 
structures and hippocampal subfields, respectively, in this participant.

Thirteen out of the 74 MPRAGE datasets required manual 
editing (Supplementary Table 1). Example conventional MPRAGE 
and DISORDER images with cortical segmentation overlays are 
shown in Figure  3 for a subject with motion-free conventional 
MPRAGE and a subject with motion-corrupt conventional 
MPRAGE data (Figure 3).

Results of analyses comparing 
conventional MPRAGE and DISORDER data

Intraclass correlation coefficients

Subcortical grey matter volumes
ICC measures between motion-free conventional MPRAGE data 

and DISORDER data were excellent for the bilateral thalamus, 
bilateral caudate nucleus and brainstem; good for the bilateral 
putamen and globus pallidus; moderate for the right amygdala and left 
nucleus accumbens; and poor for the left amygdala and right nucleus 
accumbens (Table 2).

ICC measures between motion-corrupt conventional 
MPRAGE and DISORDER data were excellent for the thalamus 
bilaterally; good for the bilateral putamen, bilateral globus 
pallidus, left caudate nucleus and brainstem; moderate for the 

TABLE 1 Demographics of the study population.

Demographics Motion-free conventional 
MPRAGE (N = 20)

Motion-corrupt conventional 
MPRAGE (N = 17)

Total (N = 37)

Median age at scan 

[range], (years)

7.75 [7.5–8.17] 7.83 [7.58–8.33] 7.75 [7.5–8.33]

Male, no (%) 10 (50)  10 (59)  20 (54)

CHD, no (%) 4 (20) 2 (12) 6 (16)
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right caudate nucleus; and poor for the bilateral amygdala and 
nucleus accumbens (Table 2).

Hippocampal volumes
ICC measures between motion-free conventional MPRAGE 

data and DISORDER data were excellent for the bilateral CA1, 
bilateral CA4, bilateral dentate gyrus, bilateral SRLM and bilateral 
total hippocampal volume; good for the right subiculum, bilateral 
CA3 and right CA2; and moderate for the left subiculum and left 
CA2 (Table 3).

ICC measures between motion-corrupt conventional MPRAGE 
and DISORDER data were excellent for the right CA1; good for the 
right CA2, right SRLM and right total hippocampus; moderate for the 
left CA2, right CA3, left CA4 and left total hippocampus; and poor for 
the bilateral subiculum, left CA1, left CA3, right CA4, bilateral dentate 
gyrus and left SRLM (Table 3).

Regional brain volumes
ICC measures between motion-free conventional MPRAGE and 

DISORDER data were excellent for the bilateral WM, right cerebellar 
cortex, bilateral total cerebellum, anterior, central and posterior CC, 
lateral ventricles bilateral, third and fourth ventricle; good for the 
bilateral ventral diencephalon, left cerebellar cortex, mid-anterior and 
mid-posterior CC; moderate for the left cerebellar WM; and weak for 
the right cerebellar WM (Supplementary Table 2).

ICC measures between motion-corrupt conventional MPRAGE 
and DISORDER data were excellent for the left total cerebellum, 

posterior CC, bilateral lateral ventricles, third and fourth ventricle; 
good for the right total cerebellum, left ventral diencephalon, 
mid-posterior, anterior and mid-anterior CC; moderate for bilateral 
WM, bilateral cerebellar cortex, right ventral diencephalon and 
central CC; and poor for bilateral cerebellar WM 
(Supplementary Table 2).

Cortical metrics
ICC measures between motion-free conventional MPRAGE data 

and DISORDER data were good or excellent for all cortical measures 
(Table 4).

ICC measures between motion-corrupt conventional MPRAGE 
and DISORDER data for cortical metrics were moderate for SA and 
GM volume bilaterally, and poor for other metrics (bilateral CT, mean 
curvature, and lGI) (Table 4).

Sensitivity analyses after removing participants with CHD
ICC results after removing participants with CHD are reported in 

Supplementary Table 3.

Percentage difference between brain 
morphometric measures

Subcortical grey matter volumes
The median percentage difference for subcortical GM volumes 

between DISORDER and motion-free conventional MPRAGE 
data ranged from −1.8 to 14% and for motion-corrupt 

TABLE 2 ICC and percentage differences between subcortical grey matter volumes obtained with conventional MPRAGE and DISORDER data.

Region

Motion-free conventional MPRAGE Motion-corrupt conventional MPRAGE

Conventional 
MPRAGE (x103 

mm3)

DISORDER 
MPRAGE 

(x103 mm3)

ICC %D Conventional 
MPRAGE (x103 

mm3)

DISORDER 
MPRAGE 

(x103 mm3)

ICC %D

Left 

Thalamus

8.14 (6.88–9.65) 7.72 (6.51–9.53) 0.96 −1.8 (−6.2–4.1) 8.12 (6.90–9.63) 7.84 (6.90–9.44) 0.98 −1.4 (−6.2–2.7)

Right 

Thalamus

7.75 (6.57–9.22) 7.56 (6.22–8.98) 0.96 −2.3 (−6.6–1.7) 7.84 (6.34–9.29) 7.5 (6.43–9.17) 0.97 −2.4 (−6.3–2.1)

Left Caudate 3.76 (3.29–4.84) 3.63 (3.17–4.52) 0.93 −2.4 (−11.4–7.0) 3.48 (2.99–4.67) 3.48 (2.98–4.77) 0.75 3.2 (−12.5–16.1)

Right 

Caudate

4.06 (2.99–5.08) 3.84 (2.71–4.88) 0.93 −3.2 (−16.0–6.5) 3.48 (2.99–4.67) 3.61 (3.17–4.63) 0.62 4.6 (−14.7–13.8)

Left Putamen 5.06 (4.05–5.86) 4.64 (3.78–5.18) 0.75 −8.1 (−16− −2.3) 4.47 (3.47–6.32) 4.32 (3.58–5.77) 0.88 −2.3 (−11.0–20.1)

Right 

Putamen

4.89 (4.11–5.84) 4.53 (3.87–5.20) 0.76 −7.8 (−15− −3.5) 4.30 (3.47–6.19) 4.10 (3.47–5.40) 0.85 −5.9 (−11.8–10.5)

Left GP 1.67 (1.37–1.84) 1.59 (1.27–1.72) 0.82 −2.3 (−7.7–4.6) 1.61 (1.38–1.86) 1.58 (1.25–1.76) 0.77 −2.5 (−10.6–8.2)

Right GP 1.61 (1.35–1.83) 1.56 (1.28–1.80) 0.89 −6.3 (−10.8–2.3) 1.53 (1.29–1.91) 1.52 (1.32–1.76) 0.88 −0.9 (−7.5–8.1)

Left 

Amygdala

1.20 (0.99–1.54) 1.38 (1.11–1.70) 0.38 10.0 (−6.1–43.3) 1.17 (0.69–1.54) 1.43 (0.93–1.69) 0.26 22.2 (−2.4–97.9)

Right 

Amygdala

1.16 (0.82–1.54) 1.28 (0.99–1.57) 0.65 7.6 (−8.5–48.9) 1.09 (0.44–1.39) 1.25 (0.79–1.55) 0.42 24.2 (−10.2–47.3)

Left NA 0.48 (0.30–0.67) 0.54 (0.42–0.73) 0.64 13.0 (−0.5–38.2) 0.39 (0.17–0.55) 0.52 (0.38–0.82) 0.10 36.3 (−4.1–105.9)

Right NA 0.39 (0.25–0.54) 0.45 (0.37–0.63) 0.47 14.0 (−12–78.2) 0.33 (0.19–0.66) 0.44 (0.28–0.61) 0.36 36.3 (−29.8–86.4)

Brainstem 18.8 (15.4–22.3) 18.5 (14.6–22.1) 0.93 −2.6 (−7.8–8.7) 18.5 (14.1–22.0) 17.5 (14.8–21.0) 0.85 −4.2 (−9.6–5.9)

Volumes are reported as median (range) and percentage differences (%D) are reported as median (estimated 95% confidence intervals). Percentage differences that are significantly different 
between motion-free and motion-corrupt conventional MPRAGE data are highlighted in bold. GP, globus pallidus; NA, nucleus accumbens.
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conventional MPRAGE data ranged from −1.4 to 36.3%. Table 2 
shows the percentage difference for all subcortical GM volumes. 
The percentage difference between measures obtained using 

DISORDER and motion-corrupt conventional MPRAGE data was 
significantly greater than those obtained using motion-free 
conventional MPRAGE data for the bilateral putamen, right 

TABLE 3 ICC and percentage differences between hippocampal volumes obtained with conventional MPRAGE and DISORDER data.

Region

Motion-free conventional MPRAGE Motion-corrupt conventional MPRAGE

Conventional 
MPRAGE (x103 

mm3)

DISORDER 
MPRAGE 

(x103 mm3)

ICC %D Conventional 
MPRAGE (x103 

mm3)

DISORDER 
MPRAGE 

(x103 mm3)

ICC %D

Left subiculum 0.52 (0.48–0.68) 0.51 (0.44–0.68) 0.74 −6.6 (−18.1–7.2) 0.47 (0.19–0.69) 0.47 (0.41–0.66) 0.17 −3.6 (−20.6–95.4)

Right 

subiculum

0.55 (0.40–0.66) 0.51 (0.39–0.58) 0.81 −6.0 (−19.0–1.6) 0.53 (0.34–0.74) 0.50 (0.38–0.65) 0.31 −2.0 (−31.0–29.2)

Left CA1 0.86 (0.63–1.15) 0.88 (0.68–1.11) 0.99 1.8 (−3.6–6.0) 0.78 (0.49–1.14) 0.83 (0.63–1.06) 0.43 4.0 (−11.7–86.7)

Right CA1 0.93 (0.82–1.15) 0.94 (0.81–1.12) 0.96 0.7 (−3.2–7.1) 0.84 (0.65–1.26) 0.89 (0.70–1.20) 0.91 2.9 (−8.3–13.6)

Left CA2 0.12 (0.08–0.16) 0.11 (0.07–0.13) 0.65 −3.5 (−19.8–28.4) 0.12 (0.04–0.34) 0.11 (0.06–0.21) 0.63 −17.3 (−68.7–41.2)

Right CA2 0.10 (0.07–0.14) 0.094 (0.07–0.12) 0.82 −6.4 (−26.3–19.9) 0.079 (0.04–0.14) 0.094 (0.06–0.12) 0.90 14.0 (−9.7–75.2)

Left CA3 0.32 (0.25–0.40) 0.30 (0.21–0.38) 0.86 −6.9 (−15.9–10.1) 0.32 (0.13–0.55) 0.28 (0.18–0.37) 0.11 −5.8 (−60.3–30.1)

Right CA3 0.25 (0.18–0.33) 0.25 (0.20–0.31) 0.90 −4.3 (−14.0–17.6) 0.21 (0.17–0.29) 0.24 (0.19–0.35) 0.62 10.6 (−8.3–35.3)

Left CA4 0.15 (0.09–0.25) 0.14 (0.09–0.24) 0.94 −5.2 (−25.6–24.8) 0.15 (0.04–0.29) 0.15 (0.08–0.29) 0.57 −3.1 (−34–137.3)

Right CA4 0.19 (0.12–0.31) 0.17 (0.12–0.29) 0.95 −7.0 (−18.5–2.6) 0.20 (0.13–0.31) 0.18 (0.12–0.27) 0.23 −4.7 (−36.2–38.8)

Left DG 0.13 (0.10–0.17) 0.13 (0.10–0.16) 0.95 −2.9 (−12.0–1.4) 0.11 (0.05–0.14) 0.13 (0.10–0.14) 0.38 −0.5 (−8.2–112.4)

Right DG 0.12 (0.10–0.16) 0.13 (0.10–0.16) 0.95 −1.3 (−11.2–6.3) 0.10 (0.07–0.16) 0.13 (0.10–0.15) 0.29 10.1 (−6.0–66.8)

Left SRLM 0.58 (0.50–0.78) 0.57 (0.49–0.70) 0.96 −1.8 (−9.2–2.3) 0.51 (0.24–0.77) 0.55 (0.45–0.66) 0.45 −0.6 (−11.1–103.)

Right SRLM 0.61 (0.51–0.77) 0.59 (0.50–0.73) 0.96 −2.7 (−7.3–3.5) 0.54 (0.43–0.78) 0.57 (0.49–0.76) 0.84 −2.2 (−8.4–23.4)

Left total 

hippocampus

2.74 (2.30–3.54) 2.65 (2.28–3.20) 0.96 −2.1 (−8.0–0.5) 2.43 (1.32–3.38) 2.52 (2.05–3.17) 0.54 −2.6 (−11.7–21.4)

Right total 

hippocampus

2.73 (2.35–3.37) 2.66 (2.33–3.18) 0.96 −2.3 (−6.1–0.6) 2.53 (1.94–3.43) 2.60 (2.24–3.44) 0.88 0.3 (−5.9–17.9)

Volumes are reported as median (range) and percentage differences (%D) are reported as median (estimated 95% confidence-intervals). Percentage differences that are significantly different 
between motion-free and motion-corrupt conventional MPRAGE data are highlighted in bold. CA, cornu ammonius; DG, dentate gyrus; SRLM, stratum radiatum lacunosum and moleculare.

TABLE 4 ICC and percentage differences between cortical measures obtained using conventional MPRAGE and DISORDER data.

Measure

Motion-free conventional MPRAGE Motion-corrupt conventional MPRAGE

Conventional 
MPRAGE

DISORDER 
MPRAGE

ICC %D Conventional 
MPRAGE

DISORDER 
MPRAGE

ICC %D

Left SA (×104 mm2) 9.16 (8.08–9.97) 9.67 (8.44–10.68) 0.78 5.0 (0.7–14) 7.97 (6.17–9.88) 9.62 (7.82–12.11) 0.52 22.2 (9.8–33.2)

Right SA (×104 mm2) 9.12 (7.93–9.97) 9.69 (8.34–10.57) 0.81 5.3 (2.7–12) 8.05 (5.96–9.81) 9.56 (7.88–11.83) 0.53 21.2 (8.6–32.4)

Left GM (×105 mm3) 2.98 (2.48–3.4) 2.96 (2.45–3.60) 0.98 −0.5 (−4.2–5.7) 2.77 (2.04–3.4) 3.04 (2.39–3.80) 0.73 9.0 (−7.0–29.8)

Right GM 

(×105 mm3)

2.97 (2.44–3.4) 2.93 (2.42–3.54) 0.98 −0.2 (−3.9–4.2) 2.70 (1.96–3.4) 3.10 (2.39–3.80) 0.74 11.2 (−3.9–26.4)

Left CT (mm) 2.82 (2.63–2.93) 2.75 (2.51–3.09) 0.78 −1.4 (−6.9–4.7) 2.82 (2.65–3.11) 2.72 (2.45–2.91) 0.26 −4.3 (−17.6–3.9)

Right CT (mm) 2.78 (2.62–2.94) 2.72 (2.50–3.05) 0.81 −1.7 (−5.5–5.0) 2.84 (2.65–3.08) 2.70 (2.45–2.90) 0.09 −5.2 (−15.4–3.7)

Left mean curvature 

(1/mm)

0.13 (0.12–0.14) 0.13 (0.12–0.14) 0.77 2.4 (−4.6–6.7) 0.15 (0.14–0.16) 0.13 (0.13–0.14) 0.12 −9.1 (−16.2–0.5)

Right mean 

curvature (1/mm)

0.13 (0.12–0.14) 0.13 (0.12–0.14) 0.76 1.9 (−3.7–7.1) 0.15 (0.14–0.16) 0.13 (0.13–0.14) 0.16 −10.1 (−14.7–2.3)

Left lGI 3.47 (3.26–3.65) 3.48 (3.23–3.68) 0.92 −0.1 (−3.6–3.5) 3.22 (3.08–3.56) 3.47 (3.29–3.95) 0.45 7.6 (0.2–12.7)

Right lGI 3.43 (3.29–3.68) 3.43 (3.26–3.71) 0.92 0.2 (−3.7–4.0) 3.22 (2.97–3.48) 3.45 (3.25–3.89) 0.48 9.1 (0.1–17.2)

Measures are reported as median (range) and percentage differences (%D) are reported as median (estimated 95% confidence-intervals). Percentage differences that are significantly different 
between motion-free and motion-corrupt conventional MPRAGE data are highlighted in bold. SA, surface area; GM, grey matter volume; CT, cortical thickness; lGI, local gyrification index.
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caudate nucleus, right globus pallidus and left nucleus accumbens. 
There was no significant effect of motion on the percentage 
difference for the volume of any other subcortical GM structure 
(Figure 4).

Hippocampal volumes
The median percentage difference in hippocampal volumes between 

DISORDER and motion-free conventional MPRAGE data ranged from 
−7.0 to 1.8% and for motion-corrupt conventional MPRAGE data ranged 
from −17.3 to 14%. Table  3 shows the percentage difference for all 
hippocampal volumes. The percentage difference between hippocampal 
volumes obtained using DISORDER and motion-corrupt conventional 
MPRAGE data was significantly greater than those obtained using 
motion-free conventional MPRAGE data for the right CA2, right CA3, 
bilateral dentate gyrus and right total hippocampus. There was no 
significant effect of motion on the percentage difference for the volume of 
any other hippocampal measure (Figure 5).

Regional brain volumes
The median percentage difference in regional brain volumes 

between DISORDER and motion-free conventional MPRAGE 
data ranged from −6.3 to 7.4% and for motion-corrupt 
conventional MPRAGE data ranged from −8.7 to 13%. 
Supplementary Table 2 shows the percentage difference for all 
regional brain volumes. The percentage difference between 
measures obtained using DISORDER and motion-corrupt 
conventional MPRAGE data was significantly greater than those 

obtained using motion-free conventional MPRAGE data for the 
bilateral WM, left total cerebellum and mid-anterior corpus 
callosum volumes. There was no significant effect of motion on 
the percentage difference for any other regional brain volume 
(Supplementary Figure 2).

Cortical metrics
The median percentage difference of regional brain volumes 

between DISORDER and motion-free conventional MPRAGE data 
ranged from −0.5 to 5.3% and for motion-corrupt conventional 
MPRAGE data ranged from −10.1 to 22.2%. Table  4 shows the 
percentage difference for all cortical metrics. The percentage difference 
between measures obtained using DISORDER and motion-corrupt 
conventional MPRAGE data was significantly greater than those 
obtained using motion-free conventional MPRAGE data for the 
bilateral SA, cortical GM volume, mean curvature and lGI. There was 
no significant effect of motion on the percentage difference for CT 
bilaterally (Figure 6).

Sensitivity analyses after removing participants with CHD
The test gave the same results when the participants with CHD 

were removed from the analyses (Supplementary Table 3).

Hemispheric differences in brain morphometric 
measures

Percentage differences between the left and right hemispheres were 
not significant when comparing DISORDER and motion-free 

FIGURE 4

Percentage difference ((DISORDER – conventional MPRAGE/conventional MPRAGE) ∗ 100) between subcortical GM volumes obtained using 
DISORDER vs. motion-free conventional MPRAGE data and DISORDER vs. motion-corrupt conventional MPRAGE data. Results are shown separately 
for the left and right hemispheres (brainstem is included in the left panel). ns indicates a non-significant difference, * indicates a significant difference at 
the pFDR < 0.05 level, ** indicates a significant difference at the pFDR < 0.01 level, *** indicates a significant difference at the pFDR < 0.001 level.
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FIGURE 6

Percentage difference between cortical measures obtained using DISORDER vs. motion-free conventional MPRAGE data and DISORDER vs. motion-
corrupt conventional MPRAGE data. Results are shown separately for the left and right hemispheres. ns indicates a non-significant difference, **** 
indicates a significant difference at the pFDR < 0.0001 level.

FIGURE 5

Percentage difference between hippocampal volumes obtained using DISORDER vs. motion-free conventional MPRAGE data and DISORDER vs. 
motion-corrupt conventional MPRAGE data. Results are shown separately for the left and right hemispheres. CA, cornu ammonis; SRLM, stratum 
radiatum lacunosum and moleculare. ns indicates a non-significant difference, * indicates a significant difference at the pFDR < 0.05 level, ** indicates 
a significant difference at the pFDR < 0.01 level, *** indicates a significant difference at the pFDR < 0.001 level.
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conventional MPRAGE data. However, significant inter-hemispheric 
differences were identified between DISORDER and motion-corrupt 
conventional MPRAGE data for 5 of 25 structures assessed (caudate 
nucleus, CA2, CA3, cortical GM and cerebellar WM volumes). Percentage 
differences between the left and right hemispheres are reported in 
Supplementary Tables 4–7 and shown in Supplementary Figures 3–6.

Discussion

In this study, we evaluated the use of the DISORDER scheme for 
pediatric brain morphometry by comparing regional and subcortical 
GM brain volumes, hippocampal subfield volumes and cortical 
measures derived from conventional linear phase encoding MPRAGE 
images with those of MPRAGE acquired with the DISORDER 
sampling scheme in children aged between 7 and 8 years. We studied 
a wide range of brain structures to include regions that would be of 
interest to a wide range of pediatric neuroimaging studies. Our results 
suggest that, for most regions, brain morphometric measures obtained 
from DISORDER MPRAGE and motion-free conventional MPRAGE 
data are highly consistent. Brain morphometric measures obtained 
from motion-corrupt conventional MPRAGE and DISORDER data 
showed greater variance in concordance, particularly in hippocampal 
and cortical metrics.

Obtaining high-quality MR images in children is challenging, and 
head motion is a major cause of image degradation in pediatric 
neuroimaging. Previous work demonstrated that the DISORDER 
framework improved image quality in a pediatric cohort (age range 
2–18 years) (Vecchiato et al., 2021). In our study, a high proportion of data 
acquired with the conventional acquisition had evidence of motion 
artifact (17 out of 37 children, 46%), highlighting the need for motion 
correction approaches in pediatric populations. Furthermore, in 14/17 
(82%) children with motion-corrupt conventional MPRAGE data, image 
quality was good following a motion corrected DISORDER acquisition, 
and only minimal motion artefact was apparent in the remaining 3 
datasets. These findings suggest that DISORDER may reduce the number 
of failed examinations in clinical settings, in addition to being a useful tool 
in research neuroimaging studies.

Our results show that cortical measures obtained using 
DISORDER and motion-free conventional MPRAGE acquisitions 
were highly consistent. However, we found that cortical measures 
showed poorer concordance between DISORDER and motion-
corrupt conventional MPRAGE data. We also report a significant 
effect of motion, as assessed by the percentage difference between 
measures obtained using DISORDER and motion-free and motion-
corrupt conventional MPRAGE data, on most cortical measures, 
with >20% difference in SA between DISORDER and motion-
corrupt conventional MPRAGE data (compared to a percentage 
difference of 5% between DISORDER and motion-free 
conventional MPRAGE data in SA measures), highlighting the 
importance of correcting for head motion when obtaining cortical 
morphometric measures. Our findings are consistent with previous 
studies that demonstrated a reduction in estimates of cortical GM 
volume (Reuter et al., 2015; Alexander-Bloch et al., 2016) and an 
increase in estimates of mean curvature (Alexander-Bloch et al., 
2016) with subject motion.

In addition to cortical measures, we found that most subcortical 
GM and regional brain volumes showed excellent or good agreement 

between motion-free conventional and DISORDER acquisitions and 
the percentage difference in subcortical GM and regional volumes 
obtained from motion-free conventional MPRAGE were similar to 
percentage differences reported in scan-rescan reliability studies in 
adults (Morey et al., 2010). Interestingly, we found good-excellent 
agreement for 8 out of 13 subcortical GM and 11 out of 19 regional 
brain volumes between motion-corrupt conventional MPRAGE and 
DISORDER data. Over 60% of subcortical GM and 79% of regional 
brain volumes showed no significant effect of motion when comparing 
the percentage difference in volumes obtained from motion-free and 
motion-corrupt conventional MPRAGE to DISORDER data. Our 
findings are supported by previous work (Kemenczky et al., 2022) 
which reported good-excellent dice spatial overlap and low absolute 
volumetric differences between subcortical segmentations acquired 
with and without motion artifacts, suggesting that segmentation of 
these structures may have a lower sensitivity to motion compared to 
cortical regions.

It is notable that agreement between DISORDER and 
conventional MPRAGE data for amygdala and nucleus accumbens 
volumes were poor-moderate for both motion-free and motion-
corrupt data. Less reliable segmentations of the amygdala and 
nucleus accumbens have been demonstrated in pediatric test–
retest studies (Kecskemeti and Alexander, 2020) and in studies 
comparing automated segmentation to manual delineation 
(Lidauer et al., 2022), suggesting that the segmentation of these 
structures may be more susceptible to measurement error due to 
their small size (Morey et al., 2010). The amygdala and nucleus 
accumbens also demonstrated large percentage volume 
differences (>20 and 36% respectively) between DISORDER and 
motion-corrupt conventional MPRAGE data. Of note, the 
percentage volume differences observed here between 
DISORDER and motion-free conventional MPRAGE data for the 
amygdala and nucleus accumbens (7–14%) are similar to those 
reported in a scan-rescan study in adults using FSL-FIRST 
(Morey et al., 2010). The large differences in estimates of brain 
morphometry in motion-corrupt MRI data have consequences 
for pediatric neuroimaging research, particularly case–control 
studies where reported morphometric differences may be related 
to motion-related bias and not genuine biological differences 
between groups.

Several studies have highlighted altered hippocampal 
volumetry in pediatric clinical populations, including in children 
with epilepsy (Peng et al., 2022), CHD (Fontes et al., 2019), and 
ADHD (Al-Amin et  al., 2018). However, in addition to the 
amygdala and nucleus accumbens, the hippocampus can 
be challenging to segment due to the interindividual variability 
in hippocampal size and anatomy (Lynch et al., 2019). In this 
study, we showed that volumes of hippocampal subfields were 
similar between motion-free conventional MPRAGE and 
DISORDER data. However, hippocampal volumes showed more 
variability between acquisitions for motion-corrupt MPRAGE 
data. Furthermore, the percentage difference between DISORDER 
and motion-corrupt volumes of some hippocampal structures 
was >10%. Our data highlight that good quality MR data is 
required for hippocampal subfield segmentation in order to 
assess differences in these structures between at risk groups and 
controls, and to investigate associations with 
neurodevelopmental outcomes.

https://doi.org/10.3389/fnins.2025.1534924
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gal-Er et al. 10.3389/fnins.2025.1534924

Frontiers in Neuroscience 12 frontiersin.org

It is important to note that cerebellar WM demonstrated weak to 
moderate agreement between both motion-free and motion-corrupt 
conventional MPRAGE and DISORDER data. Previous work assessing 
test–retest agreement of automated tools for cerebellar segmentation in 
adults reported lower ICC values and greater volume differences in 
FreeSurfer-derived cerebellar WM volumes compared to cerebellar GM 
volumes (Sörös et al., 2021), highlighting that care should be taken when 
interpreting results in these regions. However, in our study, the total 
cerebellar (cerebellar GM + cerebellar WM) volume demonstrated good-
excellent agreement between DISORDER and conventional MPRAGE 
data, suggesting that studies focusing on the whole cerebellum can reliably 
use measures derived from DISORDER data.

Our results show that percentage differences between the left 
and right hemispheres were not significant when comparing 
measures obtained from DISORDER and motion-free 
conventional MPRAGE data. However, we  found significant 
inter-hemispheric differences between DISORDER and motion-
corrupt conventional MPRAGE data for 5 of 25 structures 
assessed. These findings suggest that motion artifacts may bias 
the assessment of hemispheric differences in brain morphometric 
measures, highlighting the importance of correcting for  
head motion in studies that assess structural brain  
asymmetry.

There were no changes in the effect of motion when assessing 
percentage differences between morphometric measures when 
the individuals with CHD were removed from the analyses. ICC 
classes of agreement between morphometric measures obtained 
using motion-corrupt MPRAGE and DISORDER data changed 
for almost one-quarter of regions assessed after removing the 
CHD participants. However, when comparing motion-free 
conventional MPRAGE and DISORDER data, only one region 
changed agreement classification after removing children with 
CHD from the analyses (left total cerebellar volume, from 
excellent to good, ICC 0.91 to 0.90), suggesting our  
findings comparing DISORDER and good quality MPRAGE data 
are not biased by the inclusion of children with CHD in 
our sample.

Limitations and future directions

We studied a narrow age range, between 7 and 8 years. In addition, 
our sample size was limited. Future studies incorporating a wider age 
range and with larger samples could further validate the use of 
DISORDER for brain morphometric analyses. Additionally, future 
studies with a larger sample size would benefit from training machine-
learning based methods with pediatric DISORDER data for automatic 
motion artifact detection.

The conventional MPRAGE acquisition was acquired with an 
acceleration factor of 2, while the DISORDER MPRAGE acquisition 
was acquired without acceleration. Our rationale for this approach 
was that under-sampled image acquisitions have more widely spaced 
k-space samples and we have found that the most robust strategy for 
motion corrected DISORDER scans is to have reduced acceleration. 
Limiting acceleration makes scans longer, which could increase the 
risk of motion, but improves performance in correction. For 
non-motion corrected acquisitions, there is likely to be a benefit in 
shortening acquisition time to minimize risk of severe motion during 

data collection. Our aim was to compare effective strategies of each 
type of approach rather than to match acquisition durations. 
Furthermore, matching SNR using a longer conventional scan (with 
no motion correction) would have increased the likely damage from 
motion, and so worsened performance. Given limitations in total 
examination length that the subjects could be expected to tolerate, it 
was not feasible to add the linking scans of shorter DISORDER and 
longer conventional scans, but we hope that the binary comparison 
we provided was a good choice to help provide evidence by comparing 
between choices future researchers might make in practice.

This work is part of an on-going study that aims to assess the 
neuroimaging correlates of neurodevelopment in children with 
CHD and heart-healthy children from a community sample 
(ICONIC study). Future studies could use DISORDER for brain 
morphometric analysis to explore group differences between 
children with CHD and other at-risk groups and typically 
developing children.

Conclusion

DISORDER enables quantitative structural MRI in difficult-to-
image pediatric populations and will facilitate quantitative 
morphometry in research studies. Our results suggest that 
morphometric measures obtained using DISORDER retrospective 
motion correction are largely concordant with those obtained using 
motion-free conventional MPRAGE data. Motion corrected 
DISORDER improves the overall accuracy of most cortical 
morphometric measures and some subcortical volumes when 
compared to motion-corrupt conventional MPRAGE data. This study 
validates the use of DISORDER for brain morphometric studies 
in children.
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