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Neural timing mechanisms range from the millisecond to diurnal, and possibly annual, fre-
quencies.Two of the main processes under study are the interval timer (seconds-to-minute
range) and the circadian clock. The molecular basis of these two mechanisms is the sub-
ject of intense research, as well as their possible relationship.This article summarizes data
from studies investigating a possible interaction between interval and circadian timing and
reviews the molecular basis of both mechanisms, including the discussion of the con-
tribution from studies of genetically modified animal models. While there is currently no
common neurochemical substrate for timing mechanisms in the brain, circadian modula-
tion of interval timing suggests an interaction of different frequencies in cerebral temporal
processes.
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INTRODUCTION
Timing is crucial to all aspects of our lives. Indeed, biological
timing includes diverse time-related mechanisms that encompass
several orders of magnitude (Hinton and Meck, 1997; Buhusi and
Meck, 2005, 2009b; Buonomano and Laje, 2010). Besides interval
timing (in the seconds-to-minutes range), most – if not all – organ-
isms exhibit daily and circadian rhythms with periods of ca. 24 h,
which also serve as the basis for seasonal-encoding mechanisms
and might be related to lifespan-related processes. In particu-
lar, timing oscillators in the fast (seconds–minutes) and medium
(circadian) frequencies might share some properties, including
common steps in molecular pathways that lead to the neurochem-
ical basis of such mechanisms. There is evidence suggesting that
circadian pacemakers may influence the rate of the interval timer;
however, these relationships have not been elucidated, neither at
the behavioral nor the molecular level. The major terms relevant
to this discussion are defined in the glossary provided in Table 1.

CIRCADIAN TIMING
The circadian clock is a self-sustained biological oscillator with a
period close to 24 h in constant conditions. Circadian clocks in
nature are, however, rarely subjected to the constant conditions
that allow a free-running oscillation. On the contrary, they are
normally exposed to a rhythmic environment, so that appropri-
ate signals (called Zeitgebers, from German Zeit, “time”; geben,
“to give”), such as light, temperature, or food, synchronize its
oscillation (Golombek and Rosenstein, 2010). Thus, the circadian
system consists of three main components: (i) an input pathway
integrating external signals to adjust circadian phase and period,
(ii) a central oscillator that generates the circadian signal, and
(iii) an output pathway driving circadian periodicity of biological
processes as illustrated in Figure 1A. Nevertheless, entrainment
of the endogenous clock is not the only mechanism controlling

the output rhythm. Most Zeitgebers not only entrain circadian
rhythms by controlling the phase and period of the pacemaker, but
also affect them directly; as a result, they “mask” the behavior of
the pacemaker. Masking signals are able to bypass the central oscil-
lator and to directly affect physiology and behavior (Mrosovsky,
1999). There could also be an adjustment of the rate of cycling by
neural or endocrine output signals, which define a feedback path-
way from rhythms to the clock. This behavioral feedback occurs,
for example, with spontaneous locomotor activity (Mistlberger
and Holmes, 2000).

MOLECULAR MECHANISMS OF CIRCADIAN OSCILLATION
The molecular mechanism of the endogenous circadian clock is
comprised of interlocking feedback loops composed of cycling
gene products that control transcription by means of negative
and positive regulation of clock genes and proteins (Reppert and
Weaver, 2002; Takahashi et al., 2008). Post-transcriptional regula-
tion of clock proteins plays an important role in rhythm generation
and entrainment; mutations in key protein kinases have been
shown to affect the circadian machinery (Lowrey et al., 2000;
Gallego and Virshup, 2007). This cycling molecular framework
can also control the transcription of other genes by acting upon
specific elements in their promoter regions, such as E-boxes.

In mammals, the transcription factors CLOCK and BMAL1
have been described as positive regulators whereas PERIOD (PER1
and 2) as well as CRYPTOCHROME (CRY1 and 2) proteins pro-
vide negative regulatory functions (Reppert and Weaver, 2002).
The transcription of PER and CRY is stimulated by the CLOCK–
BMAL1 heterodimer bound to the E-box enhancer as illustrated
in Figure 1B. In turn, PER and CRY proteins are translocated into
the nucleus, bind to the BMAL1–CLOCK heterodimer thereby
inhibiting their own transcription. The controlled degradation
of PER and CRY proteins by the ubiquitin pathway (signaled by
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Table 1 | Glossary of timing terms.

Interval timing Typically defined at the discrimination of durations in the seconds-to-minutes range, but can be extended to both shorter

(e.g., milliseconds) and longer (e.g., hours) ranges. Interval timing is less precise than circadian timing, but has an advantage

in increased flexibility in that it can run, stop/pause, and reset on command (Gibbon et al., 1997; Buhusi and Meck, 2005).

Although the suprachiasmatic nucleus appears unnecessary for interval timing (Lewis et al., 2003), time-of-day effects have

been observed for the timing of auditory and visual signals in the seconds-to-minutes range (Meck, 1991; Lustig and Meck,

2001; Agostino et al., 2011). To date, five main types of cognitive and affective factors have been identified that influence

interval timing: attention, modality, arousal, affective valence, and linguistic factors (Gibbon et al., 1997; Buhusi and Meck,

2005), all of which can be modulated by circadian rhythms (Shurtleff et al., 1990; Hinton and Meck, 1997; Buonomano, 2007).

Scalar property/Weber’s law The scalar property is one of the hallmark signatures of interval timing. It describes the linear relationship between target

durations and the standard deviation (SD) of duration judgments, indicating that variability in timing behavior grows propor-

tional to the mean of the interval being estimated. In this sense, duration discrimination is relative rather than absolute,

i.e., time perception is like a rubber band that can be stretched in order to produce time scale invariance across different

durations (Gibbon et al., 1997; Matell and Meck, 2000; Bateson, 2003; Buhusi and Meck, 2005; Cheng and Meck, 2007;

Buhusi et al., 2009).

Circadian rhythms The circadian clock is a self-sustained biological oscillator with a period near to 24 h. In mammals, the circadian pacemaker

is located in the suprachiasmatic nuclei (SCN) of the hypothalamus, and the principal signal that adjusts its activity is the

light–dark cycle (Morin and Allen, 2006; Golombek and Rosenstein, 2010).

Clock genes The so-called clock genes generate a molecular oscillation of gene expression, which is regulated transcriptionally and

posttranslationally by positive and negative feedback loops. Within these loops positive factors induce the transcription of

E-box-containing clock genes, which in turn down regulate the activity of the positive factors.

phosphorylation through casein kinase Iε/δ) decreases their pro-
tein levels and contributes to the oscillation of their mRNA and
protein levels. Other posttranslational regulations (e.g., acetyla-
tion) also undergo circadian changes (Hirayama et al., 2007).
The consequences of protein modification include alterations in
activity, subcellular localization, protein–protein interactions, and
protein stability. Moreover, additional stabilizing feedback loops,
including inhibition of Bmal1 transcription by REV-ERBα (Preit-
ner et al., 2002) further contribute to the timing and robustness of
the cycle.

The output of circadian rhythms is coordinated by the expres-
sion of another set of genes called clock-controlled genes (CCGs).
The pathways that control circadian rhythmicity in mammals
have been closely studied using genetically modified animals (see
Table 2 for a description of the behavioral phenotypes of different
mutant mice).

THE LIGHT-ENTRAINABLE OSCILLATOR
In mammals, many daily physiological and behavioral rhythms
are generated by a master pacemaker located in the suprachi-
asmatic nuclei (SCN) of the hypothalamus. The most powerful
synchronizer or Zeitgeber known is the daily light/dark cycle which
entrains and modulates the light-entrainable oscillator (LEO).
Light stimulates a group of photosensitive retinal ganglion cells
that contain the photopigment melanopsin (Panda et al., 2002)
and project to the SCN through the retinohypothalamic tract.
Glutamate and pituitary adenylate cyclase activating polypeptide
(PACAP) are the primary neurotransmitters responsible for medi-
ating the synchronizing properties of light, and act upon NMDA,
AMPA/kainate receptors for glutamate, and the PACAP-specific
receptor (PAC1). This leads to an increase of the intracellular con-
centrations of Ca2+, which initiates a signal transduction cascade
in SCN neurons that ultimately results in a phase shift of the circa-
dian system (Golombek et al., 2003, 2004; Morin and Allen, 2006;
Golombek and Rosenstein, 2010). Moreover, the mGluR5 and

mGluR2/3 metabotropic glutamate receptors have been shown to
exert both positive and negative modulation of circadian activity
rhythms as a function of the phase of the light/dark cycle (Gannon
and Millan, 2011).

Exposure to light pulses at night synchronizes the LEO by
inducing phase delays during the early night and phase advances
during the late subjective night (i.e., when under constant con-
ditions the animal behaves as if it were the night), led by diverse
signal transduction pathways which ultimately rely on the activa-
tion of transcription factors such as CREB and clock genes (Lowrey
and Takahashi, 2000). During the late night, when light induces
phase advances of behavioral rhythms, photic stimulation specifi-
cally activates the guanylyl cyclase (GC)/cGMP/cGMP-dependent
kinase (PKG) pathway (Golombek et al., 2004; Agostino et al.,
2007). Therefore, the accessibility of specific signaling pathways is
fundamental for regulation of circadian timing.

FOOD-ENTRAINABLE OSCILLATORS
The discovery of clock gene expression in brain regions outside of
the SCN has suggested the temporal control of motivated behav-
iors independent of such nuclei. In nocturnal rodents, for example,
natural feeding occurs principally during the night. In experi-
mental conditions, when access to food is restricted to a few hours
during the day, animals become active in anticipation of mealtime.
In response to food stimulation, there are also phase advances of
the circadian rhythms of gene expression in the liver, kidney, heart,
pancreas, and other tissues, as well as in some brain structures,
uncoupling them from the control by the SCN whose entrainment
to light remains intact (Mendoza, 2007). All these data suggest that
peripheral clocks within and outside of the brain are affected by
restricted feeding schedules (Feillet et al., 2006a; Balsam et al.,
2009).

It has been shown that food-anticipatory activity (FAA) is
still present in SCN-ablated animals (Stephan, 2002). FAA is
expressed in wheel running, general activity, feeder approaches,

Frontiers in Integrative Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 64 | 2

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Agostino et al. Molecular basis of timing

FIGURE 1 | (A) Main components of the circadian timing system. Circadian
rhythms consists of three main components: (i) an input pathway
integrating exogenous signals to synchronize circadian phase and period, (ii)
a central oscillator that generates the endogenous circadian signal, and (iii)
an output pathway driving circadian periodicity and coupling of biological
processes. (B) Molecular mechanisms of circadian timing. The molecular
mechanisms of circadian rhythms can be illustrated by the transcription of
the Period (Per1and Per2) and Cryptochrome (Cry1, Cry2) genes that are
activated by heteromeric complexes containing CLOCK and BMAL1
proteins that act through the E-box regulatory sequences of their target
genes. The newly synthesized PER and CRY proteins are translocated into
the nucleus, where they inhibit BMAL1–CLOCK activity, and therefore, their
own transcription. Clock and Bmal1 both contain basic helix–loop–helix
(bHLH) motifs for DNA binding at their N-terminus and Per–Arnt–Sim (PAS)
domains. The controlled degradation of PER and CRY proteins by the
ubiquitin pathway decreases their protein levels and results in an oscillation
of their mRNA and protein levels. During this negative transcriptional
feedback loop many of the clock proteins become posttranslationally
modified by phosphorylation and ubiquitination (Reppert and Weaver,
2002). This core oscillation is augmented and stabilized by a secondary loop
involving two orphan nuclear receptor proteins, REV-ERBα and RORA. Both
are activated in phase with the Per and Cry genes by CLOCK and BMAL1,
but in turn they affect Bmal1 expression (Preitner et al., 2002). While RORA
has a positive role, REV-ERBα is a suppressor of Bmal1, and they coordinate
action through RORE regulatory sequences. A positive feedback loop is built
by the stimulated transcription of BMAL1 by PER2. Protein phosphorylation
events are essential contributors to these feedback loops. Two members of
the casein kinase I family (CKIε and CKIδ) phosphorylate PER proteins in
order to (i) target them for ubiquitin-mediated proteasomal degradation, and
(ii) modulate their nuclear import. A mutation of CKIε shortens rhythm in
hamsters (Lowrey et al., 2000) and a mutation of CKIδ shortens rhythm in
humans (Xu et al., 2005). The result of these complex regulatory pathways
is that the mRNA and protein levels of most circadian genes – except Clock
and CKIε – oscillate with a 24-h period. Importantly, the CLOCK–BMAL1
heterodimer regulates the transcription of many clock-controlled genes
(CCGs), which in turn influence a wide array of physiological functions
external to the oscillatory mechanism. This mediates the output function of
the clock, thereby controlling food intake, hormonal synthesis and release,
body temperature, metabolism, and many other functions.

and unreinforced bar pressing in an operant chamber. Moreover,
some physiological parameters entrained to restricted feeding are
still present after SCN lesions, suggesting the presence of an addi-
tional circadian oscillator. The food-entrainable oscillator (FEO)
displays clear circadian characteristics. One of the most important
of these is that its behavioral output (FAA) persists in the absence
of food, suggesting that the FEO is able to generate a sustained
free-running rhythm (Stephan, 2002).

The circadian mechanism of the FEO at the molecular level is
not clear. Moreover, mice with mutations of clock genes are able to
entrain activity rhythms to restricted feeding, suggesting there are
alternative molecular pathways related to this kind of non-photic
entrainment (Mendoza, 2007; see Table 2). On the other hand, the
reward value of food and its motivational properties are important
in entrainment. Mendoza et al. (2005) have observed entrain-
ment of the rat SCN by a palatable meal (chocolate) without food
deprivation. This entrainment effect was evident in the circadian
rhythm of locomotor activity, a relevant output of the SCN. Their
results indicate that the SCN can be entrained by palatable food
without undergoing a chronic energy deprivation, probably due
to the high level of arousal produced in such conditions.

A crucial role of the dorsomedial hypothalamic (DMH) nucleus
has been reported for the FAA expression. In mice, the DMH
exhibits little or no mPer1 or mPer2 expression when food is freely
available, but strong circadian expression when food is restricted to
a limited time of day (Mieda et al., 2006). In rats, neurotoxic lesions
destroying 75% to 90% of DMH neurons strongly attenuate food-
anticipatory rhythms of locomotion and EEG-defined waking, as
well as eliminate the pre-meal rise in core body temperature evi-
dent in intact animals (Gooley et al., 2006). However, it was found
that rats sustaining complete ablation of the DMH were capable of
essentially normal FAA rhythms (Landry et al., 2007). Therefore,
it remains to be elucidated which brain structures are necessary
for the generation and persistence of food-anticipatory circadian
behavioral rhythms. Interestingly, it was recently suggested that the
functional model for the FEO is a network of interconnected brain
structures entrained by fluctuation of different humoral factors
(Carneiro and Araujo, 2009; Aguilar-Roblero and Diaz-Muñoz,
2010). In this sense, a distributed system arranged in a non-
hierarchical manner to control FAA has been proposed. Moreover,
it has also been reported that regulators of G protein signaling are
involved in both the LEO and FEO circadian systems, suggesting
a common mechanism of interaction (Hayasaka et al., 2011).

THE CIRCADIAN INFLUENCE ON REWARD-RELATED BEHAVIOR
Results from Roybal et al. (2007) indicate that the central tran-
scriptional activator of molecular rhythms, CLOCK, has an impor-
tant role in the ventral tegmental area (VTA) in regulating
dopaminergic activity, locomotor activity, and anxiety. Moreover,
several genes involved in dopaminergic signaling are differentially
regulated in the VTA of the Clock mutant mice, suggesting that
CLOCK affects the transcription of these genes through its actions
in this brain region. Several findings support a role for the SCN
in controlling distal reward circuitry, perhaps via its influence
on rhythmic dopaminergic neurotransmission within mesolim-
bic structures. Indeed, dopamine (DA) and its related metabolites
and receptors exhibit daily fluctuations in their levels in different
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Table 2 | Phenotypes of different mutant mice.

Genotype Physiological and behavioral

alterations

Circadian phenotype FAAa Interval timing

Clock−/− mice Metabolic and sleep patterns;

drugs sensitization

Longer period/arrhythmic

(Vitaterna et al., 1994)

Normal (Pitts et al.,

2003)

Normal (Cordes and Gal-

listel, 2008)

Per1−/− mice Drug sensitization; cancer

development

Shorter period (Zheng et al.,

2001)

Normal (Feillet et al.,

2006b)

Unknown

Per2−/− mice Drugs sensitization and alcohol

consumption; cancer development

Shorter period/arrhythmic

(Zheng et al., 2001)

Absent (Feillet et al.,

2006b)

Unknown

Cry1−/−/Cry2−/−

mice

Without phenotypic abnormalities

(van der Horst et al., 1999)

Arrhythmic under constant

conditions (van der Horst

et al., 1999)

Altered (Iijima et al.,

2005)

Normal (Papachristos

et al., 2011)

NPAS2−/− mice Sleep and memory patterns Shorter period (Dudley et al.,

2003)

Delayed (Dudley et al.,

2003)

Unknown

Bmal1−/− mice Sleep and metabolic patterns;

infertility

Arrhythmic (Bunger et al.,

2000)

Absent (Mendoza,

2007)

Unknown

DAT−/− mice Hyperactivity and learning

impairment; insensitive to

psychostimulants

Normal photoentrainment,

altered amplitude in circadian

body temperature (Vincent

et al., 2007)

Unknown Complete loss of tempo-

ral control (Meck et al.,

2011)

DAT+/− mice Insensitive to psychostimulants Unknown Unknown Reduced sensitivity to

clock-speed effects of

MAPe (Meck et al.,

2011); overestimation of

duration (Cevik, 2003)

Knockdown

DAT−/− mice

Hyperactivity; impaired response

habituation in novel environments

Unknown Unknown Overestimation of dura-

tion (Balci et al., 2009,

2010)

D2R transgenic

mice

Impairment in tasks that require

working memory and behavioral

flexibility

Unknown Unknown Impairment in timing

accuracy and precision

(Drew et al., 2007)

Vipr2−/− miceb No differences from wild-type

littermates

Arrhythmic (Sheward et al.,

2007)

Normal (Sheward et al.,

2007)

Unknown

NET−/− mice Reduced spontaneous locomotor

activity; supersensitive to

psychostimulants

Unknown Unknown Normal (Drew et al., 2007)

Orexin−/− mice Abnormal sleep homeostasis Normal entrainment of

activity and temperature to a

restricted feeding schedule

(Kaur et al., 2008)

Reduced (Kaur et al.,

2008)

Unknown

PROT−/− micec Normal motor ability; impairment

in spatial memory (Meck, 2001)

Unknown Unknown Impairment in timing

accuracy and precision

(Meck, 2001)

GRPR−/− miced Enhanced fear conditioning

(Shumyatsky et al., 2002)

Unknown Unknown Normal (Balci et al., 2008)

aFAA, food-anticipatory activity.
bVipr2, gene encoding the VIP (vasoactive intestinal peptide) receptor VPAC2.
cPROT, proline transporter.
dGRPR, gastrin-releasing peptide receptor.
eMAP, methamphetamine.

brain regions (Kafka et al., 1986). Furthermore, most elements
of dopaminergic transmission have a diurnal rhythm in striatal
regions, including the expression of the DA transporter (DAT), DA
receptors, and the rate-limiting enzyme in DA synthesis, tyrosine

hydroxylase (TH; McClung, 2007). Administration of haloperi-
dol has been found to increase expression levels of clock genes
involved in the transcriptional feedback loop responsible for cir-
cadian rhythms, both in vivo and in cultured SCN cells (Viyoch
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et al., 2005). McClung et al. (2005) reported that Clock mutant
mice reveal increased dopaminergic function, suggesting that the
CLOCK protein plays a part in regulating the transmission of DA
in the brain.

The role of the SCN as a synchronizer or driver of oscilla-
tors outside the hypothalamus is well established, and many brain
regions implicated in cocaine-seeking behavior also contain mole-
cular clocks. Circadian fluctuations in extracellular DA levels in the
striatum and nucleus accumbens have been described (Castaneda
et al., 2004). Furthermore, identification of specific clock binding
elements (E-boxes) within the promoter regions of the DAT, D1A
receptor, and TH genes supports the existence of an interaction
between circadian clocks and dopaminergic neurotransmission.
Indeed, it was recently discovered that the SCN is at least par-
tially responsible for the presence of normal day/night differences
in DAT and TH protein expression in the nucleus accumbens,
mPFC, and caudate (Sleipness et al., 2007a), as well as for the
day/night variation in cocaine-seeking behavior in rats (Sleipness
et al., 2007b).

INTERVAL TIMING
The perception of time in the seconds-to-minutes range, referred
to as interval timing, is involved in foraging, decision making and
multiple-step arithmetic, and has been demonstrated in birds,
fish, rodents, primates, and human infants and adults. The psy-
chophysics of interval timing in humans and other animals has
been studied extensively (Gibbon, 1977; Gibbon et al., 1984a,
1997; Allen and Gibbon, 1991; Penney et al., 2008). One con-
sistent feature of the behavioral data is that the variability in timed
responses increases in direct proportion to the duration of the
interval timed, such that the coefficient of variation (the ratio of
the SD to the mean response) is a constant, i.e., variability exhibits
a scalar property (Gibbon et al., 1997; Buhusi and Meck, 2005).
Much closer examinations of timing data across a broad range of
closely spaced intervals however, reveal occasional yet systematic
departures from scalar variability. These findings have led some
to argue that interval timing depends not on a linear accumula-
tor, but rather on a series of biological oscillators with different
periods (Crystal, 2003; Crystal and Baramidze, 2007). If it is the
case that multiple biological oscillators are responsible for interval
timing, then the molecular mechanisms underlying these oscilla-
tors may share components with the circadian oscillator. In fact,
a Multiple-Oscillator model of interval timing in which entrain-
ment and selection of an appropriate range of oscillators from a
series with periods potentially spanning milliseconds to years has
been proposed. In this case, time is represented by the phase of
the selected oscillators and non-linearities will occur to the extent
that these oscillators are non-overlapping (Church and Broadbent,
1990).

Recent neurophysiological modeling of interval timing pro-
poses that temporally coding neural inputs arise from the electrical
activity of large areas of the cortex (Buhusi and Meck, 2005; Coull
et al., 2011; Oprisan and Buhusi, 2011). The frontal cortex in par-
ticular contains neurons that oscillate at different rates (5–15 Hz)
and striatal spiny neurons that receive their synaptic input from
the cortex can monitor the oscillatory patterns of cortical neural
activity. According to the striatal beat frequency (SBF) model of

interval timing (Matell and Meck, 2004; Lustig et al., 2005; Allman
and Meck, 2011; Coull et al., 2011), coincidence detection in the
striatum results in the identification of a pattern of oscillatory fir-
ings or beats (i.e., similar to a musical chord) among other beats
that represent noise or unrelated information. The probability that
a particular “chord” will be identified as a signal increases as the
number of detectors that simultaneously respond to such beats
increases. In the SBF model, signal durations are translated into
a particular cortical pattern or “chord” formed by the firing of
multiple neurons with different rates of oscillations. Such a cod-
ing scheme ensures that a large number of specific supra-second
intervals can be produced by the integration of a limited number
of primitives represented by different sub-second oscillation fre-
quencies in the cortex. The relevant anatomical connections, neu-
rotransmitters systems, and signal transduction pathways specified
by the SBF model of interval timing are illustrated in Figure 2A.
In comparison with traditional pacemaker/accumulator models
of interval timing (Meck, 1996; Matell and Meck, 2000) where DA
is assumed to be the neurobiological substrate of the pacemaker
pulses, in the SBF model the role of DA is assumed to act as a
“start gun” by indicating the onset of a relevant signal – leading
to the synchronization of cortical oscillations and the resetting
of the membrane properties of the striatal spiny neurons. Con-
sequently, this initial DA pulse coincides with the “closing of the
switch” to begin timing and later, at the end of the interval, a sec-
ond DA pulse co-occurring with the delivery of reward serves to
strengthen synaptic connections that are active within the striatum
at the time of feedback – thereby building a “coincidence detector”
for a specific signal duration (Matell et al., 2003; Matell and Meck,
2004).

MOLECULAR BASIS OF INTERVAL TIMING
The molecular mechanisms supporting the various ways in which
humans and other animals time intervals measured in seconds-to-
minutes remain poorly understood (Buonomano, 2007).

Some of the mechanisms believed to be involved in interval tim-
ing, including neurotransmitter receptors and signal transduction
pathways, are outlined in Figure 2B. Signaling by DA, which acti-
vates both D1- and D2-like receptors, is involved in the regulation
of the timing speed, since DA receptor agonists or antagonists are
able to shift the perception of the signal duration (Meck, 1996;
Williamson et al., 2008; Coull et al., 2011). Strong activation of
cortical glutamate-releasing afferent axons results in release of
glutamate in the striatum, postsynaptic depolarization, and ele-
vation of intracellular Ca2+ levels in the medium spiny neurons.
Activation of NMDA-type glutamate receptors (NMDARs) is also
important for interval timing mechanisms (Cheng et al., 2006,
2007a; Coull et al., 2011; Hata, 2011). These signaling pathways
might lead to the activation of the cAMP-regulated phosphopro-
tein of 32 kDa (DARPP-32) and the cyclic-AMP-response element
binding protein (CREB), which in turn interact with specific
substrates to regulate temporal control of behavior. It has been
proposed that a shift from subcortical-DA-dependent mechanisms
to cortical-Glu-dependent mechanisms occurs as a function of the
amount of training and mGluR2/3 activation (Cheng et al., 2006,
2007a,b; Bhave et al., 2008). Moreover, a postsynaptically released
endocannabinoid (EC) could act as a retrograde messenger, and
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FIGURE 2 | Relationships of different neurons in the striatum and

neurotransmitter signaling involved in interval timing. (A) Schematic
representation of the relationship among oscillatory cortical inputs, medium
spiny neurons, cholinergic interneurons, glutamatergic afferents, and
dopaminergic axons projecting from the substantia nigra pars compacta
(SNpc) to the striatum as specified by the Striatal Beat Frequency model of
interval timing. The direct output pathway to the globus pallidus – external
(GPe) and internal (GPi) segments, and substantia nigra reticulata (SNr) as
well as the indirect pathway to the GPe are indicated. Relevant
neurotransmitters = acetylcholine (ACh), dopamine (DA), γ-aminobutyric
acid (GABA), glutamate (GLU). (B) Detail of dopaminergic, glutamatergic,
and cholinergic input to a striatonigral medium spiny neuron as well as the
principal signal transduction pathways modulating the contribution of
striatal spiny neurons to interval timing. Abbreviations: AC, adenyl cyclase;
ACh, acetylcholine; AMPAR, AMPA receptor; CB1, cannabinoid receptor
type 1; CRE, cyclic-AMP-response element; CREB, CRE binding protein;
DA, dopamine; DAG, 1,2-diacylglycerol; DARPP-32, camp-regulated
phosphoprotein of 32 kDa; D1R, dopamine D1 receptor; D2R, dopamine D2
receptor; EC, endocannabinoids; GABA, γ-aminobutyric acid; Glu,
glutamate; GP, globus pallidus; IP3, inositol 1,4,5 trisphosphate; M1R,
muscrinic acetylcholine receptor 1; M2R, muscarinic acetylcholine receptor
2; mGluR, metabotropic glutamate receptor; NMDAR, N -methyl-D-aspartic
acid receptor; NOS, nitric oxide synthase; PKA, protein kinase A; PKC,
protein kinase C; SNpc, substantia nigra pars compacta; SNr, substantia
nigra pars reticulata; STN, subthalamic nucleus; TrKR, tyrosine kinase
receptor.

lead CB1 cannabinoid receptor inhibition of synaptic release of
glutamate in the dorsolateral striatum (Gerdeman and Lovinger,
2001; Hilário et al., 2007).

In addition, recent studies of molecular genetics have demon-
strated the importance of specific DA regulators on cogni-
tive functioning. Among them, promising candidates are the
DRD2/ANKK1-Taq1a, which is a D2 receptor polymorphism asso-
ciated with decreased D2 density in the striatum, and the genes
regulating the Catechol-O-methyltransferase (COMT) enzyme, –
which degrades catecholamines in the frontal cortex (reviewed
in Savitz et al., 2006). The most frequently studied of these
COMT-related genes is COMT Val158Met, due to its natural allelic
variation in humans. The Val158Met polymorphism is a valine-
to-methionine conversion that occurs within the COMT gene,
affecting the enzymatic activity of the COMT enzyme. Impor-
tantly, these polymorphisms – DRD2/ANKK1-Taq1a and COMT
Val158Met – have been shown to be correlated with the variability
for the timing of specific durations (e.g., 500 and 2,000 ms stan-
dards) as well as the determination of preferred tempos (Wiener
et al., 2011). In another study related to the COMT Val158Met
polymorphism and timing, it was found that subjects carrying the
VAL allele (VAL/VAL, VAL/MET) showed a significant speed up of
the internal clock in comparison to carriers without the VAL allele
(MET/MET) in a second production task (Reuter et al., 2005).
Moreover, a study conducted on synchronous swimmers showed
that individual differences in the COMT polymorphism were asso-
ciated with the reproduction of short time intervals (<2 s). Thus,
the carriers of MET/MET polymorphism over-reproduced 1–2 s
durations in a duration reproduction task (Portnova et al., 2007).
Furthermore, polymorphisms in genes coding for serotonin (5-
HT) availability in the cell (5HTT, MOAO, and 5HT2a) showed
association with the “loss rate” of duration representations (Syso-
eva et al., 2010), which can be related to the properties of interval
timing, such as clock-speed and/or rate of decay of the clock
reading (Buhusi and Meck, 2009a; Coull et al., 2011).

WHAT TYPES OF CIRCADIAN INFLUENCE ARE THERE ON INTERVAL
TIMING?
There are a variety of similarities between interval and circa-
dian timing at the behavioral level to suggest a possible shared
molecular basis. As described above, animals use both interval
and circadian timing in complementary ways to anticipate the
temporal regularity of daily feedings (Terman et al., 1984); as
a particular example, such mechanisms are needed to estimate
the amount of time that a female ringdove spends sitting on its
nest and when it is time for the male ringdove to take over (Gib-
bon et al., 1984b). Time-of-day effects have been observed for the
timing of auditory and visual signals in the seconds-to-minutes
range (Aschoff, 1985; Chandrashekaran et al., 1991; Meck, 1991;
Pati and Gupta, 1994; Kuriyama et al., 2005). For example, the
accuracy for the reproduction of short durations varies with the
circadian cycle, such that reproductions are longer at night and
in the morning than in the middle of the day (Aschoff, 1998b),
while the differential allocation of attention to auditory and visual
signal durations covaries as a function, among other variables,
of circadian phase (Lustig and Meck, 2001). When humans live
in isolation with no external time cues, their perception of the
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duration of an hour is highly correlated with τ (tau), their mean
circadian period (Aschoff, 1984). In contrast, the production of
short intervals within the range of 10- to 20-s is neither correlated
with the subject’s 1-h time estimates or with the duration of wake
time (Aschoff, 1985, 1998a). Nevertheless, the remembered time
of reinforcement in the peak-interval procedure using target dura-
tions in the seconds-to-minutes range has been shown to exhibit
photoperiodic variation in a manner similar to that previously
observed for reproductive function in rodents (MacDonald et al.,
2007). Consistent with this finding, a circadian rhythm in time
estimates was documented in control subjects, but was found to
be disrupted in shift workers (Pati and Gupta, 1994). It has also
been reported that sleep deprivation influences diurnal variation
of time estimation in humans (Soshi et al., 2010). In Drosophila
melanogaster, for example, the timing of short intervals is dis-
rupted in circadian mutants (Kyriacou and Hall, 1980). Moreover,
rats exhibit circadian variations in time perception similar to those
that have been demonstrated in humans (Shurtleff et al., 1990;
Meck, 1991). Recently, significant differences in the estimation
of 24-s intervals at different times of day were reported in mice
(Agostino et al., 2011). These differences were maintained under
constant dark (DD) conditions. Interval timing was also impaired
in mice under constant light (LL) conditions, which abolish cir-
cadian rhythmicity. Taken together, these results suggest that time
estimation in the seconds-to-minutes range may be modulated by
the circadian clock (Meck, 1991; Hinton and Meck, 1997). It is
important to note that circadian effects on interval timing might
also be mediated not directly through the endogenous clock, but
also by changes in external stimulation [such as the light–dark
(LD) cycle, access to food, temperature, etc.]. In particular, alter-
ations of time perception in shift workers (as well as what could
happen in other conditions of circadian disruption) might also be
related to changes in anxiety and stress, as well as the relative sleep
deprivation state that accompanies these types of work schedules
(Åkerstedt, 2003).

An obvious question is whether the orchestration of interval
timing with circadian rhythms shares at least part of their mole-
cular machinery. The accurate timing in seconds, minutes, hours,
and days allows foraging animals not only to calculate their rate
of return and gage a safe length of time before competitors or
predators appear, but also to set a temporal horizon before going
to sleep or making decisions about future events (Bateson, 2003;
Rosati et al., 2007). Two recent studies using mutant and knock-
out mice, however, indicate that interval and circadian timing are
relatively independent at the molecular level (Cordes and Gallis-
tel, 2008; Papachristos et al., 2011). Cordes and Gallistel (2008)
have reported intact interval timing in Clock mutant mice, which
have previously been shown to have a point mutation in the Clock
gene leading to inactive CLOCK proteins and impaired circa-
dian timing. When housed in a 12:12-h LD cycle, Clock mutant
mice entrain to the light cycle and maintain rhythmicity like their
wild-type littermates. In complete darkness, however, heterozy-
gotes have a longer rhythm than wild types (∼24.4 h, as compared
with ∼23.3 h) while homozygotes maintain an even longer period
(∼27.3 h), before losing rhythmicity within the first 5–15 cycles
(Vitaterna et al., 1994). Consequently, Cordes and Gallistel (2008)
trained Clock mutant mice and controls in a peak-interval timing

procedure using 10 and 20-s visual signal durations in order to
determine if expression of the Clock gene was necessary for nor-
mal interval timing. The results indicated no impairments in the
timing of the 10- and 20-s signal durations across the three Clock
genotypes. If anything, the data suggest that homozygous Clock
mice are both more accurate and precise in timing short inter-
vals as compared with their wild-type littermates – possibly due
to an increased clock-speed resulting from enhanced dopaminer-
gic function (McClung et al., 2005). It should be noted, however,
that under the experimental conditions utilized by Cordes and
Gallistel (2008), Clock mutant mice were constantly entrained to
the LD cycle and therefore maintained normal rhythmicity much
like their wild-type littermates. Because of this LD entrainment,
it would be important to study the effects of a Clock mutation on
interval timing either under DD or LL conditions during which
the circadian clocks in heterozygous and homozygous mice could
“free run” differentially as a function of the Clock genotype (see
Vitaterna et al., 1994). Recently, Papachristos et al. (2011) trained
Cry1/Cry2 double knockout mice on an interval timing task with
durations that ranged between 3 and 27 s. Homozygous knockouts
displayed an accurate and precise temporal memory similar to that
of the control mice, suggesting that the Cry1 and Cry2 genes are
not an important component of the interval timer. However, it
should be noted that in this study interval timing was assessed in
a different group of mice than the one used for the evaluation of
circadian rhythmicity and, in addition, mice were fed once a day
at the same time of day, therefore providing a potential temporal
cue that might mask circadian rhythmicity and influence time per-
ception in the seconds-to-minutes range (see Challet et al., 2003;
Feillet et al., 2006a; Challet, 2007; Balsam et al., 2009; Steinman
et al., 2011).

In general, these results suggest that expression of the Clock or
Cry genes is not necessary for normal interval timing in the mouse.
Although these findings suggest that interval and circadian tim-
ing are independent at the molecular level, other genes need to
be explored in this regard, (e.g., Period). Moreover, more strict
circadian paradigms need to be applied in order to clearly dissect
the behaviors under study (including experiments under constant
light or constant dark situations, as well as testing for additional
memory tasks).

Rather than relying on common oscillatory mechanisms, the
behavioral correlations observed between interval and circadian
timing may be indicative of a different sort of relationship.
Diverse lines of evidence suggest functional links among mesolim-
bic, nigrostriatal, and mesocortical dopaminergic systems (Meck,
1983, 1996, 2006a,b; Gu et al., 2011). For example, pharmacologi-
cal manipulations indicate that cortico-striatal DA levels regulate
the speed of the interval timer, as administration of indirect DA
agonists such as cocaine and methamphetamine produce a pro-
portional leftward shift of timing functions (i.e., speeds up the
interval timer; Meck, 1983, 1996; Matell et al., 2004, 2006), while
DA receptor blockers such as haloperidol and raclopride produce
the opposite effect (Meck, 1983, 1986, 1996; Drew et al., 2003;
MacDonald and Meck, 2004, 2005, 2006). The D2 receptor has
been identified as being critical to the mediation of these phar-
macological effects (Meck, 1986; MacDonald and Meck, 2006)
and transient overexpression of striatal D2 receptors impairs the
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acquisition of temporal control in a 24-s peak-interval procedure
(Drew et al., 2007). In addition, deletion of the DAT gene, but not
the norepinephrine transporter (NET) gene, abolishes the ability
to discriminate supra-second durations in homozygous mice and
leads to a decreased sensitivity to the clock-speed enhancing effects
of methamphetamine in the heterozygous mice, indicating that
excess levels of DA “flood” the temporal integration process and
impair interval timing (Meck et al., 2011). Likewise, lesions of the
DA/DAT rich areas such as the substantia nigra pars compacta and
dorsal striatum lead to decreased levels of DA and impairments
in supra-second timing in both humans and rats (Malapani et al.,
1998; Meck, 2006b; Coull et al., 2011). Moreover, electrophysio-
logical recordings from striatal spiny neurons that receive both
dopaminergic and glutaminergic inputs show them to be involved
in the coding of durations in the seconds-to-minutes range (Matell
et al., 2003; Cheng et al., 2007a; Chiba et al., 2008; Meck et al.,
2008). The dopaminergic–glutamatergic pathways that modulate
interval timing in mammals are outlined in Figure 2A, whereas
studies using genetically modified mice to explore the molecular
basis of circadian and interval timing are outlined in Table 2.

OPEN QUESTIONS ABOUT TIMING MECHANISMS
Behaviorally, interval timing and reward prediction have been
demonstrated across various vertebrate models of learning,
including humans, primates, rodents, birds, and fish, as well
as invertebrate models, such as Drosophila melanogaster and
Caenorhabditis elegans (Lejeune and Wearden, 1991; Hills, 2003;
Penney et al., 2008). One structure of particular interest with
regard to interval timing and reward prediction in vertebrates is
the habenula, a well-conserved component of the epithalamus and
a prominent structure in a model system such as zebrafish (Lee
et al., 2010; Cheng et al., 2011). Importantly, zebrafish have an
interesting asymmetry in habenula input, i.e., only the right habe-
nula receives input from the forebrain (Hendricks and Jesuthasan,
2007). This asymmetry may provide an ideal situation for localiz-
ing timing and reward prediction mechanisms (Bromberg-Martin
et al., 2010a,b). Investigation of the role of the habenula in neural
circuits for the anticipation of reward has yet to be extended to
zebrafish, and should prove worthwhile considering the emerg-
ing recognition of the importance of the habenula to cognition
and behavior. Moreover, memory of time intervals in the order of
seconds, for durations up to 20-s, has been observed in zebrafish
larvae (Sumbre et al., 2008). Given that robust circadian rhythms
in the locomotor activity of larval (10- to 15-day-old) zebrafish
have been observed in constant lighting conditions, this model is
likely to prove useful for mutational analyses of both vertebrate
interval and circadian timing. In this and other animal models

(certainly including mammals and, in particular, rodents), there
are still some of outstanding questions to be addressed. For exam-
ple, the exact molecular mechanisms underlying interval timing
remain to be established. Moreover, the circadian modulation of
interval timing is lacking a mechanistic explanation and a neu-
roanatomical substrate (or substrates). Finally, the neurochemical
common nature of both processes and their interaction is also
matter of controversy.

PERSPECTIVES ON FUTURE DIRECTIONS
While circadian modulation of interval timing may involve a vari-
ety of brain regions including the SCN, recent evidence suggests
that this structure alone does not directly mediate the timing
of short durations (Lewis et al., 2003). However, the SCN may
nevertheless modulate circadian changes in interval timing. This
modulation can be interpreted in terms of adaptation require-
ments, given that the same accuracy of time estimation might not
be needed at all times throughout the daily cycle. Consistent with
this account are the observations that time judgments in humans
co-vary with normal circadian rhythms (Kuriyama et al., 2005)
and are disrupted in shift workers (Pati and Gupta, 1994). More-
over, rats and mice exhibit circadian variations in time perception
similar to those that have been demonstrated in humans (Shurtleff
et al., 1990; Meck, 2001; Agostino et al., 2011).

In addition, both timing mechanisms might share a common
link in terms of the regulation of arousal or motivational states.
Indeed, acquisition of operant cycles of reinforcement, frequently
used for the evaluation of interval timing, requires the activation
of reward pathways in the brain, usually driven by food stimula-
tion in partially deprived animals (Church and Lacourse, 2001). It
is worth noting that at least some features of circadian entrain-
ment (such as non-photic synchronization induced by forced
locomotion, feeding or neurochemical stimulation by metham-
phetamine, and other agents) also depend upon reward-related
mechanisms, including dopaminergic activation. Consequently,
a common molecular basis related to dopaminergic function in
cortico-striatal pathways appears to be the most promising link
between interval and circadian timing.

In summary, it is clear that timing and time perception have
been instrumental for adaptation to a cyclic and somewhat pre-
dictable environment. Endogenous timing mechanisms cover sev-
eral orders of magnitude of event frequencies and could be inter-
preted as a continuum that extends from duration estimation in
the seconds range to developmental and lifespan experiences on
the order of years. Unwinding the molecular basis for these rela-
tionships should lead to a better understanding of the intricate
labyrinths of cognitive and neural timing systems.
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