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parietal-central areas

Half a century after the discovery of the contingent negative vari-
ation (CNV, Walter et al., 1964), it is still unclear what drives this
slow negative wave in the electroencephalogram (EEG) when a
participant is anticipating an event of interest. From the begin-
ning, it has been suggested that the CNV, and more specifically
its amplitude, reflects expectancy or motivation, all related to
the intention to perform an act (e.g., McAdam et al., 1969; for a
review, see Tecce, 1972). As the CNV only fully develops when
a response is required at a predictable point in time, it depends
on accurate temporal preparation, which requires the ability to
estimate time. This ability has often been explained in terms of
the influential pacemaker-accumulator models of interval timing
(e.g., Treisman, 1963; Gibbon et al., 1984; Meck, 1996; Wearden,
1999; Meck and Benson, 2002; Taatgen et al., 2007). Given the
similarity between the CNV and the hypothesized characteristics
of the accumulation process in these models, it has been proposed
that the CNV is the signature of a neural substrate of the tem-
poral accumulator (see Macar and Vidal, 2009). According to the
proponents of this view, a number of empirical studies support
this hypothesis. Here we critically review these studies, focusing
on two claims that are key to the idea that the CNV reflects the
temporal accumulator.

PERFORMANCE-DEPENDENT VARIATIONS OF THE CNV

If the amplitude of the CNV is related to the value of the tem-
poral accumulator, variations in the CNV should be reflected in
timing performance. Macar et al. (1999, Experiment 1) observed
a correlation between the reproduced duration and the CNV
amplitude, a finding that has been interpreted as evidence in sup-
port of this hypothesis. In Macar et al’s experiment, participants
were asked to repeatedly reproduce an interval of 2.5 s. The aver-
age CNV amplitude was calculated separately for trials in which
participants responded too early (2.2-2.4s), correctly (2.4-2.6s),

The relation between the contingent negative variation (CNV) and time estimation is
evaluated in terms of temporal accumulation and preparation processes. The conclusion
is that the CNV as measured from the electroencephalogram (EEG) recorded at
fronto-central and parietal-central areas is not a direct reflection of the underlying interval
timing mechanism(s), but more likely represents a time-based response preparation/
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or too long (2.6-2.8s), and showed a positive correlation with
reproduced duration (see Figure 1 in Casini and Vidal, 2011 for
an illustration of these findings).

At first glance, this correlation between the CNV and the
assumed state of the accumulator seems to be strong support in
favor of the hypothesis that the CNV directly reflects the accu-
mulation process. However, a careful analysis of the arguments
in terms of the default pacemaker-accumulator model reveals
a number of inconsistencies. For example, if the speed of the
pacemaker is higher, pulses accumulate more quickly, and there-
fore, the threshold should be reached earlier. In other words, if
larger CNV amplitudes reflect more accumulated pulses, then
why don’t participants respond before the target duration on
high-amplitude CNV trials and after the target duration on
low-amplitude CNV trials? Assuming continuous comparisons
between the accumulator and threshold, the estimated dura-
tion should be “shorter” with higher pacemaker speeds since
the threshold will be reached sooner and vice versa with lower
pacemaker speeds.

Differences in amplitude can, in the context of a threshold-
based pacemaker-accumulator account, only be explained when
it is assumed that the comparisons between the accumulator
and threshold are not continuously made. If comparisons are
not made continuously, the number of pulses that reaches the
accumulator between two comparisons is the maximum over-
shoot (plus one) that can be observed, yielding a correlation
between the speed of the pacemaker and the value of the accu-
mulator at the response. For example, if the threshold is known
to be 100 pulses and five pulses reach the accumulator between
subsequent threshold-accumulator comparisons, the maximum
observed amplitude reflects 99 + 5 = 104 pulses. However, if the
speed of the pacemaker is doubled, the maximum amplitude
is 99 + 10 = 109 pulses. Although this might explain how an
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increased pulse rate results in an increased CNV amplitude, the
threshold will still be reached before (or at) the standard time. In
other words, it is difficult to explain how a higher speed should
result in increased CNV amplitudes and longer estimations if
one assumes that the basic pacemaker-accumulator model is cor-
rect. An association between short estimations and lower CNV
amplitudes is even more difficult to explain in the context of a
threshold-driven pacemaker-accumulator model. If the CNV is
still below the average value, it is unlikely that the accumulator
already has reached the threshold.

An alternative explanation, favored by Macar et al. (1999), is
that the trials resulting in “short,” “correct,” and “long” dura-
tions accumulate up to different thresholds. These investigators
assume that the intrinsic properties of the neural system cause
an increase in activation after the onset of an interval and that
the response is given when the peak of activation is reached
(Macar et al., 1999; Macar and Vidal, 2009). Thus, if an onset
results in a higher boost of activation, the CNV will have a higher
amplitude and a later deflection point, resulting in longer esti-
mations. Although the idea of variations in threshold is often
found in the literature (see, for example, computational models of
the role of memory in interval timing, e.g., Jazayeri and Shadlen,
2010; Taatgen and van Rijn, 2011), this is not typically associated
with performance-dependent variations in the CNV. This is not
surprising because a link between different thresholds and CNV
amplitudes would imply that different durations (e.g., durations
of 1, 2, and 3 s) are associated with different amplitudes, whereas
these correlations are not typically found (e.g., Elbert et al., 1991;
Gibbons and Rammsayer, 2004; Praamstra et al., 2006, and see
Praamstra, 2010 for a review of foreperiod effects).

In light of these theoretical issues, it is relevant to men-
tion that Kononowicz and van Rijn (2011) recently failed to
replicate the findings of Macaretal. (1999). In two experi-
ments, which were close replicates of the original study, no
performance-dependent variations in the CNV were found. In
addition, Kononowicz and van Rijn (2011) found a habituation
effect, which is not in line with the predicted role of the CNV,
i.e., if the amplitude of the CNV has a one-to-one mapping to
the state of the accumulator, it would be implausible for the
CNV amplitude to diminish over the scope of the experiment
while the time estimations stay constant. It should be noted
that the Kononowicz and van Rijn (2011) study is not the only
reported failure to replicate these results, as one condition of a
study by Macar and Vidal (2002, labeled “Condition 1”) was a
close replication of the original experiment, but no performance-
dependent variations in the CNV were observed. Moreover,
although it may be that differences in CNV cannot be read-
ily generalized to differences in blood oxygen level-dependent
(BOLD) response, no performance-dependent variations in the
pre-supplementary motor area (SMA, typically associated with
the CNV) BOLD signal were found in a functional magnetic reso-
nance imaging (fMRI) replication of the 1999 study (Macar et al.,
2004). However, other studies have found differences in BOLD
response during the reproduction and estimation of different
intervals. For example, a stronger BOLD response was found
in many brain areas, including the SMA, during the estima-
tion and reproduction of a 1300 ms interval than during the

estimation and reproduction of a 450 ms interval (Pouthas et al.,
2005). Interestingly, when participants had to encode and repro-
duce durations of 9-18 s in a study by Wittmann et al. (2010), the
activation of the posterior insula resembled an accumulation pro-
cess, but the SMA activation followed an inverse U-shape pattern
during encoding. Thus, although fMRI studies have been able to
identify brain areas that are differentially active during the pro-
cessing of different durations, it appears that the basic effects
reported by Macar et al. (1999) are difficult to replicate in both
EEG and fMRI studies.

A second experiment reported in Macar et al. (1999) has also
been interpreted in favor of performance-dependent variations
in the CNV. In this experiment, participants learned a standard
duration and were later asked to categorize presented durations as
either shorter, equal, or longer than the standard. The predicted
pattern was found between CNV and duration estimation, with
trials categorized as “long” being associated with a higher ampli-
tude CNV than the trials categorized as “short.” This finding was
replicated in a study by Bendixen et al. (2005) in which partici-
pants had to indicate whether a 480 or 520 ms tone was longer or
shorter than a previously learned standard of 500 ms.

However, these performance-dependent variations are diffi-
cult to reconcile with studies that show that the CNV deflects or
resolves after a standard has been reached (e.g., Macar and Vidal,
2003, see also, Pfeuty et al., 2003, 2005; Nget al,, 2011). If the
decision to categorize a particular trial as “long” is made on the
basis of a comparison to the standard, then in these trials the accu-
mulator should have already reached the value of the standard.
This notion is supported by the duration bisection data pre-
sented in Ngetal. (2011). In this experiment, participants were
presented a “long” and a “short” anchor of 800 and 3200 ms,
and were asked to categorize seven intermediate durations as
either more similar to the “long,” or to the “short” anchor. When
combining the three intermediate conditions (1270, 1600, and
2016 ms) in which neither answer category was dominant, a par-
tial least squares analysis (McIntosh and Lobaugh, 2004) revealed
that when a “long” categorization was given, the CNV was either
similar to or had a lower amplitude than when a short categoriza-
tion was provided. Moreover, although EEG differences have been
observed in duration bisection for trials participants categorized
as “short” or “long,” this effect is related to the power of the alpha
band in event-related synchronization rather than the amplitude
of the CNV (Ngetal., 2011).

Thus, recent electrophysiological studies from a number of
labs indicate that the presentation of a stimulus duration longer
than the standard is associated with a deflection of the CNV at
the time of the standard. As an “equal” response will be based on
the accumulator reaching the threshold at the perceived time of
stimulus offset, a “long” response assumes that the accumulator
had reached the threshold some time before the offset of the stim-
ulus. This in turn implies that the deflection should already have
been observed and thus that the CNV amplitude for “long” esti-
mations is lower than that for “short” or “correct” estimations.
As higher CNV amplitudes were observed for the “long” esti-
mations in Experiment 2 of Macar et al. (1999), these results are
difficult to reconcile with a consistent application of the hypothe-
sis that the CNV reflects function of the accumulator proposed
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by pacemaker-accumulator models (Gibbon et al., 1984; Meck,
1996; Meck and Benson, 2002).

To summarize, although stable performance-dependent varia-
tions of the CNV would be evidence in favor of the CNV as the
signature of a neural substrate of the temporal accumulator, none
of the above-mentioned studies provides unequivocal evidence in
favor of that view.

LOCALIZATION OF THE CNV

If the CNV reflects the neural substrate of the temporal
accumulator, its location should be fairly stable. And indeed,
both fMRI and EEG/Magnetoencephalography studies (see, for
example, Pouthas, 2003; Meck et al., 2008; Coull et al., 2011;
Schwartze et al., in press, for an overview) have shown that the
SMA subserves a variety of timing tasks. However, arguing that
this proves that the SMA serves as the common accumulator for
temporal processing is an error of omission. That is, many EEG
studies over the years have found CNV-like patterns at different
locations. For example, Praamstra et al. (2006) have shown in a
foreperiod study that the strongest signal was observed at the later-
alized pre-motor cortices instead of at SMA, a finding thatis in line
with evidence from primate neurophysiology (Mauritz and Wise,
1986) and fMRI studies (e.g., Schubotz et al., 2000). Moreover,
single-cell recording studies have shown ramping activation in
neurons in the posterior parietal cortex (Leon and Shadlen, 2003),
and the earlier mentioned fMRI study by Wittmann et al. (2010)
has demonstrated accumulation patterns in the posterior insula.

As all of these locations show a ramping pattern of activation,
all of these locations could, in principle, be a neural substrate of
temporally mediated response preparation. These findings have,
therefore, supported the view (e.g., Praamstra, 2010) that dis-
tinct neural substrates are implicated in temporal preparation in a
task-dependent manner, probably depending on the type of tem-
poral processing that is required for a particular behavior. In other
words, although the activation measured at the SMAs does have a
link with temporal performance, it is unlikely that the SMAs are
the sole receiver of temporal information (see Buhusi and Meck,
2005 as well as Wiener et al., 2010, for a meta-analysis).

This idea is further supported by a recent fMRI study that
examined which brain areas were uniquely involved in interval
timing, and which brain areas were also influenced by non-
temporal tasks (Livesey et al., 2007—see also Meck et al., 2008).
Interestingly, the levels of activation measured in small portions
of the inferior frontal gyrus, the anterior insulae and the left
supramarginal gyrus, and the putamen were only influenced by
time estimation, whereas the pre-SMA was also strongly influ-
enced by the difficulty of the non-temporal task. This result led
the authors to suggest that areas other than the pre-SMA are crit-
ically involved in temporal processing, and that activity in the
pre-SMA is related to cognitive effort or task difficulty.

WHAT DOES THE CNV REPRESENT?

However, what does the buildup of negativity represent if the
CNV is not the reflection of the accumulator of temporal infor-
mation? Two proposals will be discussed here. The first proposes
a direct link between oscillatory processes and the CNV and
assumes that the CNV increases over time as larger groups of

neurons fire simultaneously. The second proposal assumes that
the CNV reflects a time-based preparation process.

Many of the CNV results could be viewed as being con-
sistent with an “oscillator” process if one makes the following
assumptions: (1) Scalp detected event-related potential (ERP)
components, like the CNV, reflect postsynaptic potentials (PSPs)
synchronized across many (i.e., thousands of) neurons. (2)
The periodic cortical neurons that form a core component
of oscillatory models (e.g., striatal beat-frequency model of
Matell and Meck, 2000, 2004—see Oprisan and Buhusi, 2011)
normally fire at random with respect to each other. Hence, sum-
mation of the PSPs that precede those action potentials is main-
tained at some baseline level. This is true both for neurons that
have the same, as well as different periods. (3) According to the
striatal beat-frequency model, a signal emitted from the substan-
tia nigra at signal onset acts as a “start-gun” to reset the periodic
cortical neurons such that neurons with the same periodicity are
synchronized and those with different periodicities share the same
initial start point. (4) As the timing signal elapses, the number of
near simultaneous PSPs should increase and, therefore, the EEG
mean voltage should move away from the baseline level present
when the periodic neurons are active at random with respect to
each other. Resolution of the CNV occurs when the periodicities
return to a “random” relationship with each other, or when the
oscillators are reset to start timing a new interval. Such a pro-
posal has some obvious limitations, but it provides a reasonable
account of some of the EEG/ERP effects that can be accounted for
by oscillatory models and, equally important, it should be possi-
ble to design ways to test it (MacDonald and Meck, 2004, 2006;
Brannon et al., 2008).

Another explanation of the CNV phenomena assumes that
the CNV reflects readiness or preparation for the processing of
an event instead of temporal accumulation (e.g., Elbert, 1993).
According to this view, the increased negativity (which results in
decreased information processing thresholds) reflects the antic-
ipation of an upcoming and relevant event. Data that supports
this view has both been provided using CNV-related research
(for review see Elbert, 1993) and more recent fMRI research. For
example, Forstmann and van Maanen (Forstmann et al., 2008;
van Maanen et al., in press) have shown in a series of studies that
the pre-SMA is more active in conditions in which a fast response
is required than in conditions in which an accurate response is
expected. Using similar arguments as Elbert (1993), Forstmann
and van Maanen link the activity of the pre-SMA to a reduc-
tion of inhibition at the level of the basal ganglia. Combined,
this work supports the idea that the buildup of negativity is not a
source of temporal information, but a consequence of a temporal
preparation for an upcoming event.

The “temporal preparation” hypothesis is supported by the
Ngetal. (2011) duration-bisection study discussed above. An
analysis of the EEG data showed a negative deflection, which
started at the onset of the to-be bisected duration, and reached its
maximum at 800 ms, the “short” anchor duration. Interestingly,
the amplitude remained stable for about 800 ms, after which
the CNV began to resolve. The deflection point at 1600 ms cor-
responds with the stimulus duration at which the participants
switched from predominantly answering “short” to “long,” and
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is as such comparable to the effects found in the temporal gen-
eralization study of Macar and Vidal (2003). However, the stable
CNV amplitude between 800 and 1600 ms (and similar stable pat-
terns in Elbert et al., 1991 and Gibbons and Rammsayer, 2004) is
difficult to reconcile with a direct link between the CNV and the
temporal accumulator, as in this view a stable CNV amplitude
indicates a constant subjective perceived duration. A constant
subjective duration would have resulted in erratic performance,
something that was not observed. In contrast, Ngetal. (2011)
interpreted the boundaries of the plateau as two target dura-
tions, with the first target duration indicating that a relevant
signal might appear from that point on, and the second target
duration indicating that any upcoming signal would carry less rel-
evance since the answer (“long”) could already be deduced based

on the passage of time. Consequently, these findings support the
view that the CNV amplitude reflects the expectancy of a relevant
event, something that is based on temporal information, but not
the source of temporal information.

In conclusion, experiments that are often cited in favor of
a direct link between the CNV and the temporal accumulator
cannot be straightforwardly interpreted, and have shown to be
difficult to replicate. It is, therefore, our view that proposals
based on this direct link need to be re-evaluated in light of the
inconsistencies in the supporting EEG data and lack of congru-
ence with physiologically plausible models of interval timing (see
Allman and Meck, in press; Coull et al., 2011; Matell et al., 2011;
Oprisan and Buhusi, 2011; Portugal et al.,, 2011; Simen et al.,
2011).
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