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The primate brain is adept at rapidly grouping items and events into functional classes,
or categories, in order to recognize the significance of stimuli and guide behavior.
Higher cognitive functions have traditionally been considered the domain of frontal areas.
However, increasing evidence suggests that parietal cortex is also involved in categorical
and associative processes. Previous work showed that the parietal cortex is highly involved
in spatial processing, attention, and saccadic eye movement planning, and more recent
studies have found decision-making signals in lateral intraparietal area (LIP). We recently
found that a subdivision of parietal cortex, LIP, reflects learned categories for multiple
types of visual stimuli. Additionally, a comparison of categorization signals in parietal and
frontal areas found stronger and earlier categorization signals in parietal cortex arguing
that, in trained animals, parietal abstract association or category signals are unlikely to
arise via feedback from prefrontal cortex (PFC).
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INTRODUCTION
Parietal cortex was historically considered “association cortex”
because it appeared to integrate sensory information to gener-
ate perceptions of the external world and guide body movements.
Anatomical, physiological, and lesion data suggested that parietal
cortex is well positioned to associate and adapt sensory infor-
mation into a form that is useful for guiding behavior. Humans
with lesions in the inferior parietal lobule do not experience basic
sensory deficits, such as blindness or loss of somatosensation,
but rather have more complex symptoms, including deficits in
attention, movement planning, and spatial orientation (Critchley,
1953; Mountcastle et al., 1975).

Studies have pinpointed several brain areas that are involved
in visual learning and categorization. Of these, lateral intrapari-
etal area (LIP) is of particular interest, because it shares reciprocal
connections with both early visual areas as well as higher cogni-
tion centers and is thus in an optimal position to integrate inputs
from both regions. In this review, we focus on recent work in
macaques which highlights LIP’s role in categorization.

SPATIAL PROCESSING
Decades of work has elaborated robust modulation of parietal
subdivision LIP by spatial attention and saccadic eye movements
(Andersen and Buneo, 2002; Goldberg et al., 2006). Shadlen
and colleagues have argued further that LIP encodes perceptual
decisions in an “intentional framework” embedded within the
motor-planning system (Shadlen et al., 2008). In these studies,
subjects used saccadic eye movements to report their decisions,
and signals related to decision and eye movements were observed
in LIP. However, it is unclear how a decision system based on
planning specific motor responses could be extended to explain

more abstract decisions that do not necessarily result in spe-
cific and predictable motor responses (Freedman and Assad,
2011).

NON-SPATIAL PROCESSING
While most work on LIP has focused on its role in spatial pro-
cessing, LIP neurons also show selectivity for various stimulus
attributes during both passive-viewing and more complex behav-
ioral paradigms. For example, LIP neurons respond selectively
to the directions of moving random-dot stimuli (Fanini and
Assad, 2009). LIP neurons also respond selectively to static, two-
dimensional shape stimuli during passive viewing (Sereno and
Maunsell, 1998; Janssen et al., 2008) and a delayed match-to-
sample task (Sereno and Maunsell, 1998; Sereno and Amador,
2006). In these studies, stimuli were presented in neurons’ recep-
tive fields (RFs); thus the stimulus selectivity could not be
explained by LIP spatial selectivity.

Visual-feature selectivity in LIP has been shown to change
depending on the features that are relevant for solving a behav-
ioral task. For example, LIP neurons are selective for color when
colored cues are used to direct saccadic eye movements (Toth and
Assad, 2002). In this study, monkeys were trained such that in
alternating blocks of trials, either the color or location of a stim-
ulus determined the direction of an upcoming saccade. When
color was relevant, neurons were often color selective. In con-
trast, the same neurons showed much less color selectivity when
cue location (but not color) was relevant for saccade planning.
Moreover, when color was relevant for directing the saccade, the
animal could not predict the upcoming saccade direction. Thus,
color selectivity was not an artifact of saccade planning or spatial
selectivity. This suggests that LIP can encode arbitrary stimulus
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properties not simply when they are important for guiding an
action, but also when they are relevant to solving a task.

Posterior parietal (including LIP and 7a) neurons may also
encode the “rules” that dictate how the animals should link
stimuli to responses. Stoet and Synder trained monkeys on a task-
switching paradigm in which the animals alternated between two
stimulus-response mappings (Stoet and Snyder, 2004). A pre-trial
task cue instructed animals to discriminate either the color or ori-
entation of a subsequent test stimulus to generate an appropriate
response. Neurons in areas of posterior parietal cortex, including
LIP, were selective for the task rules even before the test stim-
uli were turned on. These studies show that LIP activity reflects
cognitive signals that are not related to spatial encoding; more-
over, they suggest that LIP activity reflects changes in behavioral
demands.

CATEGORICAL ENCODING
These experiments showed that LIP is involved in functions
beyond spatial processing and raise the possibility that LIP plays
a general role in cognitive processing. A strong test for the pres-
ence of abstract cognitive signals is whether LIP neurons represent
categories. Categorization is a fundamental cognitive ability that
assigns meaning to stimuli. Stimuli in the same category may be
physically dissimilar, while stimuli in different categories may be
physically similar. For instance, a wheel and a clock may look
alike, but serve different functions. Categorical signals have been
observed in prefrontal cortex (PFC) when monkeys learned to
categorize morphed visual stimuli as “cats” or “dogs” (Freedman
et al., 2001). In contrast, neurons in inferior temporal (IT) cortex
showed very weak category encoding, but were strongly selective
for the features of visual stimuli (Freedman et al., 2003).

Freedman and Assad (2006) asked whether direction selectiv-
ity in LIP is plastic depending on the category rule used to solve
the task. Two monkeys performed a delayed-match-to-category
task, in which they learned to group 360◦ of motion directions
into two 180◦-wide categories. The stimuli were patches of high-
coherence random-dot movies. Animals were presented with a
sample and a test stimulus separated by a delay period. If the
sample and test directions belonged to the same category, ani-
mals released a touch-bar to receive a reward. Because the sample
and test categories were chosen randomly on each trial, animals
could not predict during the sample and delay periods whether
to release or to continue holding the touch-bar to a future test
stimulus.

After the animals were proficient in the direction categoriza-
tion task, LIP activity was recorded during task performance.
Sample and test stimuli were placed in neurons’ RFs in order
to elicit strong visual responses. Neuronal activity reflected the
learned motion categories—that is, individual neurons tended
to show smaller differences in firing rate within categories, and
larger differences in firing rate between categories. This effect was
present during stimulus presentation and the subsequent delay
period, when no stimulus was present in the RF. The animals were
then retrained on a new category boundary over the course of
several weeks, and a second population of neurons was recorded.
After the monkeys learned the second boundary, LIP selectiv-
ity had “shifted” dramatically away from the previous category

boundary and reflected the new category boundary. Thus, LIP
activity changes to reflect the learned category membership of
visual stimuli. Similarly, PFC neurons showed similar shifting of
representations following retraining (Freedman et al., 2001) and
differential activity when identical stimuli are classified according
to varying rules (Roy et al., 2010).

In contrast, neurons in the middle temporal area (MT), which
is directly interconnected with LIP, were little affected by cat-
egory training. MT contains a preponderance of neurons that
are selective for motion direction (Born and Bradley, 2005), and
nearly all of the recorded MT neurons were also highly direc-
tion selective in the direction categorization task. The preferred
directions of individual MT neurons were distributed almost
uniformly in the direction categorization task and thus did not
reflect the category boundary or category membership of the
motion stimuli (Freedman and Assad, 2006). Because motion cat-
egory selectivity was absent in area MT but present in LIP, an
intriguing possibility is that directional signals in MT are trans-
formed into more abstract categorical representations in LIP. This
could occur via plasticity within the hierarchy of parietal cor-
tical processing or even in the direct interconnections between
MT and LIP.

Freedman and Assad examined how LIP’s categorical sig-
nals interact with spatial signals by varying the position of the
direction stimuli with respect to the RF of the neuron under
study (Freedman and Assad, 2009). Not surprisingly, LIP neu-
rons were strongly modulated according to whether stimuli were
presented within or outside their RFs—nearly all LIP neurons
showed much lower activity when the stimuli fell outside of
their RFs; however, many LIP neurons still showed modula-
tion by the direction categories despite their weak firing rates,
suggesting that LIP categorization signals are orthogonal to spa-
tial signals. Open questions include how spatial signals in LIP
(e.g., signals related to attention or eye movements) are mul-
tiplexed with non-spatial signals, and how both spatial and
non-spatial signals are “read out” from LIP by downstream
brain areas.

ENCODING OF LEARNED SHAPE-SHAPE ASSOCIATIONS
LIP activity flexibly changes with the demands of a direction
categorization task, but does this flexibility extend to other
visual stimuli? Selectivity for learned direction categories may
be a special case, because the continuous, native parametric
tuning for direction in parietal neurons may provide a “scaf-
fold” upon which the categorization signals emerge (Ferrera and
Grinband, 2006). In fact, visual-motion patterns were chosen
for that study because LIP neurons were known to respond to
such stimuli. Alternatively, LIP may reflect learned associations
between other visual stimulus attributes besides direction. This
would suggest that LIP plays a more general role in encod-
ing learned associations between visual stimuli, much like that
ascribed to frontal cortical areas such as the lateral PFC (Miller
et al., 2002; Cromer et al., 2010). Since LIP has been shown to
respond selectively to non-spatial visual stimuli, such as color
(Toth and Assad, 2002) and shape (Sereno and Maunsell, 1998),
LIP may also encode associations between such diverse stimulus
features.
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To examine the generality of learned associations in pari-
etal cortex, Fitzgerald and colleagues asked whether LIP neu-
rons reflect arbitrary associations between pairs of visual shapes
(Fitzgerald et al., 2011). Animals learned to associate pairs of
static, two-dimensional shape stimuli in a delayed pair associa-
tion task. The shapes were paired arbitrarily, and different pairing
schemes were used for the two animals in the study. Finding shape
pair selectivity in LIP would provide evidence that associative rep-
resentations are a general property of LIP neurons, and are not
specific to particular stimulus attributes such as direction.

Pair-association learning tasks have been used extensively
to study neurons in the ventral visual stream, particularly by
Miyashita and colleagues. For example, Sakai and Miyashita
described IT neurons that are activated specifically by one pair
of shapes, which had been associated with one another over the
course of long-term training, during the sample and/or delay
intervals of a delayed pair association task (Sakai and Miyashita,
1991). Further work described pair-association effects in perirhi-
nal cortex (Naya et al., 2003), hippocampus (Wirth et al., 2003;
Yanike et al., 2004), PFC (Rainer et al., 1999), and there is some
evidence for associative effects in MT (Schlack and Albright,
2007).

After monkeys were well-trained on the shape pair associ-
ations, Fitzgerald et al. (2011) recorded from LIP as animals
performed the task. A majority of LIP neurons reflected the
learned shape-shape associations, such that the neurons showed
more similar activity for shapes that had been associated with
one another and distinct activity for the non-associated shapes

(Figure 1A). These results provide evidence that LIP neurons can
encode associations for broad classes of visual stimuli and that LIP
may play a general role in forming visual associations. Whether
associative signals in LIP might be observed for stimuli from other
sensory modalities (e.g., audition or somatosensation) remains
unknown.

ENCODING OF ASSOCIATIONS FOR MULTIPLE TYPES
OF VISUAL STIMULI
While LIP activity can reflect learned associations between shapes
as well as motion categories, a second question is whether indi-
vidual LIP neurons encode associations for both shapes and
motion, or rather only encode associations for particular classes
of visual stimuli. The question is germane because LIP receives
broad inputs from other visual cortical areas (Blatt et al., 1990;
Lewis and van Essen, 2000), and inputs from the dorsal and
ventral visual streams—which are considered specialized for spa-
tial and object processing, respectively (Mishkin et al., 1983)—
are anatomically segregated along the dorsal-ventral axis of LIP
(Lewis and van Essen, 2000). The segregated pattern of visual
input to LIP might suggest that individual LIP neurons are
specialized for forming associations for either shapes or direc-
tions, but not both. Such specialization would suggest that LIP’s
involvement in categorization is limited, and that the infor-
mation represented in LIP alone is not sufficient for solving
abstract categorization tasks. If instead individual LIP neurons
can form associations for both stimulus types, this would rein-
force the notion that LIP neurons are capable of forming broad

FIGURE 1 | Single neurons reflect both shape-shape associations

and motion direction categories [Fitzgerald et al. (2011)].

(A) The activity of a single LIP neuron as a monkey associated six
shapes into three pairs in a delayed-match-to-pair task. The average
neuronal activity evoked by each sample shape is plotted, and
same-color traces correspond to associated pairs of shapes.
(B) The same neuron was recorded while the animal performed

a delayed-match-to-category task. Average activity evoked by each
sample motion direction is shown, and same-color traces correspond
to directions in the same category. (C) Association or category
strength, as measured by explained variance (η2) for direction categories
versus shape pairs, during the first half of the delay period
for all neurons tested in both tasks. The solid line is a regression fit,
and the dashed line has a slope of 1.
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associations for a wide range of visual stimuli. This might suggest
that LIP can encode the outcome of any task in which the ani-
mal must arrive at a discrete outcome or decision—e.g., “category
one” versus “category two” or “pair A” versus “pair C” (Freedman
and Assad, 2011). This would be particularly interesting because
it would potentially link associative or categorical representations
in LIP with discrete decision-related activity in LIP that has been
described by Shadlen and colleagues (Gold and Shadlen, 2007).

To examine the generality of associative representations in
LIP, monkeys were trained to alternate between blocks of the
shape and direction categorization tasks. LIP neurons that were
selective for the shape pair associations also tended to be selec-
tive for the direction categories (Figures 1A,B), and there was a
positive correlation between the strength of associative encod-
ing in the two tasks (Figure 1C). This argues that single LIP
neurons may generally encode associations between any types
of visual stimuli and supports the hypothesis that LIP neu-
rons are modulated whenever animals must determine a discrete
outcome or decision. This hypothesis is supported by a study
that dissociated perceptual decisions from the direction of the
saccades used to signal the decisions and found that decision sig-
nals were encoded independently of the eye-movement (Bennur
and Gold, 2011). Thus, LIP may generally encode categorical
decisions and associations independently of spatial or motor
planning.

CATEGORIZATION SIGNALS IN LIP COMPARED TO PFC
PFC neurons have been shown to reflect the category membership
of visual shapes for one (Freedman et al., 2001) or two catego-
rization rules (Cromer et al., 2010; Roy et al., 2010). However, the
relationship between category signals in PFC and LIP had been
unclear, as the two areas had not been directly compared. One
possibility is that visual categories are computed in PFC, which
is often considered the executive, decision-making center of the
brain, and then sent to LIP via top-down connections. To directly
assess the roles of these two areas, Swaminathan and Freedman
(2012) recorded from single neurons in LIP and PFC during
the motion direction categorization task. In this experiment, LIP

showed stronger and more reliable category encoding than PFC.
Moreover, category signals appeared with a shorter latency in LIP
than in PFC (Figure 2), and LIP’s stronger categorization signals
were robust even after adjusting for differences in the strength of
firing rate and category selectivity between the two brain areas.
This finding argues that categorical signals in LIP during this task
are unlikely to be driven by PFC, and raises the possibility that
LIP or another brain area may be a source for category signals
observed in PFC.

The finding that PFC showed weaker and longer latency cat-
egory signals than LIP during the direction categorization task
(Swaminathan and Freedman, 2012) places important constraints
on the neural circuitry underlying the categorization process. An
appealing hypothesis that arises from the comparison of MT, LIP,
and PFC is that motion direction encoding in MT may be trans-
formed into category encoding in LIP via learning-dependent
changes in the direct synaptic connections between the two areas.
However, a key consideration is that the direct cortical-cortical
connection between MT and LIP is only one pathway by which
information can propagate between these two areas. For exam-
ple, MT and LIP are both interconnected with motion-sensitive
regions such as the medial superior temporal (MST) and ven-
tral intraparietal (VIP) areas (Lewis and van Essen, 2000). LIP
and PFC are also interconnected with parietal area 7a, in which
several recent studies have found category-related neuronal sig-
nals (Merchant et al., 2011; Goodwin et al., 2012) and the medial
intraparietal area. While anatomical studies have demonstrated
the interconnections between these areas, their relative positions
in the information processing hierarchy are poorly understood.
Categorical signals have also been observed in the frontal eye
fields (Ferrera et al., 2009), and a network of other regions,
including sensory cortex, motor cortex, the medial temporal lobe,
and basal ganglia (Seger and Miller, 2010).

DEVELOPMENT OF CATEGORY SIGNALS DURING LEARNING
In the categorization studies described above, neuronal activity
was examined only after the monkeys were fully trained on the
categorization or pair association tasks. Because of this, much less

FIGURE 2 | Comparison of LIP and PFC in a motion direction

categorization task [Swaminathan and Freedman (2012)].

(A–B) Examples of category-selective neurons in LIP (A) and PFC (B).
Single neurons in both areas displayed binary-like category selectivity
during the motion direction categorization task. Same-color traces

correspond to directions in the same category. (C) Category selectivity,
measured by receiver operating characteristic (ROC) analysis was
stronger and appeared with a shorter latency in LIP (black) compared to
PFC (dark gray). The shaded area around the solid traces indicates
the s.e.m.
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is known about the roles of LIP and PFC during the learning pro-
cess itself. While LIP showed more reliable and shorter latency
category effects than PFC after the learning process was com-
plete, PFC might be more involved in the initial category-learning
process. Strong category signals might not emerge in LIP until
late in the learning process, once the categories are highly famil-
iar. Alternatively, LIP might be more directly involved than PFC
during the category-learning process as well as after learning is
complete. This is supported by the finding that LIP neurons
reflect dynamic stimulus-response mappings (Toth and Assad,
2002) and dynamically changing task rules (Stoet and Snyder,
2004). Further, LIP showed a stronger coupling than PFC with
the monkey’s trial-by-trial classifications of ambiguous stimuli
(Swaminathan and Freedman, 2012). A key question for future
work is to examine the role of parietal cortex in the category
learning process, particularly in comparison with PFC, in which
category representations have been shown to arise in parallel with
the learning process (Antzoulatos and Miller, 2011). If category
selectivity appears with a shorter latency in PFC than LIP dur-
ing category learning, this would suggest that PFC may have a

critical role in category learning, and LIP only becomes involved
when subjects are experts at the task. Alternatively, if LIP showed
category encoding earlier than PFC during learning, it would
indicate that LIP is also strongly involved in the category learning
process.

SUMMARY
Together, the studies described here represent progress toward
understanding the neuronal mechanisms underlying the learn-
ing and recognition of visual associations and categories. The
brain-wide circuit underlying categorization processes is likely
to include a large network of brain areas. However, recent work
suggests that the parietal cortex and LIP in particular, is more
involved in encoding abstract associative and categorical factors
than its traditionally ascribed role in visual-spatial processing
might suggest.
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