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Sensory processing deficits are common within autism spectrum disorders (ASD). Deficits
have a heterogeneous dispersion across the spectrum and multimodal processing tasks
are thought to magnify integration difficulties. Two-legged hopping in place in sync with an
auditory cue (2.3, 3.0 Hz) was studied in a group of six individuals with expressive language
impaired ASD (ELI-ASD) and an age-matched control group. Vertical ground reaction force
data were collected and discrete Fourier transforms were utilized to determine dominant
hopping cadence. Effective leg stiffness was computed through a mass-spring model
representation. The ELI-ASD group were unsuccessful in matching their hopping cadence
(2.21 ± 0 1.30 hops·s−1, 2.35 ± 0.41 hops·s− ) to either auditory cue with greater deviations
at the 3.0 Hz cue. In contrast, the control group was able to match hopping cadence
(2 35 ± 0 06 hops·s−1 1. . , 3.02 ± 0.10 hops·s− ) to either cue via an adjustment of effective
leg stiffness. The ELI-ASD group demonstrated a varied response with an interquartile
range (IQR) in excess of 0.5 hops

1
·s−1 as compared to the control group with an IQR <

0.03 hops·s− . Several sensorimotor mechanisms could explain the inability of participants
with ELI-ASD to modulate motor output to match an external auditory cue. These results
suggest that a multimodal gross motor task can (1) discriminate performance among a
group of individuals with severe autism, and (2) could be a useful quantitative tool for
evaluating motor performance in individuals with ASD individuals.
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INTRODUCTION
Individuals diagnosed with autism spectrum disorders (ASD) not
only demonstrate language, social and sensory impairments but
also movement abnormalities (DSM-IV, 2000). In fact, move-
ment abnormalities may be the hallmark of many diagnoses
as restricted, repetitive, and stereotypical movements are com-
monly observed in individuals with ASD. Motor impairments
of children/adults with autism may include gross motor coor-
dination (e.g., Calhoun et al., 2011), fine motor coordination
(e.g., Gernsbacher et al., 2008), motor stereotypies (e.g., Loh et al.,
2007), postural control (e.g., Molloy et al., 2003; Minshew et al.,
2004), and/or motor apraxia (e.g., Ming et al., 2007). A recent
meta-analysis concluded that motor impairments are present
across the spectrum with deficiencies reported in motor plan-
ning, sensorimotor integration, and motor execution (Fournier
et al., 2010). Inquiry into these movement aberrations appears
warranted as these motor impairments may exceed other ability
areas and influence both language and social integration (Piek
and Dyck, 2004).

Sensory processing deficiencies are commonly associated with
ASD (Tomchek and Dunn, 2007) with prevalence estimates rang-
ing from 30 to 100% of respective study participants (Dawson
and Watling, 2000). Following a meta-analysis of 14 relevant stud-
ies, Ben-Sasson et al. (2008) concluded that “under-responsivity,”
delayed or muted response to a stimuli, was reported more by
parents of children with ASD than either “over-responsivity” or

“seeking” out of stimuli. Several recent reports point to the pro-
cessing deficiencies of visual, auditory, tactile and proprioceptive
stimuli in individuals with autism (Jasmin et al., 2008; Orekhova
et al., 2012; Paton et al., 2012). These hypo-responses may actu-
ally be the result of increased sensitivity to stimuli rather than the
opposite (Rinaldi et al., 2008). Through various work on a val-
proic acid rat model of autism, Markram et al. (2007) suggests
that both increased response to stimuli and increased plasticity of
neuronal circuits may explain altered responses observed in ASD.
While it could be argued whether these sensory processing deficits
are a core feature of ASD or a co-morbidity, it is apparent that
they are present in a large percentage of individuals with ASD and
they impact communication, social interaction, and movement
qualities.

Propioceptive deficits in individuals with ASD have received
less inquiry than other sensory types, although proper joint and
limb positioning is critical for movement precision. Afferent pro-
prioceptive feedback is primarily afforded from golgi tendon
organs, muscle spindles, joint receptors, and skin receptors. This
feedback is critical during all forms of human location (e.g., run-
ning, walking, hopping) as the leg acts as a tuned spring that
can store and return a certain percentage of energy (Farley et al.,
1991; Ferris and Farley, 1997). During landing the leg spring is
compressed storing energy and during propulsion the leg spring
rebounds as the joints (hip, knee, ankle) extend. Leg spring stiff-
ness is actively controlled as both a factor of locomotion speed
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and ground surface compliance in order to minimize overall
energetic cost. Propioceptive feedback is necessary to essentially
“tune” leg spring stiffness and maximize the amount of returned
energy. When children with autism learn a novel task, there is a
stronger association between proprioceptive feedback and self-
generated motor commands than seen in typically developing
children (Haswell et al., 2009). Haswell et al. (2009) speculate that
overexpression of cortical connections between the somatosen-
sory cortex and primary motor cortex may explain the increased
reliance on proprioceptive feedback in their generalized motor
internal model. Altered proprioceptive feedback has also been
cited as a potential cause of motor dyspraxia observed in indi-
viduals with Asperger syndrome (Weimer et al., 2001).

In contrast to these findings in Asperger syndrome, Fuentes
et al. (2011) recently showed children with ASD displayed
motor impairment without any deficits in proprioception dur-
ing a simple upper extremity elbow flexion-extension task.
These are compelling results because they may indicate that
proprioceptor sensors are neither hyper- or hypo-sensitive in
individuals with ASD and it is the rather the integration of
proprioceptive information with other sensory inputs (e.g.,
visual, auditory, vestibular-proprioceptive information) that may
be impaired. High functioning individuals with autism have pre-
viously demonstrated a delayed motor anticipation response and
an inability to decrease reaction time when presented with a visual
cue during a button pressing task (Rinehart et al., 2001). This
increased temporal processing seems to be exacerbated in individ-
uals with ASD during conditions of multisensory input (Kwakye
et al., 2011).

Synchronizing motor output with an auditory cue, sensori-
motor synchronization, has been studied extensively via a finger-
tapping model (e.g., Kelso, 1984; Ivry and Keele, 1989; Sheridan
and McAuley, 1997) but whole body rhythmicity has received
much less attention (Rousanoglou and Boudolos, 2006). Timing
of rhythmic movement has been explained via a (1) two-stage
timing model (Wing and Kristofferson, 1973) and a (2) dynamic
system model (Schöner, 2002). Utilizing the two-stage model
of synchronization, Ivry and Keele (1989) discovered that indi-
viduals with cerebellar lesions had disruptions of their internal
clock variance but not motor error variance during an auditory-
cued finger tapping task. Similarly, Sheridan and McAuley (1997)
reported that ASD children were less accurate and more vari-
able with finger tapping precision than control groups. Although
the two-stage timing model has been used to explain timing and
motor errors during finger tapping, Rousanoglou and Boudolos
(2006) found that timing control during an auditory-cued two-
legged hopping in place task could be explained via a dynamic
systems model. The authors speculate that alteration of joint stiff-
ness may modify the rate of ground reaction force development
(RFD) during the landing phase and that RFD may serve as a
timing regulator. No previous work has examined whole body
sensorimotor synchronization in ASD.

It is also noteworthy that the most extreme differences or dis-
orders of movement regulation and/or regulation of propriocep-
tive feedback may correlate with the “severity” of ASD. Donnellan
et al. (2010) present evidence that disorders of sensory processes
and movement are endemic to all forms of ASD. However, the

evidence that they present raises the inquiry of whether individ-
uals who have the most compromised forms of “self advocacy”
such as significant expressive language challenges also present
with more profound differences in a range of sensory-movement
anomalies (Hill and Leary, 1993; Donnellan et al., 2006, 2010).
Furthermore, there remains the need to differentiate the devel-
opmental presentations across the range of individuals who have
differing forms of an ASD diagnosis.

Therefore, the purpose of this study was to investigate whether
individuals with ASD with expressive language impairments
(ELI-ASD) could modify their motor control strategy during a
multi-joint gross motor activity (two-legged hopping in place) to
match an auditory cue (temporal synchrony). It was hypothesized
that:

H(1) The individuals with ELI-ASD would be able to suc-
cessfully complete a two-legged hopping in place task at a
self-selected cadence.
H(2) The individuals with ELI-ASD population would not
match their hopping cadence to an external auditory cue while
all control participants would be within 5% of the cue.
H(3) There would be a range of responses within the ELI-ASD
population.

The results of this study may potentially further our understand-
ing of sensory processing deficits in this population and provide a
basis for a quantitative movement assessment screening tool that
could be used to evaluate intervention efficacies and better classify
individuals with ASD.

MATERIALS AND METHODS
PARTICIPANTS
Nine individuals diagnosed with expressive language impair-
ments autism spectrum disorders (ELI-ASD) were recruited for
this study. A case-control study design was used because of the
small sample size due to difficulties recruiting and testing in the
ELI-ASD population. Ten age-matched control participants were
recruited for this study (Table 1). An independent t-test was con-
ducted to confirm that the groups were appropriately matched
for age (p > 0.05). All participants were screened for muscu-
loskeletal injury that would influence their ability to complete
the study’s protocol. The experimental protocol was approved by
the Institutional Review Board at Sacred Heart University and
informed consent was obtained from all participants/guardians

Table 1 | Subject demographics.

Control ELI-ASD

Age (years) 19.7 ± 0.5 18.8 ± 2.1

Gender 7M, 3F 6M, 0F

Mass (kg) 78.3 ± 8.3 83.9 ± 15.4

CARS na 50.1 ± 5.6

The groups were not significantly different for either age or weight (p > 0.05).

The Childhood Autism Rating Scale (CARS) was used to assess level of autism

in ELI-ASD subjects. [Mean ± SD].
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prior to data collection. Inclusion criteria for the ELI-ASD group
was determined by a Childhood Autism Rating Scale (CARS)
score greater than 37 indicating “severely autistic” and at least a
rating of 3 out of 4 on Sub-Scale XI “Verbal Communication,”
which indicates a severe disorder of verbal behavior such as
not speaking in more than a few words or phrases; routinely
not using verbally produced sentences (Schopler et al., 1980).
All of the experimental participants met the “severely autistic”
criteria, with the group showing a mean total score of 50.1 ±
5.6, and all presented with severe disorders of verbal commu-
nication (indicated by a rating of “4” out of 4 for all par-
ticipants). All participants were evaluated by the same inves-
tigator (MJW), who is trained in CARS implementation and
has over 30 years of experience, to determine inclusion within
this study. Three participants in the initial ELI-ASD group
did not complete the study due to behavioral and/or attention
issues.

EXPERIMENTAL PROTOCOL
Participants were first positioned on a ground mounted
force plate (40.6 × 81.2 cm) (Model OR6-5, Advanced Medical
Technology, Inc.; Watertown, MA) with feet shoulder-width apart
and hands placed on their hips. Each hopping trial lasted 15 s
and participants hopped in place for the entire trial. Pilot test-
ing determined that 15 s was to be an adequate length of time
to allow participants enough hops to become in sync with audi-
tory cue but not too long where fatigue would set in. Any trial
where the participant did not land on the force plate was dis-
carded and re-collected. Vertical ground reaction force (vGRF)
was collected from the force place at a sampling frequency of
200 Hz. For the first two trials, participants were asked to perform
two-legged hopping at a self-selected frequency. No instructions
were given as to how high to hop. Before the first trial a researcher
stood approximately 1-meter anterior to each participant and
demonstrated two-legged hopping in place.

For the remaining four trials, participants were given 10 s to
listen to a metronome prior to stepping on the force plate and
attempting to hop in unison with the auditory cue. Although
some individuals with autism may demonstrate a hyper-auditory
response, a metronome was selected for the current study as its
use has previously occurred as an interactive intervention with
this population (Mays et al., 2011; Kim et al., 2012). Auditory
cues were randomized and were set at either 2.3 or 3.0 Hz,
as these frequencies typically do not correspond to previously
reported normative two-legged hopping frequencies (Farley et al.,
1991; Rousanoglou and Boudolos, 2006). The research design was
intended to force participants to hop at non-preferred cadences.
In between hopping trials, each subject was given 2 min to rest.
During post-hoc analysis, a trial was scored as “successful” if the
actual hopping cadence deviated from the auditory cue frequency
by less than 5% (Granata et al., 2002).

DATA ANALYSIS
Data was exported to MATLAB software (MathWorks, Inc;
Natick, MA) for post-processing. vGRF data were digitally filtered
using a 4th order Butterworth low-pass filter with cutoff fre-
quency of 50 Hz. A discrete Fourier transform was applied to the
vGRF data to convert it into the frequency domain. The dominant
frequency (i.e., hopping cadence) for each trial was then deter-
mined (Figure 1). This frequency analysis was preferred because
it computed the dominant cadence over the 15 s data collection
window regardless if there were inconsistencies in the hopping
motion. Deviation (d) percentages were computed for each trial
as the absolute difference between cued frequency (ωcue) and
actual hopping frequency (ωactual) divided by the cued frequency.

d = (|ωcue − ωactual|/ωcue) × 100 (1)

Two-legged hopping in place at a frequency ≥ 2.2 hops·s−1 has
previously been demonstrated to behave as a simple mass-spring

FIGURE 1 | Sample output of the process used to determine

dominant hopping cadence. A discrete Fourier transform was
applied to vertical ground reaction force data (vGRF, A) to

determine the dominant hopping cadence (B) for each trial. Note
the discontinuities in vGRF indicating an inconsistent hopping
pattern.
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system (Figure 2) (Farley et al., 1991). Effective leg stiffness (k),
representative of the musculotendon stiffness, was subsequently
calculated from both the time duration and vGRF during landing
and takeoff (Farley et al., 1991).

k = vGRF × (2π/T) (2)

STATISTICAL ANALYSIS
Differences in hopping cadence and effective leg stiffness were
assessed for significance utilizing two mixed factorial ANOVA’s
(group by auditory cue, group by effective leg stiffness) with
group membership as the between-subject factor and hopping
cadence and effective leg stiffness as the within-subject factors.
Post-hoc analysis to determine differences in hopping cadence
or effective leg stiffness between groups was conducted using
independent t-test. Paired t–test were used to identify within
group differences in hopping cadence and effective leg stiffness.
Statistical significance was set apriori with a significance level
of α = 0.05. To correct for multiple t-test, a Holm’s Sequential
adjustment was employed (Holm, 1979). All statistical analysis
was computed in PASW Statistics 18 (Chicago, IL). Interquartile
ranges (IQR) were computed for hopping cadencies as IQR is
measure of central tendency that is resistant to outliers.

RESULTS
Mauchly’s Test for Sphericity indicated that the assumption of
sphericity had been violated for the main effect of auditory cue
on hopping cadence, χ2

(2)
= 16.75, p < 0.001, therefore, degrees

of freedom were corrected using a Greenhouse-Geisser estimate
(Field, 2009). There was a significant main effect of auditory
cue on both hopping cadence F(1.16, 16.24) = 12.26, p < 0.05 and
effective leg stiffness F(2, 28) = 11.67, p < 0.001. Additionally,
there was a significant interaction effect between group mem-
bership and auditory cue on hopping cadence F(1.16, 16.24) =
4.97, p < 0.05 and between group membership and auditory cue
on effective leg stiffness F(2, 28) = 3.60, p < 0.05. This interac-
tion highlights the importance of investigating the two different
groups.

SELF-SELECTED CADENCE
At their self-selected cadence, participants in the control
group hopped at 2.54 ± 0.49 hops·s−1 (IQR = 0.37 hops·s−1)
(Figure 3) with an effective leg stiffness of 29.8 ± 6.5 kN·m−1

(Table 2). Participants with ELI-ASD hopped at a cadence of
2.21 ± 0.44 hops·s−1 (IQR = 0.59 hops·s−1) with an effec-
tive leg stiffness of 29.2 ± 8.6 kN·m−1. Post-hoc analysis revealed
there were no statistically significant differences between groups
in their hop cadence, t(14) = 1.41, p > 0.05, r = 0.35; and in
effective leg stiffness, t(14) = 0.38, p > 0.05, r = 0.10.

AUDITORY CUE 1—2.3 Hz
On average, the control group only deviated from the 2.3 Hz cue
by 2.6% (2.35 ± 0.06 hops·s−1) with 95% of all collected trials
successful (<5% deviation). In contrast, the ELI-ASD group devi-
ated, on average, by 7.6% (2.21 ± 0.30 hops·s−1) for the 2.3 Hz
cue trials and only 42% of all collected trials were deemed success-
ful. IQR for the control group during the 2.3 Hz trials was 0.06

FIGURE 3 | Hop cadence vs. auditory cue (none, 2.3 Hz, 3.0 Hz). The
control group was successful in 95% of trials in matching auditory cue
while the ELI-ASD group was successful in only 33% of cued trials. The
control group was significantly better at matching the 3.0 Hz auditory cue
than the ELI-ASD group (p < 0.05).

FIGURE 2 | Subjects were positioned on a 40 × 81 cm embedded force plate, a metronome was set at either 2.3 or 3.0 Hz, and a lab computer

collected vertical ground reaction forces. The system was modeled as a mass-spring system where effective leg stiffness was calculated for each trial.
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Table 2 | Effective leg stiffness (kN·m−1) for Control and ELI-ASD

groups. [Mean ± SD].

Auditory cue

Self-selected 2.3 Hz 3.0 Hz

Control (n = 10) 29.8 ± 7.0 28.2 ± 7.3 40.6 ± 6.9

ELI-ASD (n = 6) 29.2 ± 8.6 30.8 ± 6.2 33.9 ± 6.7

hops·s−1 as compared to 0.43 hops·s−1 for the ELI-ASD group.
Effective leg stiffness values were 28.2 ± 7.3 kN·m−1 and 30.8 ±
6.2 kN·m−1, respectively, for the control and ELI-ASD groups.
A Levene’s Test for Equality of Variances indicated that assump-
tion was not met for hopping at 2.3 Hz, F(1, 14) = 15.29, p <

0.001. Post-hoc analysis revealed there were no statistically signifi-
cant differences between groups for hop cadence, t(5.19) = 1.15,
p > 0.05, r = 0.45; and in effective leg stiffness, t(14) = −0.63,
p > 0.05, r = 0.17.

AUDITORY CUE 2—3.0 Hz
The control group had similar performance during the 3.0 Hz
cueing trials with an average deviation of 2.5% and a 95% suc-
cess rate. In contrast the ELI-ASD group deviated by 21.7% and
had a 25% success rate. Effective leg stiffness increased to 40.6 ±
6.9 kN·m−1 in the control group and 33.9 ± 6.7 kN·m−1 in the
ELI-ASD group. The control group IQR for hopping cadence was
0.00 hops·s−1 compared to 0.71 hops·s−1 in the ELI-ASD group.
Post-hoc analysis revealed that participants in the control group
hopped at a significantly higher cadence t(14) = 5.68, p < 0.001,
r = 0.84; and with more effective leg stiffness, t(14) = 2.15, p =
0.05, r = 0.50.

WITHIN GROUP COMPARISONS
When comparing within each group between their self-selected
cadence and 2.3 or 3.0 Hz auditory cue conditions, the control
group exhibited a significantly different hop cadence between
3.0 Hz and the self-selected cadence, t(9) = 3.43, p < 0.01, r =
0.75. This difference was also seen in effective leg stiffness between
3.0 Hz and the self-selected cadence t(9) = −4.69, p = 0.001,
r = 0.84. However, the control group had no statistical dif-
ference between self-selected cadence and the 2.3 Hz in both
hopping, t(9) = 1.31, p > 0.05, r = 40; and effective leg stiff-
ness, t(9) = 0.62, p > 0.05, r = 0.20. A comparison between the
2.3 and 3.0 Hz auditory cues in the control group revealed a
significant difference existed between the two cues both in hop-
ping, t(9) = −29, p < 0.001, r = 0.99; and effective leg stiffness,
t(9) = −4.84, p = 0.001, r = 0.85.

Participants in the ELI-ASD group did not significantly alter
either hop cadence between both the self-selected cadence and
the 2.3 Hz condition, t(5) = −0.09, p > 0.05, r = 0.04; and the
self-selected cadence and the 3.0 Hz condition, t(5) = 1.05, p >

0.05, r = 0.43. This pattern was also apparent in leg stiffness
where there was no significant difference found between both
the self-selected cadence and the 2.3 Hz condition, t(5) = −1.16,
p > 0.05, r = 0.46; and the self-selected cadence and the 3.0 Hz
condition, t(5) = −1.55, p > 0.05, r = 0.57.

DISCUSSION
The purpose of this study was to investigate whether a sub-
set of ASD with expressive language impairment could modify
their motor control strategy during a simple activity, two-legged
hopping in place, in the presence of an auditory cue. It was
hypothesized that H(1) the ELI-ASD group would be able to
successfully complete a two-legged hopping in place task at a self-
selected cadence, but H(2) the ELI-ASD group would not be able
to match their hopping cadence to an external auditory cue while
all control participants would be within 5% of the cued frequency
and that H(3) there would be a range of responses within the
ELI-ASD population.

SELF-SELECTED HOPPING CADENCE
The first hypothesis was accepted as both groups were able to
successfully complete two 15-s two legged hopping trials on a
force plate at a self-selected cadence. When comparing the first to
second trial cadences, the ELI-ASD group demonstrated similar
variances as the control group. This indicated that the movement
pattern was as stable as an age-matched control. Furthermore,
the groups were not significantly different from one another
and computed cadences were similar to those reported by Farley
et al. (1991), 2.21 ± 0.07 hops·s−1, but larger than those reported
by Rousanoglou and Boudolos (2006). Many common diagnos-
tic movement batteries (e.g., Bruininks-Oseretsky Test of Motor
Proficiency, Movement Battery for Children 2) used to diag-
nose motor function include variants of two-legged hopping
within their testing battery (Henderson et al., 1992; Bruininks and
Bruininks, 2005). Two-legged hopping is also found in many ele-
mentary physical education models as it teaches gross multi-joint
coordination by recruiting large hip, knee and ankle extensor
musculature that leads to developmental progression in many
dynamic game skills (Gallahue and Donnelly, 2003). Although
a fundamental movement skill, it requires motor coordination,
dynamic balance, and core stability. Considering the current
study only assessed severely autistic individuals, two-legged hop-
ping in place would appear to be a feasible movement screen for
most individuals diagnosed in the spectrum.

EFFECT OF EXTERNAL AUDITORY CUE
The second hypothesis was accepted as two-legged hopping in
place in a sample of ELI-ASD individuals was significantly altered
at the 3.0 Hz condition from an age-matched control group that
was able to match cadence when an auditory cue was provided.
Participants in the ELI-ASD group were not able to significantly
alter their hopping cadence in the presence of an auditory cue
and were unsuccessful in modifying motor output 67% of the
time. Conversely, all participants in the control group were able
to match either a 2.3 or 3.0 Hz auditory cue. When two-legged
hopping is matched to an external auditory cue, the task becomes
multi-modal. Auditory processing must be integrated with proper
motor cortex commands that are refined via proprioceptive sen-
sory feedback from muscle spindles and golgi tendon organs in
order to match hopping cadence to this external cue. O’Neill and
Jones (1997) report accounts of autistic individuals have difficulty
processing simultaneous sensory modes. When sensory informa-
tion converges from multiple sources, it must be integrated or
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weighted in such a way that the uncertainty of the resulting neural
output is minimized (van Beers et al., 2002).

The results of the current study confirm contemporary views
of potential sensory processing deficiencies in an ELI-ASD pop-
ulation. The inability of the ELI-ASD group to match their hop
timing to an auditory cue can be attributed to a deficiency with
processes sensing auditory cues. Although reports on auditory
brainstem response have been varied, there appears to be evidence
suggesting impaired early auditory pathways (Marco et al., 2011).
Some studies have reported longer latencies in individuals with
ASD which may indicate slower neural conduction velocities.
Although the mechanism of ASD auditory processing deficiency
is still not clear and not in the scope of the current study, it is
possible that a delayed auditory processing may have influenced
the timing of motor neuron transmission in our participants with
ELI-ASD.

The current study’s task, two-legged hopping in synch with an
auditory cue, also requires appropriately timed motor and propri-
oceptive responses. When compared to intellect, language abilities
and emphatic abilities, autistic individuals are most impaired in
their motor coordination, specifically gross motor coordination
(Piek and Dyck, 2004). Therefore, the results of the current study
which investigated a gross motor skill, two-legged hopping, in
a group of individuals diagnosed with autism and limited lan-
guage abilities are not surprising. One possible explanation is that
participants with ELI-ASD were unable to alter the stiffness of
musculotendons crossing the ankle, knee, and hip. In order to
hop at greater frequencies it requires an increase in effective leg
stiffness. Leg stiffness can be modulated by altering musculoten-
don tensions which in turn alter joint stiffness (Johns and Wright,
1962; Riemann and Lephart, 2002). Increased gamma motor neu-
ronal activity, from either sensory input or supraspinal drive,
alters muscle spindle sensitivity and ultimately refines muscu-
lotendon tension. Individuals with autism have been previously
shown to rely on proprioceptive feedback (distal) more than
visual/auditory (proximal) sources of information (Masterton
and Biederman, 1983), and proprioception during a mono-
articulate reaching task was not impaired as compared to children
who are typically developing (Fuentes et al., 2011). These find-
ings, in the context of this study, could suggest that the increased
weighting of proprioceptive information (distal) in creating an
internal motor model of hopping is challenged to integrate simul-
taneous auditory cues (proximal) to refine motor control strategy.

Alternative explanations to the lack of hopping success in par-
ticipants with ELI-ASD could be attributed either to (1) cognitive
demands and/or (2) task complexity. It could be argued that the
ELI-ASD did not comprehend the task and thus cognitive inabili-
ties rather than any sensory processing deficiency explained their
performance. However, the ELI-ASD did have an average increase
in hopping cadence and effective leg stiffness from the 2.3 Hz
trials as compared to the 3.0 Hz trials, although these increases
was not deemed significant. This would suggest that there may
have been an attempt to modify hopping strategy to meet the
external cue, but a limited subject pool (n = 6) may have pre-
vented this effect from reaching significance. Hopping in synch
with at a cadence of 3 hops·s−1 requires motor precision and
substantial muscular strength across the ankle, knee, and hip.

Kern et al. (2011) recently demonstrated that CARS level was a
significant predictor of max hand grip strength. CARS level and
hand grip strength were negatively related, so as CARS level rise
max hand grip strength decreases. Lower extremity muscular
strength was not assessed in our study so it is possible that per-
formance could be attributed to an inability to produce muscular
demands necessary to match the auditory cue.

MOVEMENT CRITERION
The third hypothesis was accepted as the six participants with
ELI-ASD demonstrated a range of hopping cadencies when
attempting to match auditory cues, while control subjects were
nearly perfect. One ELI-ASD was successful in 3 of the 4 cued
trials while the remaining five participants experienced varied
deviation (5.6–42.2%). Although a relatively easy task for con-
trol subjects, this multi-modal task provided a heterogeneous
response in a limited ELI-ASD population.

The majority of reports on ASD motor qualities use a wide
breadth of participants across the spectrum. Exceptions to this
would be studies that are inclusive to either Asperger’s syndrome
or high-functioning individuals. Typically these classifications are
based on self-reports or observational analyses by trained pro-
fessionals. Despite efforts made to discretize the population by
these analyses, it is likely that heterogeneity would remain in
regards to sensory processing deficits (Ben-Sasson et al., 2008).
Furthermore, several have recommended the need for improved
classification in an effort to elucidate neurological underpin-
nings with specific characteristics (Verhoeven et al., 2010; Marco
et al., 2011). Quantitative movement screens, potentially like the
two-legged hopping task in the current study, may provide an
improved classification system for inclusion criteria in studies. At
minimum, quantitative movement screens can more definitively
be utilized to evaluate functional movement outcomes pre- and
post-interventions (Bhat et al., 2011).

Several limitations should be noted regarding this experiment
when considering the applicability of results to other populations.
ELI-ASD group size was limited based on stringent inclusion cri-
teria and a 33% experimental mortality rate. These limitations
resulted in respective effect sizes for the 2.3 and 3.0 Hz trials of
0.31 and 0.75. This indicated only small group differences for
the 2.3 Hz trials and moderate differences for the 3.0 Hz trials.
Because of the multi-modal nature of the task, it is difficult to
prescribe which sensory mode may be deficient. As has been pre-
viously noted, these findings cannot be applied to other subsets in
ASD as sensory processing deficits appear heterogeneously across
the spectrum. Since our participants had limited language abil-
ities, it was difficult to confirm complete comprehension of the
task. Researchers assumed they understood our verbal commands
and visual modeling of the activity, but we have not assurances of
this.

CONCLUSIONS
Sensory processing deficits are common in ASD and multi-
modal tasks present unique challenges to this population. The
current investigation confirmed an impaired motor control
strategy during an auditory-cued two-legged hopping task in
an under-studied subset of ASD, individuals with expressive
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language impairments. An age-matched control group was nearly
perfect in their performance, however, the ELI-ASD group had
a varied deviant response indicating the possibly utility of this
task for an improved movement classification tool. The find-
ings would suggest that an ELI-ASD population on the cusp
of adulthood present with an impaired motor control strat-
egy that will influence adult movement patterns and perhaps
warrant continued therapies. As this work was constrained to
a small ASD subset at the end of the pediatric scale, future
investigations should both extend to include participants across
the spectrum and at younger age intervals. Such work would
elicit the relationship of motor response to both autistic level
and age. Modifications of the current multimodal task should
extend to the use of a visual cue in addition to an auditory one

and extend the cued frequency to a larger range. Additionally,
the inclusion of enhanced metrics, such as the variability of
within trial inter-hop intervals, may provide further evidence of
ASD neurological underpinnings. As movement aberrations in
the autistic population become more accepted as a core feature
as opposed to a co-morbidity, movement screens may offer an
improved opportunity to identify sensory processing deficiencies
to both improve neurological underpinnings and intervention
therapies.

ACKNOWLEDGMENTS
This work was supported by a Sacred Heart University Research &
Creativity Grant. The authors wish to thank Marissa DeFede and
Herb Kemp for their assistance during data collection.

REFERENCES
Ben-Sasson, A., Hen, L., Fluss, R.,

Cermak, S. A., Engel-Yeger, B., and
Gal, E. (2008). A meta-analysis of
sensory modulation symptoms in
individuals with autism spectrum
disorders. J. Autism Dev. Disord.
39, 1–11.

Bhat, A. N., Landa, R. J., and Galloway,
J. C. (2011). Current perspectives
on motor functioning in infants,
children, and adults with autism
spectrum disorders. Phys. Ther. 91,
1116–1129.

Bruininks, R. H., and Bruininks, B.
D. (2005). Bruininks-Oseretsky Test
of Motor Proficiency, 2 Edn (BOT-
2). Minneapolis, MN: Pearson
Assessment.

Calhoun, M., Longworth, M., and
Chester, V. L. (2011). Gait pat-
terns in children with autism.
Clin. Biomech. (Bristol, Avon) 26,
200–206.

Dawson, G., and Watling, R. (2000).
Interventions to facilitate auditory,
visual, and motor integration in
autism: a review of the evidence.
J. Autism Dev. Disord. 30, 415–421.

Donnellan, A. M., Hill, D. A., and
Leary, M. R. (2010). Rethinking
autism: implications of sensory
and movement differences. Disabil.
Stud. Q. 30. Available online at:
http://dsq-sds.org/article/view/1060/
1225

Donnellan, A. M., Leary, M. R., and
Robledo, J. P. (2006). “I can’t
get started: stress and the role
of movement differences in peo-
ple with autism,” in Stress and
Coping in Autism, eds G. Baron, J.
Groden, G. Groden and L. Lipsitt
(Oxford: Oxford University Press),
200–225.

DSM-IV. (2000). Diagnostic and
Statistical Manual of Mental
Disorders. 4th Edn. Washington,
DC: American Psychiatric
Association.

Farley, C. T., Blickhan, R., Saito, J.,
and Taylor, C. R. (1991). Hopping
frequency in humans: a test of
how springs set stride frequency in
bouncing gaits. J. Appl. Physiol. 71,
2127–2132.

Ferris, D. P., and Farley, C. T. (1997).
Interaction of leg stiffness and sur-
face stiffness during human hop-
ping. J. Appl. Physiol. 82, 15–22.

Field, A. (2009). Discovering Statistics
Using SPSS. London: Sage
Publications.

Fournier, K. A., Hass, C. J., Naik, S.
K., Lodha, N., and Cauraugh, J.
H. (2010). Motor coordination in
autism spectrum disorders: a syn-
thesis and meta-analysis. J. Autism
Dev. Disord. 40, 1227–1240.

Fuentes, C. T., Mostofsky, S. H., and
Bastian, A. J. (2011). No propri-
oceptive deficits in autism despite
movement-related sensory and exe-
cution impairments. J. Autism Dev.
Disord. 41, 1352–1361.

Gallahue, D. L., and Donnelly,
F. C. (2003). Developmental
Physical Education for all Children.
Champaign, IL: Human Kinetics.

Gernsbacher, M. A., Sauer, E. A., Geye,
H. M., Schweigert, E. K., and Hill
Goldsmith, H. (2008). Infant and
toddler oral- and manual-motor
skills predict later speech fluency in
autism. J. Child Psychol. Psychiatry
49, 43–50.

Granata, K. P., Wilson, S. E., and
Padua, D. A. (2002). Gender differ-
ences in active musculoskeletal stiff-
ness. Part I: quantification in con-
trolled measurements of knee joint
dynamics. J. Electromyogr. Kinesiol.
12, 119–126.

Haswell, C. C., Izawa, J., Dowell, L.
R., Mostofsky, S. H., and Shadmehr,
R. (2009). Representation of inter-
nal models of action in the autistic
brain. Nat. Neurosci. 12, 970–972.

Henderson, S. E., Sugden,
D. A., Barnett, A. L., and

Smits-Engelsman, C. M. (1992).
Movement Assessment Battery for
Children. London: Psychological
Corporation.

Hill, D. A., and Leary, M. R. (1993).
Movement Disturbance: A Clue to
Hidden Competencies in Persons
Diagnosed with Autism and
Other Developmental Disabilities.
Madison, WI: DRI Press.

Holm, S. (1979). A simple sequen-
tially rejective multiple test pro-
cedure. Scand. Stat. Theory Appl.
65–70.

Ivry, R. B., and Keele, S. W. (1989).
Timing functions of the cerebellum.
J. Cogn. Neurosci. 1, 136–152.

Jasmin, E., Couture, M., McKinley,
P., Reid, G., Fombonne, E., and
Gisel, E. (2008). Sensori-motor and
daily living skills of preschool chil-
dren with autism spectrum disor-
ders. J. Autism Dev. Disord. 39,
231–241.

Johns, R. J., and Wright, V. (1962).
Relative importance of various tis-
sues in joint stiffness. J. Appl.
Physiol. 17, 824–828.

Kelso, J. A. (1984). Phase transitions
and critical behavior in human
bimanual coordination. Am. J.
Physiol. Regul. Integr. Comp. Physiol.
246, R1000–R1004.

Kern, J. K., Geier, D. A., Adams, J. B.,
Troutman, M. R., Davis, G., King,
P. G., et al. (2011). Autism severity
and muscle strength: a correlation
analysis. Res. Autism Spectr. Disord.
5, 1011–1015.

Kim, H. H., Bo, G. H., and Yoo, B.
K. (2012). The effects of a sen-
sory integration programme with
applied interactive metronome
training for children with develop-
mental disabilities: a pilot study.
Hong Kong J. Occup. Ther. 22,
25–30.

Kwakye, L. D., Foss-Feig, J. H., Cascio,
C. J., Stone, W. L., and Wallace,
M. T. (2011). Altered auditory

and multisensory temporal process-
ing in autism spectrum disorders.
Front. Integr. Neurosci. 4:129. doi:
10.3389/fnint.2010.00129

Loh, A., Soman, T., Brian, J., Bryson,
S. E., Roberts, W., Szatmari, P.,
et al. (2007). Stereotyped motor
behaviors associated with autism
in high-risk infants: a pilot video-
tape analysis of a sibling sam-
ple. J. Autism Dev. Disord. 37,
25–36.

Marco, E. J., Hinkley, L. B. N., Hill, S. S.,
and Nagarajan, S. S. (2011). Sensory
processing in autism: a review of
neurophysiologic findings. Pediatr.
Res. 69, 48R–54R.

Markram, H., Rinaldi, T., and
Markram, K. (2007). The intense
world syndrome–an alternative
hypothesis for autism. Front.
Neurosci. 1, 77–96. doi: 10.3389/
neuro.01/1.1.006.2007

Masterton, B. A., and Biederman, G.
B. (1983). Proprioceptive versus
visual control in autistic children.
J. Autism Dev. Disord. 13, 141–152.

Mays, N. M., Beal-Alvarez, J., and
Jolivette, K. (2011). Using
movement-based sensory inter-
ventions to address self-stimulatory
behaviors in students with autism.
Teach. Except. Child. 43, 46–52.

Ming, X., Brimacombe, M., and
Wagner, G. C. (2007). Prevalence
of motor impairment in autism
spectrum disorders. Brain Dev. 29,
565–570.

Minshew, N. J., Sung, K., Jones, B.
L., and Furman, J. M. (2004).
Underdevelopment of the postural
control system in autism. Neurology
63, 2056–2061.

Molloy, C. A., Dietrich, K. N., and
Bhattacharya, A. (2003). Postural
stability in children with autism
spectrum disorder. J. Autism Dev.
Disord. 33, 643–652.

O’Neill, M., and Jones, R. S. P. (1997).
Sensory-perceptual abnormalities

Frontiers in Integrative Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 14 | 7

http://dsq-sds.org/article/view/1060/1225
http://dsq-sds.org/article/view/1060/1225
http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Moran et al. Two-legged hopping in ASD

in autism: a case for more research?
J. Autism Dev. Disord. 27, 283–293.

Orekhova, E. V., Tsetlin, M. M.,
Butorina, A. V., Novikova, S. I.,
Gratchev, V. V., Sokolov, P. A.,
et al. (2012). Auditory cortex
responses to clicks and sensory
modulation difficulties in children
with autism spectrum disorders
(ASD). PLoS ONE 7:e39906. doi:
10.1371/journal.pone.0039906

Paton, B., Hohwy, J., and Enticott,
P. G. (2012). The rubber hand
illusion reveals proprioceptive and
sensorimotor differences in autism
spectrum disorders. J. Autism Dev.
Disord. 42, 1–14.

Piek, J. P., and Dyck, M. J. (2004).
Sensory-motor deficits in children
with developmental coordination
disorder, attention deficit hyperac-
tivity disorder and autistic disorder.
Hum. Mov. Sci. 23, 475–488.

Riemann, B. L., and Lephart, S. M.
(2002). The sensorimotor system,
part II: the role of proprioception
in motor control and functional
joint stability. J. Athl. Train. 37,
80–84.

Rinaldi, T., Silberberg, G.,
and Markram, H. (2008).
Hyperconnectivity of local neo-
cortical microcircuitry induced by
prenatal exposure to valproic acid.
Cereb. Cortex 18, 763–770.

Rinehart, N., Bradshaw, J., Brereton,
A., and Tonge, B. (2001). Movement
preparation in high-functioning
autism and asperger disorder: a
serial choice reaction time task
involving motor reprogramming.
J. Autism Dev. Disord. 31, 79–88.

Rousanoglou, E. N., and Boudolos, K.
D. (2006). Rhythmic performance
during a whole body movement:
dynamic analysis of force–time
curves. Hum. Mov. Sci. 25, 393–408.

Schöner, G. (2002). Timing, clocks,
and dynamical systems. Brain Cogn.
48, 31–51.

Schopler, E., Reichler, R. J., DeVellis,
R. F., and Daly, K. (1980). Toward
objective classification of childhood
autism: childhood Autism Rating
Scale (CARS). J. Autism Dev. Disord.
10, 91–103.

Sheridan, J., and McAuley, J. D. (1997).
“Rhythm as a cognitive skill:

temporal processing deficits in
autism,” in Proceedings of the Fourth
Australiasian Cognitive Science
Conference. Available online at:
http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.54.4592and
rep=rep1andtype=pdf

Tomchek, S. D., and Dunn, W. (2007).
Sensory processing in children with
and without autism: a comparative
study using the short sensory pro-
file. Am. J. Occup. Ther. 61, 190–200.

van Beers, R. J., Wolpert, D. M., and
Haggard, P. (2002). When feeling is
more important than seeing in sen-
sorimotor adaptation. Curr. Biol. 12,
834–837.

Verhoeven, J. S., De Cock, P.,
Lagae, L., and Sunaert, S.
(2010). Neuroimaging of autism.
Neuroradiology 52, 3–14.

Weimer, A. K., Schatz, A. M., Lincoln,
A., Ballantyne, A. O., and Trauner,
D. A. (2001). “Motor” impairment
in Asperger syndrome: evidence for
a deficit in proprioception. J. Dev.
Behav. Pediatr. 22, 92–101.

Wing, A. M., and Kristofferson, A. B.
(1973). Response delays and the

timing of discrete motor responses.
Atten. Percept. Psychophys. 14, 5–12.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 29 October 2012; accepted: 06
March 2013; published online: 26 March
2013.
Citation: Moran MF, Foley JT, Parker
ME and Weiss MJ (2013) Two-legged
hopping in autism spectrum disor-
ders. Front. Integr. Neurosci. 7:14. doi:
10.3389/fnint.2013.00014
Copyright © 2013 Moran, Foley, Parker
and Weiss. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are
credited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Integrative Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 14 | 8

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.4592andrep=rep1andtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.4592andrep=rep1andtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.4592andrep=rep1andtype=pdf
http://dx.doi.org/10.3389/fnint.2013.00014
http://dx.doi.org/10.3389/fnint.2013.00014
http://dx.doi.org/10.3389/fnint.2013.00014
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive

	Two-legged hopping in autism spectrum disorders
	Introduction
	Materials and Methods
	Participants
	Experimental Protocol
	Data Analysis
	Statistical Analysis

	Results
	Self-Selected Cadence
	Auditory Cue 1—2.3Hz
	Auditory Cue 2—3.0Hz
	Within Group Comparisons

	Discussion
	Self-Selected Hopping Cadence
	Effect of External Auditory Cue
	Movement Criterion

	Conclusions
	Acknowledgments
	References


