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Autism Spectrum Disorders (ASDs) represent a complex group of behaviorally defined
conditions with core deficits in social communication and the presence of repetitive
and restrictive behaviors. To date, neuropathological studies have failed to identify
pathognomonic cellular features for ASDs and there remains a fundamental disconnection
between the complex clinical aspects of ASDs and the underlying neurobiology. Although
not listed among the core diagnostic domains of impairment in ASDs, motor abnormalities
have been consistently reported across the spectrum. In this perspective article, we
summarize the evidence that supports the use of motor abnormalities as a putative
endophenotype for ASDs. We argue that because these motor abnormalities do not
directly depend on social or linguistic development, they may serve as an early
disease indicator. Furthermore, we propose that stratifying patients based on motor
development could be useful not only as an outcome predictor and in identifying more
specific treatments for different ASDs categories, but also in exposing neurobiological
mechanisms.
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Autism Spectrum Disorders (ASDs) comprise a complex group
of behaviorally defined conditions with core deficits in social
communication and the presence of repetitive and restrictive
behaviors (American Psychiatric Association, 2000). ASDs are
highly comorbid and notably heterogeneous in their clinical
presentation. Multiple etiologies have been suggested, but no
single genetic or environmental factor can account for more
than a small fraction of all cases (Abrahams and Geschwind,
2008). Despite sustained efforts to identify the cell types and
circuits that are impaired in ASDs, there remains a fundamen-
tal disconnection between the complex clinical features of ASDs
and the underlying neurobiological mechanisms. Postmortem
brain studies have failed to identify pathognomonic cellular fea-
tures for ASDs (Pickett and London, 2005; Amaral et al., 2008).
Despite reports of high heritability (Abrahams and Geschwind,
2008, 2010), large effect genetic events (copy number variants
or de novo mutations) are rare, while common genetic variants
can explain only a minute fraction of the phenotypic variabil-
ity (Stein et al., 2013). In addition, environmental contribu-
tions have only rarely proved conclusive [e.g., rubella, thalido-
mide or valproic acid exposure in early pregnancy (Landrigan,
2010)]. While rodent models of ASDs have begun to provide
pathophysiological and therapeutic clues, these models have
been restricted to rare syndromic or Mendelian forms of ASDs,
and have yet to address issues of specificity (i.e., the overlap
between genes in ASDs, developmental delay, and schizophre-
nia) and cross-species clinical validity (Qiu et al., 2012). More
recently, cellular reprogramming techniques have emerged as
new tools for identifying neuronal phenotypes in cells derived

in vitro from patients (Marchetto et al., 2010; Paşca et al., 2011;
Novarino et al., 2012). However, these cellular investigations will
have to be expanded considerably in order to identify com-
mon and divergent neuronal phenotypes in idiopathic ASDs
cases.

These novel models, as well as the continued accumulation
of clinical and genetic data in recent years, underscore a need
to develop more reliable means of stratifying ASDs. The identi-
fication of discrete, genetically determined disease components,
or endophenotypes (Gottesman and Gould, 2003), could prove
essential in delineating biologically and therapeutically meaning-
ful classes, adding power to genetic studies and guiding neurobi-
ological investigations. One promising avenue in this direction is
a more exhaustive and systematic investigation of motor abnor-
malities in ASDs.

Motor abnormalities in ASDs span a wide range of dys-
functions, including defects in gross and fine motor control,
complex motor sequences (including dyspraxia and deficits in
imitation), eye movement abnormalities and motor learning
deficits. Pinpointed by Kanner (1943) and Asperger (1944) in
their initial case series, these abnormalities were referred as
“clumsiness in gait and motor performances” (Kanner and Lesser,
1958). Two decades later, Damasio and Maurer (1978) hypoth-
esized mesolimbic dysfunction as a potential explanation for
dyskinetic and dystonic movements observed in patients with
ASDs, while others have either described a parkinsonian gait
(Vilensky et al., 1981), an ataxic-cerebellar gait (Hallett et al.,
1993; see also Nayate et al., 2012) or simply recognized asym-
metric patterns of movement and infantile reflexes “gone astray”
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(Teitelbaum et al., 1998, 2004; Esposito et al., 2009, 2011, 2012).
Although a recent meta-analysis confirmed the presence of sub-
stantial motor coordination deficits in ASDs with a consider-
able effect size of 1.20 (Fournier et al., 2010), none of the
studies to date have identified a single motor symptom as a
universal sign or prodrome for ASDs (Yirmiya and Charman,
2010).

Though there may not be a single universal motor sign, several
levels of evidence point toward the utility of motor assessments
in ASDs, indicating that motor dysfunction may play a central
role in elucidating pathophysiological mechanisms and facilitat-
ing diagnosis and treatment. We describe them here with an
emphasis on highlighting specific commonalties and disparities
in the presentation of motor abnormalities that could allow for
ASDs stratification.

First, motor abnormalities in ASDs are present early, within
the first year of life, and may precede social-communication
deficits (Leary and Hill, 1996). For example, Flanagan et al.
(2012), reported that head lag during pull-to-sit at the age of
6 months was associated with ASDs at 36 months and was more
frequently observed in infants at high-risk for ASDs. Recently,
two excellent prospective studies followed early motor symp-
toms in high-risk subjects. In the first longitudinal study, Landa
et al. (2013) assessed 235 children with or without a sibling
with ASDs to identify differential trajectories for normative
versus early-onset or late-onset ASDs. Interestingly, although
development was grossly intact by 6 months, fine motor delay
was present as early as 14 months in the late-onset group,
and only by 36 months in the early-onset ASDs group. In the
second prospective study, Landa et al. (2012) followed ASDs
siblings from 6 to 36 months and identified four main trajec-
tory phenotypes: normal development, accelerated development,
widespread skill acquisition delay, and receptive language and
motor delay. Importantly, in the latter group, receptive language
delay resolved by 24 months, while motor abnormalities persisted
at 36 months. Taken together, these studies demonstrate that
motor development is vulnerable to early delay in patients with
ASDs and their siblings and could potentially inform subtype
identification.

Second, motor symptoms in ASDs are persistent. Both fine and
gross motor impairments are long-term deficits, whose severity
is correlated with the degree of social impairment (Freitag et al.,
2007). A recent large sample study (Lloyd et al., 2013) showed
that in very young children with ASDs, these delays become
more pronounced with age, even when controlling for non-verbal
problem-solving skills. Additional reports have suggested that
gross motor and fine motor symptoms may diminish over the
course of life, but even in these cohorts oculomotor impairment
and dyspraxia appear to persist (Freitag et al., 2007). These obser-
vations suggest that the persistence of motor symptoms could also
assist with differential diagnosis. For instance, skill progression
in Down syndrome is delayed, but the acquisition of develop-
mental milestones occurs in an orderly manner and these deficits
can significantly improve with therapeutic facilitation (Sacks and
Buckley, 2003).

Third, there is preliminary evidence indicating that motor
abnormalities in ASDs are heritable. For instance, motor

delays are common among ASDs siblings and are predictive
of communication delays in these individuals (Bhat et al.,
2012), making them part of the broader autism pheno-
type. In addition, bivariate twin analyses indicate that phys-
ical clumsiness and autistic-like traits are highly correlated,
an association that is most plausibly explained by genetic eti-
ological overlap (Moruzzi et al., 2011). Moreover, a consid-
erable proportion of the genetic variance in ASDs is shared
with developmental coordination disorder, a childhood condi-
tion characterized by poor motor coordination and clumsiness
(Lichtenstein et al., 2010). While not all studies have been
able to detect motor skills impairments in unaffected siblings
of children with ASDs (Hilton et al., 2012), future prospec-
tive studies should dissect more systematically and in larger
cohorts the relative genetic contribution to motor abnormalities
in ASDs.

Fourth, and perhaps the feature that best makes the case
for the assessment of motor abnormalities for ASDs stratifi-
cation, is the fact that motor development is relatively more
quantitative in nature than communicative abilities or social
traits. Multiple standardized test batteries that measure motor
skills are currently available. For instance, the Mullen Scales of
Early Learning evaluates gross motor development from 0 to
33 months, and the Griffiths Mental Development Scales quantify
locomotor activity, including the ability to balance and to coordi-
nate and control movements. Multiple studies have shown that
these evaluations are reliable and easy to implement. Moreover,
they have the potential for becoming screening tools especially
if facilitated by video analyses (using computer vision tools as
illustrated by Hashemi et al., 2012, for example). Coupled with
the early onset of motor abnormalities, described above, the
availability of reliable quantitative tools point toward the use
of motor development as a more standard metric for patient
stratification.

Fifth, is the suggestion that both motor and social-
communicative deficits originate from a common etiology and
that motor abnormalities would constitute an early window into
the pathophysiology of ASDs. Although this assertion has not
been tested systematically, we know a significant amount about
the physiology of the motor system, and it is conceivable that
neurobiological insights will be gained from investigating motor
development in ASDs. Clinical and physiological studies indi-
cate multiple levels of biological impairment in ASDs, from
the vestibular brainstem nuclei to the cerebellum, basal ganglia
and sensorimotor cortices. Therefore, involvement of individ-
ual structures, which are associated with specific subtypes of
motor abnormalities, could be used as a stratification criterion.
Postmortem brain findings have paved the way by reporting,
in some ASDs patients, Purkinje cell deficits in the cerebellum
(Bauman and Kemper, 1985; Arin et al., 1991; Bailey et al., 1998;
Whitney et al., 2008; Fatemi et al., 2012) and hypoplasia of its ver-
mal lobules VI–VII (Courchesne et al., 1994), an enlarged caudate
nucleus (Langen et al., 2007) and a delayed functional special-
ization of the motor cortex (Nebel et al., 2012). One example
of how motor abnormalities may inform a mechanistic under-
standing is the hypothesis of early damage to mirror neuron
systems in ASD. According to this model, impairments in ASDs
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are rooted in the incapacity to assemble and directly grasp the
intrinsic goal-directed organization of motor behavior (Cossu
et al., 2012).

Sixth, motor abnormalities affect quality of life and correc-
tion is likely to improve functioning. Abnormal motor control
can have pervasive consequences on the development of multiple
skills. Delayed motor development constrains social interactions
and impaired social interactions can further constrain motor
skill development. Importantly, gross and fine motor skills can
be learned and practiced, and although not tested prospectively,
motor corrections may improve social-communicative function-
ing in ASDs (Baranek, 1999).

Lastly, recent studies indicate that motor abnormalities in
ASDs may have predictive value. For instance, approximately 70%
of high-risk infants (i.e., siblings of ASDs patients) who presented
with early motor delays later developed deficits in communication
(Bhat et al., 2012), while better motor outcome in 2-year-old chil-
dren with ASDs correlates with better outcomes at 4 years (Sutera
et al., 2007).

Taken together, these multiple lines of evidence underscore
the need for more systematically assessing motor development in
ASDs patients. With few exceptions (Provost et al., 2007; Ozonoff
et al., 2008), most studies investigating motor development in
ASDs report abnormalities at some levels (vestibular, fronto-
striatal, cerebellar, cortical) and of a certain severity. Importantly,
the standard deviations for the measured variables in these stud-
ies are always larger in the ASDs group, highlighting that at an
individual level some children with ASDs are definitely atyp-
ical, while others are probably not remarkably different than
their matching controls (Vernazza-Martin et al., 2005; Rinehart
et al., 2006a,b,c; Esposito and Venuti, 2008). Depending on the
task and the cohort, the proportion of ASDs children displaying
motor development abnormalities varies. For instance Esposito
et al. (2011), found that persistent postural asymmetries were
present only in ∼40% of children with ASDs. The variability
in these deficits across the spectrum is a challenge that likely
reflects the clinical and etiological heterogeneity of ASDs. At the
same time, it constitutes a unique opportunity to identify disease
subtypes.

Additional work is clearly needed to conclusively determine
how motor abnormalities can contribute to understanding ASDs,
while the limitations of existing studies also have to be addressed.

For instance, cohorts that up until now have been restricted to
high functioning patients should be expanded to reflect the full
autism spectrum using objective disease measures (the Autism
Diagnostic Observation Schedule—ADOS, Autism Diagnostic
Interview, Revised—ADI-R). More prospective studies need to be
developed, while retrospective studies should use well-matched
controls and siblings. It is also important to explore motor dis-
turbances in novel or cognitively demanding environments and
combine these studies with genetic analyses and neuroimag-
ing. Peculiar phenomena associated with ASDs, such as kinesia
paradoxa during which motor function can appear smooth and
seamless during fixation on one task, deserve more attention
(Leary and Hill, 1996; Rinehart et al., 2006a,b,c). In addition,
the confounding role of medications (antipsychotics, antidepres-
sants, stimulants, mood stabilizers), which are so commonly
prescribed in these patients, should be rigorously investigated
in the context of behavioral and motor abnormalities. Benefits
could also come from the development and implementation of
novel, easy to use, standardized scales that could streamline the
collection of motor developmental data and allow for large-scale
analyses.

In conclusion, motor abnormalities in ASDs are early and per-
sistent clinical signs, which, due to their heritability, can serve as
disease endophenotypes. In addition, these abnormalities can be
reliably quantified and, if improved, are likely to benefit the over-
all functioning of the patient. When viewed as an endophenotype,
motor abnormalities have the potential to stratify ASDs into more
tractable conditions leading to more productive etiological explo-
rations, better clinical trials, and perhaps earlier detection and
outcome prediction.
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