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INTRODUCTION

One barrier to interpreting past studies of cognition and major depressive disorder
(MDD) has been the failure in many studies to adequately dissociate the effects of
MDD from the potential cognitive side effects of selective serotonin reuptake inhibitors
(SSRIs) use. To better understand how remediation of depressive symptoms affects
cognitive function in MDD, we evaluated three groups of subjects: medication-naive
patients with MDD, medicated patients with MDD receiving the SSRI paroxetine, and
healthy control (HC) subjects. All were administered a category-learning task that allows
for dissociation between learning from positive feedback (reward) vs. learning from
negative feedback (punishment). Healthy subjects learned significantly better from positive
feedback than medication-naive and medicated MDD groups, whose learning accuracy
did not differ significantly. In contrast, medicated patients with MDD learned significantly
less from negative feedback than medication-naive patients with MDD and healthy
subjects, whose learning accuracy was comparable. A comparison of subject’s relative
sensitivity to positive vs. negative feedback showed that both the medicated MDD and
HC groups conform to Kahneman and Tversky's (1979) Prospect Theory, which expects
losses (negative feedback) to loom psychologically slightly larger than gains (positive
feedback). However, medicated MDD and HC profiles are not similar, which indicates
that the state of medicated MDD is not “normal” when compared to HC, but rather
balanced with less learning from both positive and negative feedback. On the other
hand, medication-naive patients with MDD violate Prospect Theory by having significantly
exaggerated learning from negative feedback. This suggests that SSRI antidepressants
impair learning from negative feedback, while having negligible effect on learning from
positive feedback. Overall, these findings shed light on the importance of dissociating
the cognitive consequences of MDD from those of SSRI treatment, and from cognitive
evaluation of MDD subjects in a medication-naive state before the administration of
antidepressants. Future research is needed to correlate the mood-elevating effects
and the cognitive balance between reward- and punishment-based learning related to
SSRis.
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while being hyposensitive to reward (Henriques etal., 1994;

Major depressive disorder (MDD) is debilitating psychiatric dis-
ease, characterized by persistent low mood and significant loss
of pleasure (Belmaker and Agam, 2008). MDD has been asso-
ciated with various cognitive deficits, including alterations to
learning from positive feedback (reward) and negative feed-
back (punishment; Eshel and Roiser, 2010). Behavioral studies
suggest that patients with MDD show hypersensitive responses
to punishment (Beats etal., 1996; Elliott etal., 1996, 1997),

McFarland and Klein, 2009; Robinson etal., 2012a). These find-
ings fit with psychological theories of MDD, which argue that
patients with MDD manifest abnormally negative attitudes and
thoughts (Bower, 1981), while being unable to modulate their
behavioral responses when presented with positive reinforce-
ment, which results in misconception of environmental infor-
mation to confirm these biases (Gotlib and Joormann, 2010;
Roiser and Sahakian, 2013). Such cognitive biases relate to the
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underlying neural circuits that are affected by MDD, namely
the basal ganglia and the limbic system (Sheline etal., 2001;
Nutt, 2006; Dunlop and Nemeroff, 2007). Accordingly, we
can draw two major conclusions from the literature on MDD
patients’ ability to process information in the context of pos-
itive and negative feedback. The first is that patients with
MDD show exaggerated responses to negative feedback (Beats
etal., 1996; Elliott etal., 1996, 1997), while the second is that
MDD patients show hyposensitive responses to positive feedback
(Henriques etal., 1994; McFarland and Klein, 2009; Robinson
etal.,, 2012a).

In addition to being implicated in the pathophysiology of
MDD, the monoamines serotonin and dopamine have also been
shown to be play major roles in reinforcement learning (Deakin,
1991; Dunlop and Nemeroff, 2007; Cools etal., 2011). Serotonin
has been prominently associated with aversive processing as well
as behavioral inhibition, where serotonin levels positively corre-
late with punishment-induced inhibition and aversive processing
but not overall inhibition of motor responses to aversive out-
comes (Deakin and Graeff, 1991; Crockett etal., 2009). Studies
have shown that acute tryptophan depletion (a dietary technique
used to reduce central serotonin concentrations) enhances rever-
sal learning of aversive cues in healthy subjects (Cools et al., 2008),
which mimics the feedback sensitivity bias in patients with MDD
(Clark etal., 2009; Eshel and Roiser, 2010). Aside from being key
for learning from positive feedback (Schultz etal., 1997), it has
been suggested that dopaminergic dysregulation plays a central
role in the cognitive correlates of MDD (Nutt, 2006; Dunlop and
Nemeroff, 2007; Nutt etal., 2007). Imaging studies have shown
that patients with MDD exhibit hyposensitive responses to reward
alongside attenuated striatal response to presentation of reward
(Henriques etal., 1994; McFarland and Klein, 2009; Robinson
etal.,, 2012a). These reports highlight the low serotonergic and
low dopaminergic state in MDD, which could represent the neu-
rochemical basis for the observed cognitive biases in MDD (Cools
etal., 2011).

A substantial proportion of patients with MDD respond to
pharmacological treatment with antidepressants, including selec-
tive serotonin reuptake inhibitors (SSRIs; Carvalho etal., 2007),
which are thought to achieve their therapeutic effect, primarily, by
modifying synaptic availability of monoamines, namely serotonin,

dopamine, and norepinephrine (Malberg and Schechter, 2005).
Recent studies argue that SSRI administration in MDD results
in normalization of activity in the prefrontal cortex (PFC) and
amygdala (Di Simplicio etal., 2012; Godlewska etal., 2012), nor-
malization of the functional connectivity between PFC and both
hippocampus and amygdala (McCabe etal., 2011), and enhance-
ment of reward learning and striatal activity (Stoy etal.,2011). On
the other hand, reports suggest that the administration of SSRIs
diminishes the processing of both reward and punishment stimuli
in healthy subjects (McCabe etal., 2010), but diminishes learn-
ing from punishment stimuli and enhances learning from reward
stimuli in rats (Bari etal., 2010). Accordingly, there is evidence
that SSRI administration normalizes brain activity in key regions
for learning from positive and negative feedback, and enhances
learning from positive feedback. Unfortunately, relatively little
is known about how the remediation of psychiatric symptoms
by SSRIs impacts the balance between learning from reward and
punishment in MDD.

In this study, our main aim was to investigate the effect of
remediation of depressive symptoms by SSRI administration on
the balance between learning from positive and negative feedback
in MDD. We tested medication-naive patients with MDD, SSRI-
responder patients with MDD and matched healthy control (HC)
subjects, on a computer-based learning task that uses a mix of
positive-feedback and negative feedback (Bodi etal., 2009). To
our knowledge, no previous studies attempted to dissociate the
effects of MDD and SSRI on reward and punishment learning in
the same study.

MATERIALS AND METHODS

PARTICIPANTS

We recruited and tested 13 medication-naive patients with MDD,
18 SSRI-responding patients with MDD (MDD-T), and 22 HC
subjects, from various psychiatric clinics, mental health care cen-
ters and primary health care centers throughout the West Bank,
Palestinian Territories. All subjects were White, ranging from 20 to
60 years of age. Participants were group matched for age, gender,
and years of education, as shown in Table 1. All subjects underwent
screening evaluations that included a medical history and a phys-
ical examination. Psychiatric assessment was conducted using an
unstructured interview with a psychiatrist using the DSM-IV-TR

Table 1 | Summary of demographic and neuropsychological results.

Age Education MMSE BDI-lI BAI NS HA RD
HC Mean 28.50 15.09 29.91 5.5 6.36 14.63 10.54 17.91
SD 11.84 1.57 0.29 4.09 5.60 3.95 4.51 2.69
MDD Mean 27.23 14.31 28.53 33.77 28.84 16.38 20.77 14.69
SD 6.24 2.29 1.33 10.02 9.01 3.47 6.24 4.23
MDD-T Mean 32.11 13.56 27.83 9.72 9.27 14.78 15.83 18.50
SD 9.14 2.17 2.71 6.41 5.43 3.21 5.36 3.07

HC, healthy controls; MDD, medication-naive patients with MDD; MDD-T, SSRI-treated patients with MDD; MMSE, Mini-Mental Status Exam; BDI-Il, Beck Depression
Inventory II; BAI, Beck Anxiety Inventory; TPQ dimensions, Tridimensional Personality Questionnaire; HA, harm avoidance; RD, reward dependence, NS, novelty

seeking.
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criteria for the diagnosis of MDD (melancholic subtype), and the
Mini International Neuropsychiatric Interview (MINI; Amorim
etal., 1998). We recruited medication-naive patients with MDD
after meeting the DSM-IV-TR criteria for MDD and completing
the MINI structured clinical interview to confirm the diagnosis
and absence of comorbidities. We tested medication-naive patients
with MDD immediately prior to their initiating treatment with
SSRIs. All SSRI-treated patients with MDD received 10-30 mg
of paroxetine per day (mean = 18.333, SD = 5.941) as part of
their normal ongoing treatment. Inclusion criteria for HC subjects
were absence of any psychiatric, neurological, or other disorders
that might affect cognition. MDD-T patients’ average exposure
to SSRIs was 12.833 (SD = 18.912) months. MDD-T patients’
response to SSRIs was assessed using subjective reports and scores
on the Beck Depression Inventory II (BDI-II). Exclusion criteria
for all subjects included psychotropic drug exposure, except for the
SSRI paroxetine in the SSRI-treated MDD group; major medical
or neurological illness; illicit drug use or alcohol abuse within the
past year; lifetime history of alcohol or drug dependence; psychi-
atric disorders other than major depression (excepting comorbid
anxiety symptoms); current pregnancy or breastfeeding. After
receiving a complete description of the study, participants pro-
vided written informed consent as approved by both the Al-Quds
University Ethics Committee and the Rutgers Institutional Review
Board.

PSYCHOMETRIC AND PSYCHOPATHOLOGY TEST BATTERY

All subjects completed the validated Arabic version (Herzallah
etal., 2010, 2013) of a battery of psychometric and psychopathol-
ogy test questionnaires: Mini-Mental Status Examination (MMSE;

Folstein etal., 1975), BDI-II (Beck etal., 1996), and Beck Anxiety
Inventory (BAI; Beck etal., 1988). Further, all subject completed
the Tridimensional Personality Questionnaire (TPQ; Cloninger
etal., 1991). All results are summarized in Table 1.

COMPUTER-BASED COGNITIVE TASK

Reward and punishment learning

Participants were administered a computer-based classification
task (Bodi etal., 2009). On each trial, participants viewed one
of eight images (Figure 1), and were asked to guess whether that
stimulus predicts rainy weather (Rain, Figure 1) or sunny weather
(Sun, Figure 1). For each participant, the eight images were ran-
domly assigned to be stimuli S1-S8. On any given trial, stimuli S1,
S3, S5, and S7 predicted Rain, while stimuli S2, S4, S6, and S8 pre-
dicted Sun. Stimuli S1-S4 were used in the reward-learning task.
Four stimuli per valence were employed in order to balance cate-
gory outcome frequencies, so that one stimulus in each task would
be associated with each outcome. Thus, if the participant correctly
guessed category membership on a trial with either of these stim-
uli, a reward of +25 points was received; if the participant guessed
incorrectly, no feedback appeared. Stimuli S5-S8 were used in the
punishment-learning task. Thus, if the participant guessed incor-
rectly on a trial with either of these stimuli, a punishment of —25
was received; correct guesses received no feedback.

The experiment was conducted on a Macintosh MacBook,
programed in the SuperCard language. The participant was
seated in a quiet testing room at a comfortable viewing distance
from the screen. The keyboard was masked except for two keys,
labeled “Sun” and “Rain” which the participant could use to enter
responses. At the start of the experiment, the participant read

A B
Al Al
Your prediction:
A ALK A
Rain Sun Rain Sun
Points so far: Points so far:
500 500
C D
o
4 N
Rain Sun + 2 5 Rain Sun _2 5
"; .\\h Points 5o far: Ponts 0 far:
-/ 500 a5
FIGURE 1 |The feedback-based deterministic classification task. (A) On  stimuli. (C) For rewarding stimuli, correct responses get rewarded with
each trial, the participant saw one of eight stimuli and was asked visual feedback and 25 points winnings. (D) For punishing stimuli,
whether this stimulus predicts rain or sun. (B) No feedback is given for incorrect responses get punished with visual feedback and the loss of
incorrect answers in rewarding stimuli or correct answers in punishing 25 points.
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the following instructions: “Welcome to the Fortuneteller School!
You will be trained as a fortune teller to predict the weather. You
learn to do this by using cards that either predict rain or sun.
Your goal is to learn which cards predict rain and which cards pre-
dict sun.” The practice phase then walked the participant through
an example of a correct and an incorrect response to a sample
trial in the reward-learning task and an example of a correct and
response to a sample trial in the punishment-learning task. These
examples used images other than those assigned to S1-S8. The
participant saw a practice image, with a prompt to choose “Sun”
or “Rain,” and a running tally of points at the lower right cor-
ner of the screen. The tally was initialized to 500 points at the
start of practice. The participant was first instructed to press the
“Sun” key, which resulted in a reward of +25 and updated point
tally and then the “Rain” key, which resulted in no feedback. The
participant then saw a second practice figure and was instructed
first to press the “Rain” key, which resulted in a reward of -25
and updated point tally and then the “Sun” key, which resulted in
no feedback. After these two practice trials, a summary of instruc-
tions appeared: “So... for some pictures, if you guess CORRECTLY,
you WIN points (but, if you guess incorrectly, you win nothing).
For other pictures, if you guess INCORRECTLY, you LOSE points
(but, if you guess correctly, you lose nothing). Your job is to win all
the points you can and lose as few as you can. Press the mouse but-
ton to begin the experiment”. From here, the experiment began.
In each trial, the participant saw one of the eight stimuli (S1-58)
and was prompted to guess whether it was a “Sun” or a “Rain.”
On trials in the reward-learning task (with stimuli S1-54), correct
answers were rewarded with positive feedback and a gain of 25
points; incorrect answers received no feedback. On trials in the
punishment-learning task (with stimuli S5-S8), incorrect answers
were punished with negative feedback and a loss of 25 points; cor-
rect answers received no feedback. The task contained 160 trials,
distributed over four blocks of 40 trials. Within a block, trial order
was randomized. Trials were separated by a 1 s interval, during
which time the screen was blank. Within each block, each stimu-
lus appeared five times. Thus, training on the reward-learning task
(S1-S4) and punishment-learning task (S5-S8) were intermixed.
The no-feedback outcome, when it arrived, was ambiguous, as it
could signal lack of reward (if received during a trial with S1-S4)
or lack of punishment (if received during a trial with S5-S8).

STATISTICAL ANALYSIS

The normality of data distribution was checked using
Kolmogorov—Smirnov tests. All data were normally distributed
(p > 0.1). We used mixed-design three-way ANCOVA followed
by mixed-design two-way ANOVA and one-way ANOVA post hoc
tests, Tukey’s honestly significant difference (HSD) post hoc tests
and Bonferroni post hoc tests. The level of significance was set at
a = 0.05.

RESULTS

BEHAVIORAL RESULTS

We used one-sample ¢-test on the percentage of correct responses
in the fourth block of learning in both reward and punish-
ment to ensure that subjects learned significantly better than
chance in different groups. In reward learning, MDD-T and HC

learned significantly better than chance, with Bonferroni cor-
rection adjusted a = 0.017 to protect the level of significance
[MDD-T: £(17) = 3.264, p= 0.005; HC: £(21) = 9.997, p < 0.001],
while MDD did not [#(12) = 0.925, p = 0.373]. In punishment
learning, all groups learned significantly better than chance, with
Bonferroni correction adjusted a = 0.017 to protect the level of sig-
nificance [MDD: #(12) = 7.704, p < 0.001; MDD-T: ¢(17) = 3.394,
p=0.003; HC: #(11) = 13.231, p < 0.001].

Using mixed-design three-way ANCOVA, we analyzed the data
obtained from the cognitive task with group as the between-subject
variable, learning block, and feedback type as within-subject vari-
ables, BDI-II scores as a covariate, and the percentage of correct
responses on reward and punishment as the dependent vari-
ables. There was a significant effect of group [F(2,51) = 9.433,
p < 0.001, 1> = 0.270] and block [F(3,153) = 11.880, p < 0.001,
n? = 0.189] as illustrated in Figure 2. However, there was no
significant effect of feedback type [F(1,51) = 1.337, p = 0.253].
We conducted two post hoc mixed-design two-way ANOVAs, with
group as the between-subject variable, learning block as within-
subject variable, the percentage of correct responses on reward
as the dependent variable in one of the ANOVAs and the per-
centage of correct responses on punishment in the other, and
Bonferroni correction adjusted a = 0.025 to protect the level
of significance. The reward post hoc revealed a significant effect
of group [F(2,50) = 5.094, p = 0.010, 12> = 0.169] and block
[F(3,150) = 6.000, p = 0.001, n? = 0.107] along with an inter-
action between group and block [F(6,150) = 3.098, p = 0.007,
1% = 0.110]. We used four post hoc one-way ANOVAs to explore
the significant interaction between group and block, with group
as the between-subject variable, and the percentage of correct
responses on a each one of the four reward learning block was
the within-subject variable, with a Bonferroni correction adjusted
a = 0.0125 to protect the level of significance. One-way ANOVA
and Tukey’s HSD results are summarized in Table 2. The pun-
ishment post hoc two-way ANOVA showed a significant effect
of group [F(2,50) = 4.512, p = 0.016, 12> = 0.153] and block
[F(3,150) = 45.644, p < 0.001, nz = 0.477], but no interaction
between group and block [F(6,150) = 2.426, p = 0.029]. Tukey’s
HSD post hoc test revealed a significant difference between MDD-
T and both MDD and HC (p < 0.05), but not between MDD and
HC.

To investigate the balance between reward and punishment
learning, we subtracted punishment learning accuracy in a par-
ticular block from that of reward in the same block. Two-way
ANOVA, with group as the between-subject variable, block of
learning as the within subject variable, and the mean difference
between percentage correct responses in reward and punishment
trials as the dependent variable, revealed a significant effect of
block [F(3,150) = 11.147, p < 0.001, n? = 0.182] and an inter-
action between block and group [F(6,150) = 3.145, p = 0.006,
n? = 0.112], but no significant effect of group [F(2,50) = 2.486,
p = 0.094], as illustrated in Figure 3. We used four post hoc one-
way ANOVA and Tukey’s HSD post hoc analyses on each block of
mean difference between percentage correct responses in reward
and punishment trials to investigate the interaction between block
and group, with group as the between subject variable and the
mean difference between percentage correct responses in reward
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Block Block
FIGURE 2 | Performance on the reward and punishment learning in the four phases for the punishment stimuli (+SEM). MDD is
task; (A) The mean number of correct responses in the four phases for  medication naive, MDD-T is on medication MDD patients, and HC is
the reward stimuli (£SEM). (B) The mean number of correct responses healthy controls.

Table 2 | Summary of the post hoc one-way ANOVA and Tukey’s HSD post hoc results to explore the significant interaction between group and
block in reward learning, with group as the between-subject variable, and the percentage of correct responses on a each one of the four reward
learning block was the within-subject variable, with a Bonferroni correction adjusted o = 0.0125 to protect the level of significance.

Statistical test Within-subject variable Between-subject variable df-1 df-2 F P n2
One-way ANOVA Block 1 reward Group (MDD, MDD-T, HC) 2 50 1.571 0.218 -
One-way ANOVA Block 2 reward Group (MDD, MDD-T, HC) 2 50 3.862 0.28 -
One-way ANOVA Block 3 reward Group (MDD, MDD-T, HC) 2 50 4.973 0.011* 0.166
Tukey's HSD HC vs. MDD-T - - - 0.04* -

HC vs. MDD - - - 0.097 -

MDD vs. MDD-T - - - 0.827 -
One-way ANOVA Block 4 reward Group (MDD, MDD-T, HC) 2 50 6.038 0.004* 0.194
Tukey's HSD HC vs. MDD - - - 0.006* -

HC vs. MDD-T - - - 0.049* -

MDD vs. MDD-T - - - 0.5672 -

HC, healthy controls; MDD, medication-naive patients with MDD; MIDD-T, SSRI-treated patients with MIDD. The symbol “*" marks significant results.

and punishment trials as the dependent variable. ANOVA and
Tukey’s HSD results are reported in Table 3.

PSYCHOMETRIC RESULTS

There was no significant effect of group on age, education, MMSE
score, or the novelty seeking subsection of the TPQ, with Bon-
ferroni correction adjusted o = 0.006 to protect the level of
significance (p > 0.006). However, there was a significant differ-
ence between groups in BDI-IT scores [ F(2,50) = 77.576, p < 0.001,
1% = 0.756, Tukey’s HSD post hoc: significant difference between
MDD and both MDD-T and HCs], BAI scores [ F(2,50) = 52.444,
p < 0.001, 1?2 = 0.677, Tukey’s HSD post hoc: significant differ-
ence between MDD and both MDD-T and HCs], harm avoidance
subsection of the TPQ [F(2,50) = 15.903, p < 0.001, n2 =0.389,
Tukey’s HSD post hoc: significant difference between HC and both

MDD and MDD-T, and between MDD-T and HC], and reward
dependence subsection of the TPQ [F(2,50) = 5.808, p = 0.005,
1% = 0.189, Tukey’s HSD post hoc: significant difference between
HC and both MDD and MDD-T].

DISCUSSION

We have three main findings. First, SSRI-treated patients with
MDD were less sensitive to negative feedback (punishment) than
either medication-naive patients with MDD or HC subjects, based
on their accuracy in the cognitive task. Second, both medication-
naive and SSRI-treated patients with MDD were less sensitive
to positive-feedback than HC subjects. Third, a comparison of
subjects’ learning from positive vs. negative feedback, showed
that both the HC and MDD groups conform to Kahneman and
Tversky’s (1979) Prospect Theory, which expects losses (negative
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FIGURE 3 | Mean difference between percentage correct responses in
reward and punishment trials per block (£SEM). MDD is medication
naive, MDD-T is on medication, and HC is healthy controls.

feedback) to loom psychologically larger than gains (positive
feedback; Kahneman and Tversky, 1979). In contrast the MDD
patients violate Prospect Theory by being significantly more biased
toward negative.

BEHAVIORAL AND NEURAL CORRELATES OF MDD

Abnormal exaggerated reactions to negative events and over-
looking positive events are considered central features of MDD
(Beats etal., 1996; Elliott etal., 1996). These abnormal responses
to positive and negative feedback represent an important link
between emotional and cognitive disturbances in MDD (Wright
and Beck, 1983; Elliott etal., 1997), showing an increased elab-
oration of negative information (Gotlib and Joormann, 2010),
while ignoring positive information. As explained by the cognitive
theory of depression (Clark and Beck, 2010); depressed people
tend to demonstrate selective attention to negative information;
magnifying the importance and meaning placed on negative events
(Beck, 1979; Bower, 1981). Our results show that medication-naive

patients with MDD learn from punishment as efficiently as HC
subjects, but fail to learn from reward feedback. However, the task
design we use in the current study is not the most ideal approach
to delineate higher-than-normal learning from punishment learn-
ing in MDD due to a possible ceiling effect (Figure 2B). Further
research is needed in this domain to further investigate the dif-
ferential sensitivity to negative feedback in MDD as compared to
healthy subjects, and properly correlate cognitive measures with
symptom distribution and severity in patients with MDD.

Patients with MDD’s strong biases toward negative stimuli and
away from positive ones highlights the role of serotonin in the
processing of affective stimuli and inhibitory control of behav-
ior and adaptation of the animals to aversive events (Graeff et al.,
1996), and underpin the attentional bias in MDD toward nega-
tive feedback (Mogg etal., 1995; Harmer etal., 2009). Lowering
brain serotonin level by acute tryptophan depletion (serotonin
precursor) in healthy volunteers results in increased sensitivity
to punishment and negative feedback without affecting reward
(Cools etal., 2008; Robinson etal., 2012b). These alterations in
the reward and punishment processing implicate a neural circuit
that is composed of brain regions strongly innervated by sero-
tonin, namely, the medial PFC and the ventral striatum (Clark
etal., 2009).

Recent imaging studies argue that patients with MDD manifest
cognitive and neurochemical dysfunction directly related to the
nigrostriatal dopaminergic system (Dunlop and Nemeroff, 2007;
Walter etal., 2007; Robinson etal., 2012a). On the other hand,
previous research has shown that the basal ganglia dopaminer-
gic system is vital for learning to predict rewarding outcomes
(Schultz etal.,, 1997; Haber and Knutson, 2010). In a previous
study using a reward-punishment learning task (similar to the task
we used in this paper), we demonstrated that medication-naive
patients with Parkinson’s disease learned very well from punish-
ment but were impaired on reward learning (Bodi etal., 2009).
Our findings indicate that medication-naive patients with MDD
show similar cognitive profile to de novo patients with Parkinson’s
(Bodietal.,2009). Both disorders were shown to suppress learning
from reward (Henriques etal., 1994; Bodi etal., 2009; McFar-
land and Klein, 2009; Robinson etal., 2012a), without altering
learning from punishment (Beats etal., 1996; Elliott etal., 1996,

Table 3 | Summary of the post hoc one-way ANOVA and Tukey’s HSD post hoc analyses on each block of mean difference between percentage
correct responses in reward and punishment trials to investigate the interaction between block and group, with group as the between subject
variable and the mean difference between percentage correct responses in reward and punishment trials as the dependent variable.

Statistical test Within-subject variable Between-subject variable df-1 df-2 F P 1n?
One-way ANOVA Block 1 difference Group (MDD, MDD-T, HC) 2 50 0.358 0.701 -
One-way ANOVA Block 2 difference Group (MDD, MDD-T, HC) 2 50 2.121 0.131 -
One-way ANOVA Block 3 difference Group (MDD, MDD-T, HC) 2 50 1.035 0.363 -
One-way ANOVA Block 4 difference Group (MDD, MDD-T, HC) 2 50 5.251 0.009* 0.173
Tukey's HSD HC vs. MDD - - - 0.017* -

HC vs. MDD-T - - - 0.963 -

MDD vs. MDD-T - - - 0.013* -

HC, healthy controls; MDD, medication-naive patients with MDD; MDD-T, SSRI-treated patients with MDD. The symbol “*" marks significant results.
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1997; Bodi etal., 2009). This observation might be attributed to
the effect of both disorders on the striatal dopamine (Kish etal,,
1988; Walter etal., 2007). Further, there is a very high level of
comorbidity between MDD and Parkinson’s disease (Cummings,
1992; Schuurman etal., 2002; Leentjens etal., 2003; Veiga etal.,
2009). However, it is not clear whether this overlap between
the two disorders is a consequence of dopaminergic dysfunction
alone, or it is a mixture monaminergic effects (Kitaichi et al., 2010;
Delaville etal., 2012). In addition, our findings suggest that SSRI-
treated patients with MDD learn significantly less than HC subjects
from positive-feedback, similar to medication-naive patients with
MDD. Future studies ought to compare the cognitive correlates
of SSRI administration in MDD and depression in Parkinson’s
disease.

Increasing the central level of serotonin by administration of
SSRIs counteracts MDD-related negative biases in aversive learn-
ing paradigms in animals (Bari etal., 2010) as well as emotional
learning paradigms in humans (Harmer et al., 2009; McCabe et al.,
2010). Various studies show that the administration of SSRIs nor-
malizes the BOLD response in the dorsomedial PFC and across the
functional connection between PFC and both hippocampus and
amygdala (McCabe et al., 2011). Hence, it has been proposed that
SSRIs may ameliorate MDD symptoms by inhibiting processing of
negative feedback (Boureau and Dayan, 2011; Cools etal., 2011).
In agreement with these results, we found here that SSRI-treated
patients with MDD are less sensitive to negative feedback as com-
pared to both medication-naive patients with MDD as well as HC
subjects.

In Watts etal. (2012), daily administration of SSRIs caused nor-
mal rats to slowly begin to lose selectivity in their box-checking
behavior for food reward; they soon began to check more unbaited
boxes. If SSRI administration reduces salience of punishment, it
may be that the Watts etal.’s (2012) behavioral outcome is not
due to lack of consolidation or reconsolidation of which boxes
were baited or unbaited, as the authors chose to interpret their
findings, but rather resulted from a lack of motivation to discrim-
inate the rewarded vs. unrewarded boxes since the slight negative
drawback (waste of time and effort) of checking an unbaited box
was no longer worth the cognitive effort of discrimination. This
could support either a learning deficit with MDD treatment or
a loss of the power of negative motivation, or both. However, it
also remains possible that change in the MDD-T performance in
our study is due to an a priori learning impairment caused by
the MDD treatment, or the effects of recovery from MDD. All
groups did seem to learn the positive reward stimuli, but none of
them learned it well, whereas the MDD and HC groups learned
from punishment quite well indeed while the MDD-T group poor
learning from punishment compares to their poor learning from
reward.

Driven by the SSRI-related suppression of punishment learn-
ing, we found that SSRI-treated patients with MDD expressed
balanced reward-punishment learning bias similar to HC subjects.
This balance can be the underlying mechanism for SSRI-induced
restoration of mood in patients with MDD. It is worth not-
ing, however, that SSRI-treated MDD and HC profiles are not
similar, which indicates that the state of SSRI-treated MDD
is not “normal” (when compared to HC), but rather balanced

with less learning from both positive and negative feedback. The
negative values in this difference computation for the HC and
MDD-T groups indicated a biased sensitivity to learn slightly
more quickly from negative feedback (punishment) than posi-
tive feedback (reward) as expected by Kahneman and Tversky’s
(1979) Prospect Theory, which expects that losses from negative
feedback should loom larger than gains from positive feed-
back. Only the MDD group failed to conform to the Prospect
Theory with significantly exaggerated bias toward negative feed-
back.

LIMITATIONS AND FUTURE DIRECTIONS
An important limitation of the current study is that the different
severity of depressive symptoms in SSRI-treated vs. medication-
naive patients might have contributed to the difference between
the groups. We did not have access to SSRI-treated patients’ BDI-
II scores before they were placed on the SSRI regimen. Therefore,
it is impossible to conclude that the observed behavioral effects
originate from the medication alone. However, we added BDI-
II scores as a covariate in our main analysis, and matched the
different groups on a number of psychometric measures.
Another major limitation to our study is the between-subject
design, where the medication-naive and the SSRI-treated patients
with MDD are different individuals. Given the heterogeneity of
MDD, and how various subtypes of MDD differ with regards to
cognitive function, the current result might be confounded by
between-subject variability originating from factors other than
MDD and SSRI administration. Further, given that we recruited
SSRI-responders, it is not expected that the selected medication-
naive patients with MDD will turn out to be responders once they
started SSRI monotherapy, which limits the comparability of the
groups and represents a major limitation of the current study.
We did, of course, try to control for that in the current study by
recruiting melancholic patients with MDD only, and by matching
the two groups on various psychometric and demographic mea-
sures as described earlier. However, future work ought to address
this issue by examining the same patients with MDD on and off
medication. Another limitation of the current study is the low
number of recruited subjects. However, given that the focus of the
current study is cognitive function assessment, all a priori power
analyses indicated the need for 14 subjects per group to achieve
power levels higher than 90%, which confirms the sufficiency of
the number of subjects in the analysis of our primary cognitive
results. Future studies, however, should address these limitations
and better control for possible confounding variables.
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