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The Where’s Waldo problem concerns how individuals can rapidly learn to search a
scene to detect, attend, recognize, and look at a valued target object in it. This article
develops the ARTSCAN Search neural model to clarify how brain mechanisms across
the What and Where cortical streams are coordinated to solve the Where’s Waldo
problem. The What stream learns positionally-invariant object representations, whereas
the Where stream controls positionally-selective spatial and action representations.
The model overcomes deficiencies of these computationally complementary properties
through What and Where stream interactions. Where stream processes of spatial
attention and predictive eye movement control modulate What stream processes whereby
multiple view- and positionally-specific object categories are learned and associatively
linked to view- and positionally-invariant object categories through bottom-up and attentive
top-down interactions. Gain fields control the coordinate transformations that enable
spatial attention and predictive eye movements to carry out this role. What stream
cognitive-emotional learning processes enable the focusing of motivated attention upon
the invariant object categories of desired objects. What stream cognitive names or
motivational drives can prime a view- and positionally-invariant object category of a desired
target object. A volitional signal can convert these primes into top-down activations that
can, in turn, prime What stream view- and positionally-specific categories. When it also
receives bottom-up activation from a target, such a positionally-specific category can
cause an attentional shift in the Where stream to the positional representation of the
target, and an eye movement can then be elicited to foveate it. These processes describe
interactions among brain regions that include visual cortex, parietal cortex, inferotemporal
cortex, prefrontal cortex (PFC), amygdala, basal ganglia (BG), and superior colliculus (SC).

Keywords: visual search, Where’s Waldo problem, spatial attention, object attention, category learning, gain field,

reinforcement learning, eye movement

1. INTRODUCTION
This paper develops a neural model, called the ARTSCAN Search
model (Figure 1), to explain how the brain solves the Where’s
Waldo problem; in particular, how individuals can rapidly search
a scene to detect, attend, recognize and look at a target object
in it. The model predicts how the brain overcomes the deficien-
cies of computationally complementary properties of the brain’s
What and Where cortical processing streams. The ventral What
stream is associated with object learning, recognition, and pre-
diction, whereas the dorsal Where stream carries out processes
such as object localization, spatial attention, and eye move-
ment control (Ungerleider and Mishkin, 1982; Mishkin et al.,
1983; Goodale and Milner, 1992). To achieve efficient object
recognition, the What stream learns object category representa-
tions that are increasingly invariant under view, position, and
size changes at higher processing stages. Such invariance enables
objects to be learned and recognized without causing a com-
binatorial explosion. However, by stripping away the positional

coordinates of each object exemplar, the What stream loses the
ability to command actions to the positions of valued objects.
The Where stream computes positional representations of the
world and controls actions to acquire objects in it, but does
not represent detailed properties of the objects themselves. The
ARTSCAN Search model shows how What stream properties of
positionally-invariant recognition and Where stream properties
of positionally-selective search and action can interact to achieve
Where’s Waldo searches.

The model’s Where cortical stream processes of spatial
attention and predictive eye movement control modulate
What cortical stream processes whereby multiple view-
and positionally-specific object categories are learned and
associatively linked to view- and positionally-invariant object
categories through both bottom-up and attentive top-down
interactions. Gain fields control retinotopic and head-center
coordinate transformations that enable spatial attention and
predictive eye movements to carry out this role. In addition,
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FIGURE 1 | ARTSCAN Search diagram. The dashed boxes indicate
boundary and surface processes. (A) Category learning. The arrows
represent the excitatory cortical processes from Where cortical stream
to What cortical stream whereby invariant category learning and
recognition, and reinforcement learning, occur. The connections ending
in circular disks indicate inhibitory connections. (B) Direct pathway of
top-down primed search from the What to the Where cortical stream.
(C) Indirect pathway of top-down primed search from the What to the
Where cortical stream. In both (B) and (C), the green arrows represent

bottom-up image-driven processes and the blue arrows represent
top-down processes from What cortical stream to Where cortical
stream. See Figures 5, 6 and surrounding text for more details about
the temporal progression of top-down searches. ITa, anterior part of
inferotemporal cortex; ITp, posterior part of inferotemporal cortex; PPC,
posterior parietal cortex; LIP, lateral intra-parietal cortex; LGN, lateral
geniculate nucleus; ORB, orbitofrontal cortex; Amyg, amygdala; BG,
basal ganglia; PFC, prefrontal cortex; SC, superior colliculus; V1 and V2,
primary and secondary visual areas; V3 and V4, visual areas 3 and 4.

What stream cognitive-emotional learning processes enable
the focusing of motivated attention upon the invariant object
categories of desired objects.

To carry out a goal-directed search, the model can use
either a cognitive name or motivational drive to prime a
view- and positionally-invariant object category representa-
tion in its What cortical stream. A major design chal-
lenge for the model is to show how priming of such a
positionally-invariant category can drive a search that finds

Waldo at a particular position. In particular, how does a
positionally-invariant representation in the What stream shift
spatial attention in the Where stream to a representation of
Waldo’s position and activate an eye movement to foveate that
position?

This is proposed to happen as follows: A volitional signal
can convert the prime of the invariant object category into
suprathreshold activation of the category. Once activated, the
invariant category can, in turn, prime What stream view- and
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positionally-selective categories. When combined with bottom-
up activation by the desired target of the positionally-selective
category that represents the target’s identity and position, this
positionally-selective category can achieve suprathreshold acti-
vation. It can then cause spatial attention to shift in the Where
stream to a representation of the target’s position, after which an
eye movement can be elicited to acquire it.

As illustrated in Figure 1, these processes are assumed to occur
in the model analogs of the following brain regions: Spatial
attention is carried out in the posterior parietal cortex (PPC).
The view- and positionally-selective categories are learned in the
posterior inferotemporal cortex (ITp). View- and positionally-
invariant categories are learned in the anterior inferotemporal
cortex (ITa). The cognitive priming by names arises in the pre-
frontal cortex (PFC), whereas motivational priming arises in
the amygdala (AMYG) and activates object-value categories in
the orbitofrontal cortex (ORB). The volitional signals arise in the
basal ganglia (BG). The selection and control of eye movements
includes cortical area V3A, the frontal eye fields (FEF), and the
superior colliculus (SC). The gain fields within the lateral inter-
parietal cortex (LIP) are activated by V3A and mediate between
PPC and visual cortical areas that include V4. Preprocessing of
visual boundary and surface representations occurs in the retina
and lateral geniculate nucleus (LGN) and cortical areas V1, V2,
and V4. More detailed explanations are provided below. The
model has been briefly reported in Chang et al. (2009a,b, 2013).

This theoretical synthesis unifies and extends several pre-
vious neural models, notably the ARTSCAN model of view-
invariant object category learning (Grossberg, 2007, 2009; Fazl
et al., 2009; Foley et al., 2012), its extension to the positionally-
invariant ARTSCAN, or pARTSCAN, model of view-, position-,
and size-invariant object category learning (Cao et al., 2011), and
the CogEM (Cognitive-Emotional-Motor) model of cognitive-
emotional learning and motivated attention (Grossberg, 1971,
1972a,b, 1975, 1982, 1984; Grossberg and Levine, 1987; Grossberg
and Schmajuk, 1987; Grossberg and Seidman, 2006; Dranias
et al., 2008; Grossberg et al., 2008). pARTSCAN’s ability to rec-
ognize objects in multiple positions is needed as part of the
Where’s Waldo search process. In particular, name or motiva-
tional primes can then, supplemented by a volitional signal,
activate an object-value category and, from there, an object cat-
egory that has view- and positionally-invariant properties. Such
cognitive-emotional and motivated attention processes are mod-
eled in the CogEM model, which is joined with pARTSCAN to
enable motivationally-primed searches in the ARTSCAN Search
model.

All of these component models have quantitatively explained
and predicted large psychological and neurobiological databases.
Some of these explanations are reviewed below. ARTSCAN Search
preserves these previously demonstrated explanatory and predic-
tive capabilities, while also making novel predictions.

During a Where’s Waldo search, when the positionally-
invariant category is activated in the What stream, it needs to
be able to activate, through top-down learned connections, its
corresponding view- and positionally-selective categories in the
What stream. The pARTSCAN model included only bottom-
up learned links from view- and positionally-selective category

representations in ITp to view- and positionally-invariant cat-
egory representations in ITa, and then to naming categories
in PFC. The ARTSCAN Search model incorporates, in addi-
tion, reciprocal top-down learned links from PFC to ITa, and
from the invariant ITa categories to the variant ITp categories
(Figures 1B,C).

Such reciprocal links are a part of Adaptive Resonance Theory,
or ART, learning dynamics whereby invariant recognition cate-
gories and their naming categories are learned. As explained by
ART (Grossberg, 1980b, 2012; Carpenter and Grossberg, 1991),
these top-down links dynamically stabilize category learning
against catastrophic forgetting. With all these top-down learned
links in place, activating a name for the desired goal object can
activate the corresponding positionally-invariant category repre-
sentation, which in turn can attentively prime all the positionally-
selective categories where the sought-after target object may be.
When one of the primed positionally-selective categories is also
activated bottom-up by the sought-after object, that category can
fire, and can thereby activate the corresponding positional rep-
resentation in PPC (Figures 1B,C). This What-to-Where stream
interaction can draw spatial attention to the position of the
desired target, which in turn can activate an eye movement
to foveate the target before further engaging it. In addition to
these top-down connections, volition control signals from the
BG (Figures 1B,C), which were also not part of the pARTSCAN
model, ensure that the appropriate top-down connections can
fully activate, rather than just subliminally prime, their target cells
(Figures 1B,C).

The ARTSCAN Search model hereby incorporates both
cognitive-emotional and cognitive-perceptual bi-directional
interactions between cortical streams to achieve both Where-
to-What invariant object category learning and What-to-Where
primed search for a desired object.

Sections 2 and 3 summarize how the ARTSCAN model
embodies solutions to three important design problems in order
to learn view-invariant object categories: the view-to-binding
problem, the coordination of spatial attention and visual search,
and the complementary interactions that occur between spa-
tial attention and object attention. Section 3 summarizes how
the ARTSCAN model regulates spatial attention using predictive
remapping, surface contour signals, and eye movement search.
Section 4 summarizes how the pARTSCAN model enables learn-
ing of object categories that are view-invariant and positionally-
invariant. They are also size-invariant, but that is not a focus
of the present study. Section 5 describes how CogEM cognitive-
emotional interactions regulate reinforcement learning and moti-
vated attention. Section 6 describes how top-down primed
cognitive and motivational searches are incorporated into the
ARTSCAN Search model via What-to-Where stream interac-
tions, including the top-down learned cognitive and motivational
priming connections, and the volitional signals that are needed
to convert subthreshold primes into suprathreshold top-down
signals. Section 7 provides a detailed, but non-mathematical,
exposition of all the ARTSCAN Search neural mechanisms. This
section also lists the equation numbers for the corresponding
model equations that are defined in the Appendix, and provides
pointers to the relevant model circuit diagrams. This three-way
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coordination of expository information is aimed at making the
model more accessible. Section 8 describes computer simula-
tions of Where’s Waldo capabilities of the final ARTSCAN Search
model. Section 9 provides a discussion and comparison with
alternative models. Finally, the Appendix summarizes the model’s
mathematical equations and parameters.

2. SOME KEY ISSUES
Many neuroanatomical, electrophysiological, and lesion studies
have supported the hypothesis that two parallel, but interact-
ing, visual cortical systems exist (Ungerleider and Mishkin, 1982;
Mishkin et al., 1983; Goodale and Milner, 1992). Starting from
primary visual cortex, the dorsal Where stream passes through
the parietal cortex and controls processes of spatial localization
and action. The ventral What stream passes through the infer-
otemporal cortex and carries out processes of object learning,
recognition, and prediction. The inferotemporal cortex and its
cortical projections learn to recognize what visual objects are in
the world, whereas the parietal cortex and its cortical projections
learn to determine where objects are and how to locate them, track
them through time, and direct action toward them.

2.1. THE VIEW-TO-OBJECT BINDING PROBLEM
Accumulating evidence supports the hypothesis that the brain
learns about individual views of an object, coded by “view-tuned
units.” As this happens through time, neurons that respond to
different views of the same object learn to activate the same
neuronal population, creating a “view-invariant unit.” In other
words, the brain learns to link multiple view-specific categories
of an object to a view-invariant categorical representation of the
object (Baloch and Waxman, 1991; Bülthoff and Edelman, 1992;
Seibert and Waxman, 1992; Tanaka, 1993; Logothetis et al., 1994;
Bradski and Grossberg, 1995; Bülthoff et al., 1995; Carpenter and
Ross, 1995; Riesenhuber and Poggio, 2000; Hung et al., 2005).

Many view-based models have focused on changes in retinal
patterns that occur when a three-dimensional (3D) object rotates
about its object-centered axis with respect to a fixed observer.
However, complex objects are often actively explored with sac-
cadic eye movements. When we consider how eye movements
help us to learn about an object, a fundamental view-to-object
binding problem must be confronted.

How does the brain know when the views that are foveated on
successive saccades belong to the same object, and thereby avoid
the problem of erroneously learning to classify parts of different
objects together? How does the brain do this without an external
teacher under the unsupervised learning conditions that are the
norm during many object learning experiences in vivo?

2.2. COORDINATING SPATIAL AND OBJECT ATTENTION DURING
VIEW-INVARIANT CATEGORY LEARNING

The ARTSCAN model proposes how the view-to-object binding
problem may be solved through the coordinated use of spatial and
object attention. Several authors have reported that the distribu-
tion of spatial attention can configure itself to fit an object’s form.
Form-fitting spatial attention is sometimes called an attentional
shroud (Tyler and Kontsevich, 1995). ARTSCAN explains how an
object’s preattentively formed surface representation can induce a

form-fitting attentional shroud that is predicted by the model to
accomplish two things:

First, a shroud enables eye movements to lock spatial atten-
tion onto an object of interest while they explore salient features
on the object’s surface, thereby enabling different view-specific
categories of the same object to be learned and then linked via
associative learning to an emerging view-invariant object cate-
gory. Consistent psychophysical data of Theeuwes et al. (2010)
show that, indeed, the eyes prefer to move within an object
rather than to an equally distant different object, other things
being equal. Other data show that successive eye movements are
not random, but rather tend to be attracted to salient features,
such as bounding contours, corners, intersections, and bound-
ary high curvature points (Yarbus, 1961; Jonides et al., 1982;
Gottlieb et al., 1998; Krieger et al., 2000; Fecteau and Munoz,
2006). Consistent with these data, the ARTSCAN model predicts,
as explained in section 3, how the surface contour signals that
initiate figure-ground separation (Grossberg, 1994, 2007) may be
used to compute target positions at salient features of an object
that provide the most information for the view-specific category
learning that then gets linked to a view-invariant object category.

Second, a shroud keeps the emerging view-invariant object
category active while different views of the object are learned and
associated with it. This is proposed to happen through a tem-
porally coordinated cooperation between the brain’s What and
Where cortical processing streams: The Where stream maintains
an attentional shroud through a surface-shroud resonance that is
supported by positive feedback signals between cortical areas V4
and PPC, among other brain regions. When an object’s surface is
part of a surface-shroud resonance, spatial attention is focused on
it. When the eyes fixate a particular view of the attended object,
a view-specific category is learned by the What stream, say in
ITp. This category focuses object attention via a learned top-down
expectation on the critical features in the visual cortex that will be
used to recognize that view and its variations in the future. When
the first such view-specific category is learned, it also activates a
cell population at a higher cortical level, say ITa, that will become
the view-invariant object category.

Suppose that the eyes or the object move sufficiently to expose
a new view whose critical features are significantly different from
the critical features that are used to recognize the first view. Then
the first view category is reset, or inhibited. This happens due
to the mismatch of its learned top-down expectation, or pro-
totype of attended critical features, with the newly incoming
view information to the visual cortex (Grossberg, 1980a, 2012;
Carpenter and Grossberg, 1987, 1991). This top-down proto-
type focuses object attention on the incoming visual information.
Object attention hereby helps to control which view-specific cat-
egories are learned by determining when the currently active
view-specific category should be reset, and a new view-specific
category should be activated. However, the view-invariant object
category should not be reset every time a view-specific category
is reset, or else it can never become view-invariant by being
associated with multiple view-specific categories. This is what
the attentional shroud accomplishes: It inhibits a tonically-active
reset signal that would otherwise shut off the view-invariant
category when each view-based category is reset (Figure 1). As the
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eyes foveate a sequence of object views through time, they trig-
ger learning of a sequence of view-specific categories, and each of
them is associatively linked through learning with the still-active
view-invariant category.

When the eyes move off an object, its attentional shroud
collapses in the parietal cortex of the Where stream, thereby tran-
siently disinhibiting a parietal reset mechanism that shuts off the
view-invariant category in the What stream (Figure 1). When the
eyes look at a different object, its shroud can form in the Where
stream and a new view-specific category can be learned that can,
in turn, activate the cells that will become a new view-invariant
category in the What stream.

2.3. SUPPORTIVE PSYCHOPHYSICAL AND NEUROBIOLOGICAL DATA
The ARTSCAN model prediction that a spatial attention shift
(shroud collapse) causes a transient reset burst in parietal cortex
that, in turn, causes a shift in categorization rules (new object cat-
egory activation) has been supported by experiments using rapid
event-related functional magnetic resonance imaging in humans
(Chiu and Yantis, 2009). These coordinated effects also provide
a neurophysiological explanation of how attention can be disen-
gaged, moved, and engaged by different object surfaces (Posner,
1980).

When a surface-shroud resonance forms, positive feedback
from a shroud to its surface is also predicted to increase the con-
trast gain of the attended surface, as has been reported in both
psychophysical experiments (Carrasco et al., 2000) and neuro-
physiological recordings from cortical areas V4 (Reynolds et al.,
1999, 2000; Reynolds and Desimone, 2003). In addition, the
surface-shroud resonance strengthens feedback signals between
the attended surface and its generative boundaries, thereby facil-
itating figure-ground separation of distinct objects in a scene
(Hubel and Wiesel, 1959; Grossberg, 1994, 1997; Grossberg and
Swaminathan, 2004; Grossberg and Yazdanbakhsh, 2005). These
experiments, and others summarized below, provide important
psychophysical and neurobiological markers for testing predic-
tions of the model.

3. ARTSCAN MODEL MAIN CONCEPTS
This section outlines the main concepts from the FACADE,
ARTSCAN, pARTSCAN, and CogEM models that are unified and
extended in the ARTSCAN Search model.

3.1. IMAGE PROCESSING AND SPATIAL ATTENTION
Scenic inputs are processed in a simplified model retina/LGN
by a shunting on-center off-surround network that contrast-
normalizes the image. In the full FACADE model, and its
extension and refinement by the 3D LAMINART model, object
surface representations are formed in stages within the V1 blobs,
V2 thin stripes, and V4. The current model does not consider
3D figure-ground separation of partially occluded objects, so
can restrict its attention to a 2D filling-in process within the
model analog of V2 thin stripes (Figure 1A, V2/V4) that is con-
fined by object boundaries that form in the model analog of
V2 pale stripes (Figure 1A, V2). The surfaces topographically
activate spatial attention to induce a surface-fitting attentional
shroud in the model PPC (Figure 1A, PPC) through a gain

field (Figure 1A, LIP) that transforms the retinotopic coordi-
nates of the surface into the head-centric coordinates of the
shroud. This transformation maintains shroud stability during
eye movements that explore different views of the object sur-
face. In particular, the gain field is updated by predictive eye
movement signals that are derived from surface contour signals
(Figure 1, V2) from filled-in surfaces to their generative bound-
aries. Surface contour signals are generated by contrast-sensitive
on-center off-surround networks that receive topographic inputs
from their filled-in surface representations. Due to their contrast-
sensitivity, they occur at the bounding contours of surface regions
at which brightness or color values change suddenly across
space.

3.2. FIGURE-GROUND SEPARATION AND SURFACE CONTOUR SIGNALS
Surface contour signals from a surface back to its gener-
ative boundaries strengthen the perceptual boundaries that
will influence object percepts and recognition events, inhibit
irrelevant boundaries, and trigger figure-ground separation
(Grossberg, 1994, 1997; Kelly and Grossberg, 2000; Grossberg and
Yazdanbakhsh, 2005). When the surface contrast is enhanced by
top-down spatial attention (Figure 1A, PPC-LIP-V2/V4) as part
of a surface-shroud resonance, its surface contour signals, because
they are contrast-sensitive, become stronger, and thus its gen-
erative boundaries become stronger as well, thereby facilitating
figure-ground separation. This feedback interaction from surfaces
to boundaries via surface contour signals is predicted to occur
from V2 thin stripes to V2 pale stripes, respectively.

3.3. LINKING FIGURE-GROUND SEPARATION TO EYE MOVEMENT
CONTROL

Corollary discharges are derived from these surface contour signal
(Figure 1A, V3A, Nakamura and Colby, 2000; Caplovitz and Tse,
2007). They are predicted to generate saccadic commands that are
restricted to the attended surface (Theeuwes et al., 2010) until the
shroud collapses and spatial attention shifts to enshroud another
object.

It is not possible to generate eye movements that are restricted
to a single object until that object is separated from other objects
in a scene by figure-ground separation. Various neurophysio-
logical data support the idea that key steps in figure-ground
separation occur in cortical area V2 (e.g., Qiu and von der Heydt,
2005). Thus, these eye movement commands are generated no
earlier than cortical area V2. Surface contour signals are predicted
to be computed in V2 (Grossberg, 1994). They are plausible can-
didates from which to derive eye movement target commands at a
later processing stage because they are stronger at contour discon-
tinuities and other distinctive contour features that are typical end
points of saccadic movements. ARTSCAN proposes how surface
contour signals are contrast-enhanced at a subsequent processing
stage to choose the position of their highest activity as the tar-
get position of the next saccadic eye movement. The ARTSCAN
model suggests that this choice takes place in cortical area V3A,
which is known to be a region where vision and motor properties
are both represented, indeed that “neurons within V3A. . . process
continuously moving contour curvature as a trackable feature. . .
not to solve the ‘ventral problem’ of determining object shape
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but in order to solve the ‘dorsal problem’ of what is going where”
(Caplovitz and Tse, 2007, p. 1179).

3.4. PREDICTIVE REMAPPING, GAIN FIELDS, AND SHROUD STABILITY
These eye movement target positions are chosen before the eyes
actually move. In addition to being relayed to regions that com-
mand the next eye movements, such as the FEF and SC (see
Figure 1), they also maintain the stability of the active shroud
in head-centered coordinates within the PPC, so that the shroud
does not collapse every time the eyes move. They do this by con-
trolling eye-sensitive gain fields that update the active shroud’s
head-centered representation even before the eyes move to the
newly commanded position. These gain fields thus carry out pre-
dictive remapping of receptive fields during eye movements. These
ARTSCAN mechanisms new light on electrophysiological data
showing perisaccadic (around the time of the saccade) remapping
of receptive fields in parietal areas, including the lateral intra-
parietal cortex (LIP; Andersen et al., 1990; Duhamel et al., 1992)
and the FEF (Goldberg and Bruce, 1990), as well as more mod-
est remapping in V4 (Tolias et al., 2001). In particular, attended
targets do not cause new transient activity in these regions
after saccades (see Mathôt and Theeuwes, 2010 for a review).
ARTSCAN predicts that the anatomical targets of these gain fields
include an active shroud (viz., a form-sensitive distribution of
spatial attention) in PPC that inhibits the reset of view-invariant
object categories in ITa via a reset mechanism that transiently
bursts when a shift of spatial attention occurs to a new object.
This prediction suggests that manipulations of reset, such as those
proposed by Chiu and Yantis (2009), be combined with manipu-
lations of predictive remapping of receptive fields, such as those
proposed by Andersen et al. (1990) and Duhamel et al. (1992).

4. pARTSCAN: POSITIONALLY-INVARIANT OBJECT
LEARNING AND SUPPORTIVE NEUROPHYSIOLOGICAL
DATA

ARTSCAN does not explain how an object that is viewed at more
peripheral retinal positions can be associated through learning
with the same object category. However, peripheral vision makes
important contributions to the execution of search tasks (Erkelens
and Hooge, 1996). Electrophysiological data show that cells in
the inferotemporal (IT) cortex respond to the same object at dif-
ferent retinal positions (Gross et al., 1972; Desimone and Gross,
1979; Ito et al., 1995; Booth and Rolls, 1998), and the selectivity to
objects of an IT neuron can be altered by experiences with objects
at such positions (Li and DiCarlo, 2008). The pARTSCAN exten-
sion of ARTSCAN (Cao et al., 2011), shown in Figure 2, explains
how positionally-invariant object learning can be achieved.

pARTSCAN builds on ARTSCAN by proposing how the fol-
lowing additional processes in the What cortical processing
stream enable both view-invariant and positionally-invariant
object categories to be learned: IT cells with persistent activ-
ity, defined by view category integrator cells; and a combination
of normalized object category competition and a view-to-object
learning law which together ensure that unambiguous views
have a larger effect on object recognition than ambiguous views.
Persistently firing neurons in the inferotemporal cortex have
been observed in neurophysiological experiments (Fuster and

FIGURE 2 | Microcircuit of the pARTSCAN model (Cao et al., 2011;

Figure 2). See text for details.

Jervey, 1981; Miyashita and Chang, 1988; Tomita et al., 1999;
Brunel, 2003), but not given a functional interpretation in terms
of positionally-invariant object category learning. pARTSCAN
also simulates neurophysiological data of Li and DiCarlo (2008)
from monkeys showing how unsupervised natural experience in
a target swapping experiment can gradually alter object repre-
sentations in IT. The swapping procedure is predicted to prevent
the reset of the attentional shroud, which would otherwise keep
the representations of multiple objects from being combined by
learning.

The view category integrator stage in pARTSCAN model
occurs between the view category and object category stages
(Figure 2). A view category integrator cell, unlike a view-category
cell, is not reset when the eyes explore new views of the same
object. It gets reset when the invariant object category stage gets
reset due to a shift of spatial attention to a different object.

The view category integrator plays a key role in enabling learn-
ing of positionally-invariant object categories. Without the view
category integrator, the following problem can occur: Suppose
that a view of object P is generated by eye fixation in the fovea
and sequentially triggers activations of view-specific category V
and view-invariant object category O (Figure 3A). If the same
object P appears in the periphery of the retina, as in Figure 3B,
the model learns a new view-specific category V1 and in turns
activates object category O1. Once a saccadic eye movement
brings the object P into the foveal region (Figure 3C), it activates
the previously learned view-specific category V and the object
category O. Without the view category integrator, view category
V1 is shut off with the saccade and it cannot learn to be asso-
ciated with the object category O. As a result, object P learns to
activate two object categories O and O1 corresponding to foveal
and peripheral positions, respectively, and the same object at dif-
ferent positions can create different object categories. The view
category integrator keeps the object from creating multiple object
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FIGURE 3 | How the view category integrator helps to learn a

positionally-invariant object category. See text for details. [Reprinted
from Cao et al. (2011), Figure 4, with permission].

categorical proliferations. In Figures 3D,E, the view category inte-
grators T and T1 preserve the activities of view categories V
and V1 and learn connections to object categories O and O1. In
Figure 3F, after the object P is foveated again, T1 is still active
due to persistent activity, even though V1 is shut off by a sac-
cade. Therefore, view category integrator T1 can be associated
with object category O.

In summary, the pARTSCAN model predicts persistent activ-
ity in inferotemporal cortex (IT) that enables the model to
explain how both view- and positionally-invariant object cat-
egories may be learned in cortical area ITa. The same pro-
cess enables size-invariant categories to be learned. The target
swapping experimental data of Li and DiCarlo (2008), which
show that IT neuron selectivity to different objects gets reversed
at the swap position with increasing exposure, can also be
explained using these mechanisms. Finally, pARTSCAN can iden-
tify Waldo targets at non-foveated positions, but does not in
itself show how these targets can lead to a shift of attention and
foveation.

5. JOINING INVARIANT CATEGORY LEARNING WITH
REINFORCEMENT LEARNING AND MOTIVATED
ATTENTION

The activation of an invariant recognition category by
pARTSCAN mechanisms does not reflect the current emo-
tional value of the object. Augmenting pARTSCAN with a
CogEM circuit for reinforcement learning and motivated atten-
tion enables activation of an invariant category that is currently
valued to be amplified by motivational feedback from the
reinforcement learning circuit (Figure 4). Then the additional
mechanisms of the ARTSCAN Search What-to-Where stream
interactions can locate this motivationally salient object.

FIGURE 4 | Reinforcement learning circuit of the CogEM model

(Grossberg, 1971, 1975; Grossberg and Seidman, 2006). (A) Processing
stages of invariant object category, object-value category, and drive
representation (value category) representations. CS, conditioned stimuli; S,
sensory representations; and M, motor representations. (B) Conditioned
reinforcer learning enables sensory events to activate emotional reactions
at drive representations. Incentive motivational learning enables emotions
to generate a motivational set that biases the system to process
information consistent with that emotion. Motor learning allows sensory
and cognitive representations to generate actions. (C) Anatomical
interpretations of the processing stages. [Adapted from Grossberg and
Seidman (2006), Figures 4, 5, with permission].
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Such a CogEM circuit includes interactions between the infer-
otemporal cortex, orbitofrontal cortex, and amygdala (Figure 4C;
Barbas, 1995). Activation of the feedback circuit through
inferotemporal-amygdala-orbitofrontal interactions can create a
resonance that focuses and maintains motivated attention upon a
motivationally salient object category, while also supporting what
Damasio has called “core consciousness” of goals and feelings
(Grossberg, 1975, 2000; Damasio, 1999).

Such interactions were predicted by the CogEM, model, start-
ing in Grossberg (1971), which simulates how sensory, or object,
category representations (e.g., inferotemporal cortex, IT), drive,
or value, representations (e.g., amygdala, AMYG), and object-
value category representations (e.g., orbitofrontal cortex, ORB)
interact via conditioned reinforcement, incentive motivational,
and motor learning pathways (Figure 4). Various data support the
prediction that drive-sensitive value category cells are found in the
amygdala (Aggleton, 1993; LeDoux, 1993). Multimodal amygdala
cells that are hunger and satiety selective (Muramoto et al., 1993;
Yan and Scott, 1996) and respond in proportion to the value of
a food reward have been extensively studied in the primate and
rodent (Nishijo et al., 1988; Toyomitsu et al., 2002).

In the CogEM model, in response to visual cues, object-
selective sensory representations in the inferotemporal cor-
tex (Figures 4A,C) learn to activate drive representations in
the amygdala via learned conditioned reinforcer pathways
(Figures 4B,C). Activated drive representations can, in turn,
activate the orbitofrontal cortex via learned incentive moti-
vational pathways (Figure 4B). Motivationally salient sensory
representations can hereby provide inputs directly to object-
value representations (Figure 4A), and indirectly via the two-
step learned conditioned reinforcer and incentive motivational
pathway through the drive representations (Figures 4A,B). The
incentive input determines how vigorously the object-value rep-
resentation is activated (Rolls, 1999, 2000; Schoenbaum et al.,
2003). The most active object-value representations can then
select, and focus attention upon, motivationally consistent sen-
sory representations. This selection process is driven by positive
feedback from the object-value representations to their sensory
representations, combined with competition among the sensory
representations (Figure 4A). The motivationally most salient sen-
sory representations can, in turn, attentionally block irrelevant
sensory cues.

In summary, the CogEM model simulates how an invari-
ant object category that is learned by pARTSCAN can learn
to trigger an inferotemporal-amygdala-orbitofrontal resonance,
thereby enabling motivationally enhanced activation of the
invariant object category via top-down attentive feedback from
the orbitofrontal cortex. Within the additional circuitry of the
ARTSCAN Search model, a name category can prime the cor-
responding orbitofrontal object-value cells to initiate the process
whereby a motivationally-enhanced top-down attentional prim-
ing signal triggers search for the valued object in the scene.

6. ARTSCAN SEARCH: BOTTOM-UP AND TOP-DOWN
SEARCH FROM THE WHAT-TO-WHERE STREAMS

Six different routes can, in principle, drive a Where’s Waldo search
(Figure 5): bottom-up direct and indirect routes; top-down

cognitive direct and indirect routes; and top-down motivational
direct and indirect routes. For completeness, the model was sim-
ulated for all six routes, and it was shown that the direct routes
can operate more quickly than the indirect routes.

6.1. BOTTOM-UP DIRECT ROUTE
First, bottom-up scenic inputs activate ITp cells that learn view-
and positionally-specific categories. These cells also topograph-
ically project to PPC, where the target locations of an object
are represented (Figure 5A). This is one of the What-to-Where
stream interactions in the model.

Second, ITp cells activate view- and positionally-invariant
object categories in ITa. These invariant object categories are
learned using the Where-to-What stream interactions of the
pARTSCAN model whereby an attentional shroud in PPC mod-
ulates the activity of an emerging invariant object category in
ITa as sequences of view-specific categories of the object are
activated, learned, and reset in ITp using reciprocal Adaptive
Resonance Theory, or ART, connections between ITp and ITa
(Figure 5A). Even if all the objects in the scene are equally salient,
they can activate their invariant object categories because of
the nature of the normalized quenching competition that occurs
among all the categorical processing stages (see section 7.3.7).
However, they cannot yet activate an eye movement to foveate one
of them.

Third, ITa cells activate AMYG and send inputs to ORB.
Fourth, convergent ITa and AMYG inputs together can activate

the corresponding ORB object-value category cells (Grossberg,
1975, 1982; Barbas, 1995, 2000; Schoenbaum et al., 2003) using
learned incentive motivational signals from the AMYG. In other
words, incentive motivation can amplify activation of a valued
object-value category.

Fifth, an activated ORB object-value category can draw
motivated attention to a valued object by sending top-down
attentional signals back to its ITa source cells. Typically, such
top-down attentional signals are modulatory. However, when
combined with volitional signals from the BG, they can generate
suprathreshold activation of the target ITa cells, thereby enabling
the feedback loop between ITa, AMYG, and ORB to close. As
a result, a valued ITa invariant object category may be motiva-
tionally amplified by an inferotemporal-amygdala-orbitofrontal
resonance, which enables it to better compete for object attention
with other ITa representations.

Sixth, the amplified ITa cells can then send larger top-down
priming signals to all of its ITp representations. The ITp rep-
resentation whose position corresponds to the valued object is
selectively amplified due to the amplification of its bottom-up
input from the object by the top-down attentional prime.

Seventh, these selectively amplified ITp cells can send ampli-
fied signals to the object position that is represented in the PPC.
PPC activation draws spatial attention to that position, which can
elicit an eye movement to foveate the desired object.

6.2. BOTTOM-UP INDIRECT ROUTE
The sequence from step one to step six in the bottom-up indirect
route is the same as for the bottom-up direct route except the ITp
cells do not project directly to the PPC (Figure 5B).
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FIGURE 5 | Bottom-up stimulus-driven What stream recognition to

Where stream search and action through (A) a direct What-to-Where

pathway and (B) an indirect What-to-Where pathway. Interactions
between multiple brain regions, such as ITa, ITp, amygdale, and orbitofrontal

cortex (ORB) in the What stream guide Waldo discovery in the posterior
cortex (PPC) in the Where stream. The numbers indicate the order of
pathway activations. See text for details. [Figure A is adapted with
permission from Grossberg (2009), Figure 6].

Seventh, the selectively amplified ITp cell corresponding to the
target position provides top-down excitatory feedback to selec-
tively prime the boundary representation of the Where’s Waldo
target object. This boundary representation is hereby enhanced
in strength relative to other object boundaries in the scene.

Eighth, the enhanced boundary representation gates the
object’s surface filling-in process and thereby increases the con-
trast of the selected target surface.

Ninth, the enhanced surface representation projects to the
PPC to facilitate its competition for spatial attention. As a
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surface-shroud resonance forms, the target surface can compet-
itively win to form an active shroud which draws spatial attention
and an eye movement to the target position.

6.3. TOP-DOWN COGNITIVE DIRECT ROUTE
Many experiments have shown that top-down mechanisms play
an important role in visual processing (e.g., Tomita et al., 1999;
Barceló et al., 2000; Miyashita and Hayashi, 2000; Ranganath
et al., 2004). The ARTSCENE Search model clarifies how such
mechanisms may play an important role during a Where’s Waldo
search (Figure 6).

In particular, when the name of a desired object is presented to
the model, the corresponding name category neuron in PFC can
top-down prime the object-value category in ORB (Figure 6A).
When BG volitional signals are also activated, this prime can
supraliminally activate ORB cells which can, in turn, prime the
corresponding view-invariant object category neuron in ITa. Here
too a volitional signal can enable the prime to supraliminally
activate the primed ITa cells, which can then activate all com-
patible positionally-selective view categories in ITp. This prime
can amplify the ITp category that receives a match from the
bottom-up Waldo input. Then the selected category can acti-
vate the corresponding position in PPC, which can direct an eye
movement and other actions toward Waldo (Figure 6A).

6.4. TOP-DOWN COGNITIVE INDIRECT ROUTE
This route executes the same top-down pathway as the cognitive
direct route from the desired name category neuron to selec-
tively amplify the view-specific category neurons in ITp via the

object-value category cells in ORB and view-invariant object cat-
egory neurons in ITa. The amplified ITp cell activates the same
pathways as the bottom-up indirect route from the seventh to
ninth steps to create a surface-shroud resonance correspond-
ing to the target object and leading to foveation of this object
(Figure 6B).

6.5. TOP-DOWN MOTIVATIONAL DIRECT ROUTE
An object-value category in ORB can be primed by a value cat-
egory in AMYG via incentive motivational signals (Figure 6C).
Then the same process is activated as for the cognitive prime
above.

6.6. TOP-DOWN MOTIVATIONAL INDIRECT ROUTE
This route performs similar interactions as the top-down cog-
nitive indirect route except the initial stage begins with priming
from the value category in AMYG (Figure 6D).

7. MODEL DESCRIPTION
The ARTSCAN Search model incorporates and unifies the follow-
ing innovations that go beyond the structure of the ARTSCAN
model:

(1) The gain field stage, which mediates the coordinate trans-
formation between a retino-centric object surface represen-
tation and a head-centric spatial attention map, is processed
by separate and parallel bottom-up and top-down channels,
instead of combining them linearly in a single stage, as in
ARTSCAN. See section 7.2.1.

FIGURE 6 | Top-down name-driven What stream recognition to Where

stream search and action through (A) a direct What-to-Where pathway

and (B) an indirect What-to-Where pathway. Top-down value-driven What

stream recognition to Where stream search and action through (C) a direct
What-to-Where pathway, and (D) an indirect What-to-where pathway. See
text for details.
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(2) As in pARTSCAN (Figure 2), a view category integrator stage
occurs after the view category stage in the What stream
to enable positionally-invariant as well as view-invariant
categories to be learned. View category integrator neurons
preserve view-specific category neural activities while the
eyes scan the same object, and thereby enable view-specific
categories of the same object at different positions to be

associated with the same view-invariant object category. See
section 7.3.2.

(3) Reset is triggered when the total shroud activity reduces
below a threshold value due to activity-dependent habitu-
ation in the surface-shroud feedback loop. The reset wave
is extended to nonspecifically inhibit the spatial attentional
map in PPC and the object surface representation in V4, not

FIGURE 7 | Continued
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just ITa, as in ARTSCAN. Such a reset mechanism can more
efficiently shut of the entire current surface-shroud reso-
nance to allow a smooth attention shift to another object sur-
face. In addition, as in pARTSCAN, the reset signal inhibits
the currently active view category integrator neurons. See
section 7.2.4.

Because the reset mechanism in the Where stream can
inhibit the spatial attentional map, it is rendered transient

by being multiplied, or gated, by a habituative transmit-
ter. Otherwise, it could tonically inhibit the spatial atten-
tional map and prevent the next object from being spatially
attended. In contrast, the reset mechanism in the What
stream is not gated by a habituative transmitter. This ensures
that the view-specific categories of a newly attended object
cannot be spuriously associated with the invariant object
category of a previously attended object.

FIGURE 7 | Continued
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(4) Value category and object-value category processing
stages from the CogEM model (Figure 4) are added to
enable valued categories to be motivationally amplified
and attended, thereby facilitating their selection by an
inferotemporal-amygdala-orbitofrontal resonance. See
sections 7.3.3–7.3.5.

(5) As in CogEM, there are adaptive conditioned reinforcer
learning pathways from invariant object categories in ITa to
value categories in AMYG, and incentive motivational learn-
ing pathways from AMYG to object-value categories in ORB.
In addition, and beyond CogEM, ITa can also send adap-
tive excitatory projections to ORB to enable one-to-many

FIGURE 7 | Model variables and their computational relations. (A)

Category learning. (B) Direct pathway of top-down primed search. (C) Indirect
pathway of top-down primed search. The dashed boxes correspond to the
layers of the box diagram in Figure 1. Each layer has two neurons indicating

the connections to the neighboring layers. Different types of connections
correspond to excitatory, adaptive, or inhibitory effects between two layers.
The letter inside each neuron refers to the variables or the constant values
specified in the Appendix.
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associations to be learned from a given object representation
to multiple reinforcers.

(6) Top-down pathways and BG volitional control signals
(Figure 6) together enable a top-down search for Waldo
to occur from the What stream to the Where stream. The
volitionally-enhanced excitability enables modulatory prim-
ing stimuli to fire their target cells and send thereby send
top-down signals to lower processing stages.

In all, the ARTSCAN Search model includes three component
networks: (1) Boundary and Surface Processing, (2) WHAT
Stream, and (3) WHERE Stream. Each component consists of
several processing stages. Figure 1 shows a block diagram of the
main model processing stages. Figure 7 illustrates model circuit
interactions more completely.

7.1. RETINA AND PRIMARY VISUAL CORTEX PROCESSES
7.1.1. Retina and LGN polarity-sensitive cells
Input preprocessing is simplified to include only properties
needed to carry out the category-level simulations that are the
focus of the article. The model retina and LGN are accord-
ingly lumped together. Together they normalize contrast of
the input pattern using polarity-sensitive ON and OFF cells.
ON (OFF) cells obey cell membrane, or shunting, equations
that receive retinal outputs and generate contrast-normalized
activities that discount the illuminant using multiple-scales
of on-center off-surround (off-center on-surround) networks,
respectively [Equations (A4–A8)]. These cells input to the simple
cells in the model’s cortical area V1.

7.1.2. V1 polarity-sensitive oriented simple cells
The polarity-sensitive simple cells [Figure 7; Equations (A9–
A14)] in primary visual cortical area V1 (Hubel and Wiesel,
1959, 1962) have elongated excitatory and inhibitory zones
that form an oriented receptive field and produce a multiple-
scale boundary representation of the image by processing the
multiple-scale unoriented output signals from the LGN. Each
receptive field consists of polarity-sensitive ON- and OFF-
subregions. The ON-subregions receive excitatory ON LGN
signals and inhibitory OFF LGN signals, while the OFF-
subregions have the converse relation to the LGN channels
(Hubel and Wiesel, 1962; Grossberg and Todorović, 1988; Reid
and Alonso, 1995; Hirsch et al., 1998; Raizada and Grossberg,
2001).

7.1.3. V1 polarity-insensitive complex cells
Rectified output signals from opposite-polarity like-oriented sim-
ple cells at each position input to complex cells, which are there-
fore polarity-insensitive oriented detectors that are processed at
multiple spatial scales [Figure 7; Equations (A15–A17)].

7.1.4. V2 boundaries and surface-to-boundary attentional priming
Because the 2D image database we simulated does not have illu-
sory or missing contours or occlusions, the model simplifies the
computation of object boundaries by omitting depth-selective
disparity tuning processing in cortical area V1 and boundary
completion processing in V2.

Object boundaries [Figure 7; Equations (A18–A20)] are
modeled as V2 pale stripe neurons that receive multiple-scale
bottom-up inputs from V1 complex cells. These boundaries mul-
tiplicatively gate a surface filling-in process, again at multiple
scales, within model V2 thin stripe neurons. These boundary-
to-surface signals contain the filling-in of surface brightnesses
and colors within their borders. The boundaries are also gain-
amplified by surface-to-boundary surface contour feedback sig-
nals [Figure 7; Equations (A27–A31)]. Top-down attention from
a surface-shroud resonance can increase the perceived con-
trast of an attended surface, which increases the strength of
the corresponding surface contour signals, thereby strength-
ening attend object boundaries as well, while weakening the
boundaries of non-attended surfaces. Object boundaries also
project to the What stream, where their adaptive pathway
embody the learning of view-specific categories in cortical
area ITp.

7.1.5. V2 surface filling-in
The filling-in of object surface activities in V2 thin stripe
cells takes place within Filling-In Domains (FIDOs) [Figure 7;
Equations (22–25)]. Filling-in is activated bottom-up by
multiple-scale ON and OFF LGN inputs that activate different
FIDOs (Cohen and Grossberg, 1984; Grossberg and Todorović,
1988; Grossberg, 1994).

A weighted sum across the multiple scales of the surface rep-
resentations [Equation (A26)] generates topographic outputs to
the spatial attention region in PPC, where these PPC inputs com-
petitively bid to form a winning attentional shroud. The winning
shroud delivers positive feedback to the corresponding surface
representation, thereby inducing a surface-shroud resonance that
locks spatial attention upon that surface while increasing its
contrast.

Successfully filled-in surfaces generate contour-sensitive
output signals via surface contours. Surface contours are
computed by inputting the filled-in surface activities to a
contrast-sensitive on-center off-surround shunting network
[Equations (A27–A31)]. The surface contour outputs project
back to their generative object boundaries across all scales. As
noted in section 7.1.4, when a surface is attended as part of
a surface-shroud resonance, its enhanced contrast increases
its surface contour outputs which, via surface-to-boundary
feedback, strengthens the corresponding boundaries and inhibits
the boundaries of unattended surfaces.

The surface-shroud resonance can be inhibited at the FIDOs
by a reset signal from the Where processing stream.

7.2. WHERE STREAM
A surface-shroud resonance in the Where stream ensures that suc-
cessive eye fixations are restricted to salient features within the
attended surface. These fixations enable the learning of multiple
view-specific categories of the object, which can all be associ-
ated with the emerging view- and positionally-invariant object
category until shroud collapse, and a shift of spatial attention
away from the object, cause the invariant object category to
be inhibited due to transient disinhibition of the category reset
mechanism.
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7.2.1. Gain field
Keeping the view-invariant object category active during these
sequential saccades within the object requires that the reset
mechanism continuously receives a sufficient amount of inhi-
bition from the currently active shroud. In pARTSCAN, the
surface representation is computed in retinotopic coordinates
that change during a saccade. If all the coordinates of the shroud
changed as well, reset could occur whether or not a saccade
landed within the same object. Maintaining inhibition of reset
is facilitated by computing shrouds in head-centric coordinates.
The coordinate transformation from retinotopic to head-centered
coordinates uses gain fields (Figure 7), which are known to act
on the parietal cortex, notably the lateral intraparietal area (LIP),
among other brain regions (Andersen et al., 1985; Colby et al.,
1993).

A number of neural models have been proposed for how
the outflow commands that control eye movements also
activate a parallel corollary-discharge pathway which com-
putes gain fields that transform retinotopic coordinates into
head-centered coordinates (Grossberg and Kuperstein, 1986,
1989; Zipser and Andersen, 1988; Gancarz and Grossberg,
1999; Pouget and Snyder, 2000; Xing and Andersen, 2000;
Mitchell and Zipser, 2003; Pouget et al., 2003; Cassanello
and Ferrera, 2007). Equations (A32–A36) mathematically
describe the gain field transformation that is used in this
article.

7.2.2. Spatial attention: attentional shroud
The head-centric spatial attention neurons [Figures 1, 7;
Equations (A37–A41)] receive bottom-up input from gain field
neurons. The spatial attention neurons select a winning shroud
through recurrent on-center off-surround interactions whose
short-range excitations and surface-shroud positive feedback
keep the winning shroud active, while longer-range off-surround
feedback inhibits other spatial attentional neurons. The top-down
feedback from the selected shroud neurons reaches object surface
neurons through gain field neurons. This surface-shroud gain-
field-modulated resonant feedback loop links retinotopic surface
representations with head-centric spatial attentional shrouds. It is
the neural event that corresponds to focusing spatial attention on
the object surface.

Decay of an active shroud’s activity below a threshold value
triggers a reset signal which, in turn, sends a nonspecific
inhibitory signal back to the spatial attention network to ensure
that the shroud is totally inhibited. However, the reset mecha-
nism, in the absence of other factors, is tonically active [Equation
(A55)]. In order to prevent reset-mediated inhibition from per-
sisting indefinitely due to its tonic inhibition of the spatial
attention network, all Where stream reset signals are multiplied,
or gated, by an activity-dependent habituative transmitter that
causes the gated reset signal to be transiently active [Equations
(42, 47)]. Such a transmitter multiplies the reset signal, so when
it collapses due to sufficient recent activity of the reset signal,
the net reset signal collapses too. After the transient reset sig-
nal collapses, spatial attention can shift to another object and
the cycle of attention shifting and invariant category learning can
continue.

7.2.3. Eye movements to salient surface features and
inhbition-of-return

The salient feature neurons [Figure 7; Equations (A43–A46)]
receive their largest inputs from the surface contour neurons
whose activities are amplified by the active shroud. The surface
contour neurons hereby play two roles: (1) they strengthen the
boundaries of an attended surface while also inhibiting unrelated
boundaries via surface-to-boundary feedback, and (2) they acti-
vate a parallel pathway, hypothesized to involve cortical area V3A,
that converts the salient features into target positions of saccadic
eye movements aimed at the attended surface. This conversion
is carried out by a contrast-enhancing recurrent on-center off-
surround shunting network that chooses the most active position
on the surface contour. This position marks the most salient fea-
ture at that time, as well as an “attention pointer” (cf. Cavanagh
et al., 2010) to the target position of the next saccade. In this way,
the eyes move to foveate the most salient features on the attended
object, like corners and intersections.

The eye movement map is gated by habituative transmitters
[Equation (A47)]. Once the eyes foveate a saccadic target position,
these transmitters deplete in an activity-dependent way, thereby
enabling another eye movement neuron to win the competition
for the next target on the attended surface. This habituative mech-
anism instantiates the concept of “inhibition-of-return (IOR)” by
preventing perseveration of eye movements to the same object
position.

7.2.4. Object category reset by transient parietal burst
The reset-activated pathways to both the object surfaces and the
spatial attention network are also gated by activity-dependent
habituative transmitters [Equation (A52)]. These habituative
gates facilitate the collapse of an active surface-shroud resonance
after a period of sustained spatial attention directed toward the
corresponding object surface. While an attentional shroud is
active, the currently active neurons within that shroud inhibit the
category reset neurons. The category reset stage [Equations (A50,
A51)] in the Where stream is modeled by a tonically active neu-
ronal population that nonspecifically inhibits the region where
invariant object categories are learned within cortical area ITa
of the What stream. The attended invariant object category can
remain active because the category reset stage is inhibited by
the currently active shroud. When the currently active shroud
collapses, the category reset neurons are disinhibited, thereby
enabling reset signals to inhibit the currently active invariant
object category, as well as the currently active shroud. As a result
of this transient reset burst, a shift of spatial attention can enable
a correlated shift in categorization rules (Yantis et al., 2002;
Serences and Yantis, 2006; Chiu and Yantis, 2009).

In the ARTSCAN Search model, unlike the ARTSCAN model,
the reset signals are delivered to the view category integrators,
invariant object categories, object surfaces, and spatial attention
neurons. Reset may be initiated after only part of a shroud col-
lapses, using a ratio reset rule that is more sensitive to the global
structure of the shroud than was used in the ARTSCAN model.
Due to the inhibition by the reset signal of the surface-shroud
resonance itself, the more the attentional shroud collapses, the
more the reset activity is disinhibited. This disinhibitory feedback
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loop enables fast and complete collapse of the currently active
surface-shroud resonance, and a shift of attention to another
object surface.

7.3. WHAT STREAM
The What cortical stream in the ARTSCAN Search model includes
several different kinds and sites of learning (Figure 7). First, there
is view- and positionally-specific category learning in cortical
area ITp. Second, there is view- and positionally-invariant cat-
egory learning in cortical area ITa. Third, there is object-value
learning from ITa to the orbitofrontal cortex (ORB). Fourth,
there is conditioned reinforcer learning from ITa to the amyg-
dala (AMYG). Fifth, there is incentive motivational learning from
AMYG to ORB.

There are two types of reset events during category learning:
First, there are the Where-to-What stream resets of the view-
and positionally-invariant categories in ITa, discussed above, that
are triggered by a surface-shroud collapse between V4 and PPC.
Second, What stream resets of the view- and positionally-selective
categories in ITp are mediated by sufficiently big mismatches of
bottom-up visual input patterns with the top-down expectations
that are read out to visual cortex from the currently active view-
and positionally-selective categories (Carpenter and Grossberg,
1991; Grossberg, 2012).

The What stream also includes other top-down expectations
that are used to perform a Where’s Waldo search (Figures 1, 6).
These expectations carry priming signals from name categories
in PFC to object-value categories in ORB, then to view- and
positionally-invariant object categories in ITa, and finally to view-
and positionally-specific categories in ITp. All of these top-down
signals are modulatory: Without additional inputs to enhance
them, they cannot fire their target cells. BG volitional signals
enable the object-value and invariant object categories to fire
when such top-down priming signals are also active. The subset
of primed view-specific categories that receive bottom-up sensory
inputs can also fire, and thereby activate the corresponding posi-
tions in PPC via a What-to-Where stream interaction, which leads
to competitive selection of the most active position, and then a
saccadic eye movement to that position.

7.3.1. View-specific categories
The view-specific category neurons, which are proposed to be
computed in cortical area ITp, receive inputs from an object’s
boundaries, which are proposed to be computed in the pale
stripes of cortical area V2 [Figure 7; Equations (A55–A60)]. Each
view-specific category learns to encode a range of boundary
shapes, sizes, and orientations may be experienced when foveating
different gaze positions of the same object view. View-specific cat-
egories are learned using an Adaptive Resonance Theory, or ART,
classifier, notably Fuzzy ART (Carpenter et al., 1991, 1992), which
is capable of rapidly learning and stably remembering recognition
categories of variable generality in response to arbitrary sequences
of analog or binary input patterns. Fuzzy ART includes learning
within both a bottom-up adaptive filter that is tuned to cause
category activation with increasing selectivity and vigor, and a
top-down expectation that is matched against bottom-up input
patterns to focus attention upon the set of critical features in the

bottom-up input pattern that were previously learned by the top-
down expectation. A big enough mismatch leads to reset of the
currently active category via an orienting system. This reset trig-
gers search for a new, or previously learned and better-matching,
category with which to represent the current input. See Grossberg
(2012) for a heuristic review of ART as a cognitive and neural
theory.

As noted in section 6, view-specific categories can be acti-
vated during a Where’s Waldo search by either a bottom-up or
a top-down route. The bottom-up route involves focusing moti-
vated attention on the corresponding invariant object category
via an ITa-AMYG-ORB resonance [Figure 5; Equations (A55–
A71)]. The top-down routes involve top-down priming by a name
category [Figures 6A,B; Equations (A72–A74)] via a PFC-ORB-
ITa-ITp route or by a value category via an AMYG-ORB-ITa-ITp
route. These top-down signals can selectively amplify the selected
ITa representation which, in turn, sends larger top-down priming
signals to its ITp representations. These ITp neurons correspond
to different positions and views of the object. The view that is
seen at a given position generates a bottom-up input that matches
the corresponding top-down prime and can then better compete
with other active ITp representations. The chosen ITp neuron
can either activate a direct What-to-Where pathway from ITp to
PPC to rapidly induce an eye movement [Figures 6A,C; Equation
(A48)], or a longer path along an ITp-V2-V4-LIP-PPC route
(Figures 6B,D) to direct the eye movement to desired target.

7.3.2. View category integrators
Each view-specific category activates its own population of view
category integrator neurons [Figures 1, 2, 3; Equation (A61)].
These integrators stay active as the eyes move to explore different
views of the same attended object, even after their view-specific
category is reset. View category integrator neurons are reset when
the shroud corresponding to a given object collapses, attention
shifts to another object, and the eyes begin to explore the new
object.

As explained in section 4, these neurons were introduced in the
pARTSCAN model to show how object category neurons could
learn to be positionally-invariant as well as view-invariant (Cao
et al., 2011).

7.3.3. Invariant object categories
Object category neurons [Figures 1, 5, 6; Equations (A63–A65)]
learn to become both view- and positionally-invariant due to
the learning that occurs within the adaptive input signals that
they receive from multiple view category integrator neurons; see
section 4. This learning goes on as long as the view category
integrator neurons are active. When attention shifts to another
object, both the view category integrator neurons and the invari-
ant object category neurons get reset, both to prevent them
from being associated with another object, and to allow selective
learning of many objects to occur.

Unlike the resets of Where stream spatial attention, these
What stream resets are not gated by a habituative transmitter
[Equations (A61, A63)]; rather, they are shut off by inhibition
from the next shroud that forms. If What stream resets were
transient, then the previously active invariant category could be
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reactivated during the time between the collapse of the previ-
ous shroud and the formation of the next shroud. As a reset, the
previous invariant category could be erroneously associated with
view-specific categories of the next object.

7.3.4. Value categories
Invariant object category representations can be amplified by
an ITa-AMYG-ORB resonance (Figures 4C, 5), which can focus
motivated attention on objects that are valued at a particular
time. Such a resonance can develop as a result of two types of
reinforcement learning (Grossberg, 1971, 1972a,b, 1982), as sum-
marized in section 5: First, pairing the object with a reinforcer can
convert the object representation into a conditioned reinforcer by
strengthening the connection from the active invariant object cat-
egory in ITa to an active value category, or drive representation,
in AMYG [Figures 1, 4, 5, 6; Equation (A78)]. Many neurobio-
logical data support the hypothesis that AMYG is a value category
(e.g., Aggleton, 1993; LeDoux, 1993; Muramoto et al., 1993; Yan
and Scott, 1996). Conditioned reinforcer learning is many-to-one
learning because multiple categories can be associated with the
same drive representation, much as multiple types of foods can
be associated with the motivation to eat.

7.3.5. Object-value categories
The invariant object category in ITa can also send adaptive excita-
tory projections to object-value representations [Figures 1, 4, 5, 6;
Equations (A70, A71)] in ORB (e.g., Barbas, 1995; Cavada et al.,
2000; Rolls, 2000; Schoenbaum et al., 2003; Kringelbach, 2005).
The adaptive nature of these connections is a new feature of the
model, which enables associations to be learned from a given
object representation to multiple reinforcers. A second many-
to-one kind of learning in the model is incentive motivational
learning. This type of learning can increase the incentive moti-
vational signals from a value category in the AMYG to an object-
value category in the ORB by strengthening the corresponding
AMYG-to-ORB pathway. Motivationally salient invariant object
category representations in ITa can hereby provide inputs directly
to object-value representations in ORB, and indirectly via two-
step learned conditioned reinforcer and incentive motivational
pathways. Such favored object-value representations can generate
positive feedback to the corresponding invariant object category
representation via an ORB-to-ITa pathway [Equation (A77)].
This feedback amplifies the favored invariant object category in
ITa and allows it to better compete for object attention, as occurs
during attentional blocking experiments (Grossberg and Levine,
1987).

7.3.6. Name categories
Name category neurons in PFC [Figures 1, 6; Equations (A72–
A74)] learn to be associated with the corresponding object-value
category neurons in ORB and can thus send excitatory priming
feedback to the corresponding object-value category neurons to
enhance their representations during a top-down Where’s Waldo
search [Equation (A81)].

7.3.7. Normalized quenching competitive dynamics during
searches

The many-to-one nature of the learned connections between
invariant object categories, value categories, and object-value

categories could potentially cause problems during searches.
Suppose, for example, that there were a winner-take-all com-
petition at each of these processing stages. Choosing a winning
view-specific category is needed, for example, to activate a single
object’s boundary representation and thereby direct eye move-
ments toward salient features of the boundary’s surface contours
during indirect searches.

In apparent conflict with this useful property is how a winner-
take-all choice can undermine motivational searches. During
the initial bottom-up processing of a scene containing multiple
objects of equal perceptual salience, there may be no clear win-
ner of a winner-take-all competition. To break this tie, suppose
that a winning view-specific category was arbitrarily chosen, say
based on a random attentional spotlight. Suppose, moreover, that
this view-specific category does not correspond to an invariant
object category that was associated through reinforcement learn-
ing with the active value category during a motivational search.
Then incentive motivational signals from the value category could
prime all the object-value categories with which it was earlier
associated. However, by itself, such a prime could not activate
any of these categories because bottom-up input from an invari-
ant object category corresponding to one of these object-value
categories would also have to occur. However, if the winning
view-specific category does not activate any of these object-value
categories through its invariant object category, then the search
could not continue.

This problem is overcome by incorporating mathematically
proven properties of recurrent competitive dynamics among cells
that obey the membrane equation, or shunting, dynamics of
biological neurons (e.g., Grossberg, 1973, 1980b, 2013b). In par-
ticular, there exists a quenching threshold in such networks so
that choices are not made in response to input activities that are
too close to one another, but can be made in response to an
input that is sufficiently bigger than its competitors. Moreover,
such networks tend to normalize their total activities, whether
or not a choice is made, using the automatic gain control
property that follows from shunting dynamics. Normalization
allows “weighing the evidence” among several equally salient
alternatives. These properties is incorporated algorithmically in
the competitive networks that determine the outputs of the
view-specific categories [Equation (A60)], invariant object cat-
egories [Equation (A64)], value categories [Equation (A69)],
object-value categories [Equation (A71)], and name categories
[Equation (A74)]. This competition is henceforth called normal-
ized quenching competition.

Given this refined competition property, in response to a
bottom-up input from several equally salient inputs, the nor-
malized network activity is divided equally among them. They
can all activate their view-specific, invariant object, and object-
value categories. Suppose that a value category now primes several
object-value categories, but only one of them has a bottom-
up input. Because it now receives a bottom-up input as well,
this object-value category is selectively amplified and can win
the competition among the object-value categories. The cho-
sen object-value category can, in turn, enable the corresponding
invariant object category to win its competition. The winning
invariant object category can, in turn, prime all of its view-specific
categories. Only one of these view-specific categories receives a
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bottom-up input, and this one can win its competition and drive
either a direct or indirect eye movement to the position of the
corresponding object.

The top-down cognitive and motivational searches also work
because they enable a single object-value category to win its com-
petition and thereby trigger the same top-down cascade of events
that was just summarized.

8. SIMULATION RESULTS
The simulations of the ARTSCAN Search model demonstrate
multiple sites of coordinated category, reinforcement, and cogni-
tive learning, and use of the learned connections to carry out both
bottom-up and top-down Where’s Waldo searches. ARTSCAN

Search simulations process 24 objects taken from natural images
of the Caltech 101 data base, with each object selected from
different categories as Where’s Waldo exemplars. Each object is
customized into 100 × 100 pixels (Figure 8A) against a homoge-
neous gray background with a luminance value of 0.5. The objects
are in a gray scale with luminance values between 0 and 1. Input
scenes are presented and simulated in Cartesian coordinates, for
simplicity. A simulated scene is represented by 500 × 500 pix-
els and is divided into 25 regions of 100 × 100 pixels, with each
region denoted as one position capable of representing one object.

The simulations are separated into three processes. The
first process replicates view-invariant category learning of the
ARTSCAN model. The purpose of the simulation is to show

FIGURE 8 | Set of object stimuli for view- and positionally-invariant

category learning. (A) Each object reflects the relative size within
100 × 100 pixels from Caltech 101 dataset. (B) A simulated scene for
simulations of view-invariant object category learning in section 8.1. A
scenic input image is partitioned into 25 regions (solid lines) and objects
are located in the central regions of the input scene (regions 7, 8, 9, 12,
13, 14, 17, 18, and 19). Region 5 is the foveal region and others are the

peripheral regions. (C) The bottom-up input representations after cellphone
becomes the attended object and is foveated. (D) The bottom-up input
representation when motorcycle becomes foveated after the soccer ball
and cellphone are learned. (E,F) A sequence of simulated scenes for
simulations of positionally- and view-invariant object category learning in
section 8.2. Each scenic input only contains one object located in one of
the center regions.
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that the ARTSCAN Search model maintains the properties of the
ARTSCAN model while adding the view category integrator stage
and reinforcement and cognitive learning. This simulation allows
us to observe the dynamics of how spatial attentional shrouds
form and then collapse to trigger category reset, of how spatial
attention shifts from one object to another, and of how the model
learns view-invariant object categories as the eyes autonomously
explore a scene. While each shroud is active, the eyes move to
approximately 7–8 hotspots on the attended surface. The dura-
tion of each fixation is approximately 0.3 s until the eye movement
map computes the next saccadic eye movement command.

Initially, three out of 24 objects are randomly chosen and scat-
tered into the central nine positions of the input scene, for reasons
that are stated below. Putting the objects in the central region of
the scene leaves enough space for the objects to remain in the
scene after each eye movement. For example, in Figure 8B, the
soccer ball object is the attended object in the center of the scene,
whereas the motorcycle and cellphone objects are located at the
7 and 14th positions, respectively. Once spatial attention shifts
from the soccer ball object to the cellphone object, the position
of the soccer ball is shifted from the 13th to the 12th position,
and the motorcycle shifts from the 7 to 6th position (Figure 8C).
Figure 8D illustrates the shift when the motorcycle is foveated,
and the soccer ball and cell phone shift to other positions in the
scene.

The second process carries out the view- and positionally-
invariant and category learning of the pARTSCAN model. Unlike
the input image in the first process, the scenic input contains
only one object located in one of the central nine positions to
generate different peripheral views of the object. The persistent
properties of the view category integrator neurons enable the
positionally-sensitive categories (view-specific categories) that are
activated by the object in peripheral positions to be associatively
linked to the same object category after the object is foveated
(see section 4). Section 8.2, summarizes a simulation trial that
describes learning driven by three illustrative input scenes which
are located from the 7th to the 9th regions (Figures 8E–G) to clar-
ify how ARTSCAN Search cumulatively learns various peripheral
views of the same object.

The third process performs a Where’s Waldo search task after
positionally-invariant object category learning have previously
occurred. Twenty-four objects from the Caltech 101 image data
base were selected from 24 distinct categories and each object
was presented individually in the central nine regions of the input
scene to learn a positionally-invariant category. About 1512 views
(24 objects by nine positions by approximately seven eye move-
ments per object) are generated during positionally-invariant
object category learning of 24 objects. These object exemplars
were compressed through learning to 445 positionally-specific
category neurons and, as a result, 24 invariant categories. In addi-
tion, during reinforcement learning, the 24 objects were divided
into three groups of eight and each group was associated with
a different value category to perform many-to-one associations
between invariant object categories, value categories, and object-
value categories. In all, the 24 invariant object categories were
associated with three value categories, 24 object-value categories,
and 24 name categories. Each object was simulated on 40 training

trials at each position to ensure that learning equilibrated between
categorical layers. Although the Fuzzy ART classifier that learns
view-specific categories is capable of one trial learning (Carpenter
et al., 1991), a slower learning rate between positionally-specific
and invariant object categories was used to ensure that, given the
vagaries of eye movement search, enough evidence was accumu-
lated to enable sufficiently accurate positionally-invariant object
category learning to occur (Cao et al., 2011).

The simulations of Where’s Waldo searches carried out
searches via bottom-up, cognitive, and motivational pathways
through direct or indirect interactions from the What-to-Where
streams to locate Waldo. To create the search scenes, each of the 24
learned objects was placed randomly in a non-foveal position to
serve as Waldo. The other eight search scene positions were filled
by randomly chosen objects from the other two reinforcement
learning groups, so that Waldo was the only object associated with
its value category in each scene. The Waldos in these 24 search
scenes were then searched bottom-up, cognitively, and motiva-
tionally via both direct and indirect pathways, yielding 144 search
trials in all. In addition to showing that Waldo could be found in
all these cases, search reaction times were also simulated to illus-
trate the total effect of the number of processing stages that were
used to carry out the search trials.

8.1. VIEW-INVARIANT OBJECT CATEGORY LEARNING
The first simulation shows how view-invariant object categories
can be learned within the full ARTSCAN Search architecture. It
uses Figure 8B as the scenic input to illustrate the dynamics of
how an attentional shroud forms around an attended object, col-
lapses through time, and shifts to another object. In Figure 9A, a
shroud forms around a soccer ball, then a cellphone, and finally a
motorcycle. Figure 9B shows the level of habituative transmitter
gating [Equations (A37, A42)], which is one of the IOR mecha-
nisms that regulates shroud collapse and switching. In particular,
shroud collapse induces a reset signal [Equations (A50–A52)] that
allows other objects to start to compete for the next attentional
shroud. Consistent with the nomenclature proposed by Posner
(1980), these shroud changes through time illustrate how atten-
tion can be disengaged, move, and engaged by different object
surfaces.

Figure 10 details the results of view-invariant object category
learning of these three objects during reinforcement learning tri-
als. Within a simulation trial, three successive formations and
collapses of attentional shrouds in the Where stream (Figure 10A)
support learning of three object categories in the What stream.
About 24 views are generated (three objects by approximately
eight eye movements) leading to learning of the corresponding
view-specific categories and activation of the corresponding view
category integrator neurons which, in turn, are associated with
three view-invariant object category neurons.

A soccer ball is the first object to undergo invariant category
learning in the simulation. When the attentional shroud of the
soccer ball object (Figure 10A; blue curve) is active in the Where
stream, the model spontaneously generates sequences of saccadic
eye movements on that soccer ball surface and each eye movement
generates a new retinotopic view of the soccer ball for category
learning in the What stream. Figure 10D represents all the eye
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FIGURE 9 | Temporal dynamics of model simulations in spatial

attention map and corresponding habituative transmitter

representation. The input to the simulation contains three objects: a
soccer ball, a cellphone, and a motorcycle (see Figure 8B). Each slice
represents neural activity at each time step. Darker colors represent

lower values. (A) Spatial attention map activity in time series when
the attentional shroud forms around the attended object. In this case,
shroud formation travels from soccer to ocellphone and then to
motorcycle. (B) Habituative transmitter levels during the times
corresponding to (A).

movements and fixations (blue lines and circles) on the soccer
ball, cellphone (red lines and circles), and motorcycle (green lines
and circles) through time. When a shroud is active, it inhibits
the reset neurons, but when the shroud collapses to a thresh-
old level [Equation (A50)], a transient reset signal is activated
(Figure 10B).

The reset signal nonspecifically inhibits the spatial attentional
and object surface neurons (Figure 7A) and is gated by habit-
uative transmitters (Figure 10C) that help to limit its duration
[Equation (A37)]. The more neural activities are decreased by the

reset signal, the faster is the reset signal disinhibited and increased,
leading to complete inhibition of the currently active shroud
and object surface. The transiency of the reset signal allows the
objects in the scenic input to compete to form the next atten-
tional shroud, and the habituative transmitters to be replenished
during the next surface-shroud resonance (Figure 10C). Because
neural transmitters corresponding to the soccer ball object have
been depleted, the shroud of the soccer ball loses the next compe-
tition, so that other object surfaces can compete to form the next
winning shroud. In this simulation, the surface of the cellphone
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FIGURE 10 | Model simulations of view-invariant object category

learning, after ten reinforcement simulation trials. Figure 8B presents the
scenic input for the simulation. The attentional shrouds competitively form
around objects in the Where stream and the winner shroud carries out
view-invariant object category learning in the What stream. The persistence
of a shroud controls the eye movements on the salient features on the object

surface, thereby generating a sequence of views to that are encoded by
view-specific categories which are, in turn, associated with the view-invariant
object category. The collapse of an active shroud triggers a reset signal which
shuts off the corresponding layers, including the spatial attention map, object
surface, view category integrator, and view-invariant object category, to

(Continued)
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FIGURE 10 | Continued

enable an attentional shift to another object. (A) Sum of the neural
activities of each shroud. Each line indicates the total activities of the
shroud that is activated by the corresponding object. Blue line: soccer ball;
red line: cellphone; green line: motorcycle. (B) Object category reset
signals. A reset is triggered at time = 1.25, 2.6, and 3.95 when collapse of
the shroud reaches the threshold ε for triggering a reset signal in Equation
(A55). (C) Habituative gate of reset signal. The depletion of the habituative
neurotransmitter in Equation (A57) causes the reset signal in Equation
(A42) to collapse after its transient burst and then to replenish through
time to enable future resets to occur. (D) Eye movement traces of the
simulated scene. The figures show only the central regions of the
simulated scene. The initial eye fixation is located at the center of the
scene and each square indicates an eye fixation on the object surfaces. (E)

View-specific category activities in corresponding regions. Different colored

lines indicate that each category activates for a short time and gets reset
after the saccadic eye movement occurs. (1) Region 13 activation
corresponding to the foveal views. (2) Region 14 activation corresponding
to the extra-foveal view after the first object is learned. (3) Region 6
activation corresponding to the extra-foveal view after the second object is
learned. (F) View category integrator activities in the corresponding
regions. Different colored lines indicate integrators’ persistent activities
that are inhibited when they receive a reset signal. (G) Reinforcing inputs
are presented to value categories when the view-invariant object
categories are active. (H) Invariant object category activities. The activation
of the first object category corresponds to learning the cellphone;
activation of the third object category corresponds to learning the
motorcycle. (I) Value category activities corresponding to the activations of
invariant object categories. (J) Object-value category activities driven by
activations of invariant object categories. (K) Name category activities.

creates the next surface-shroud resonance (Figure 10A; red curve)
for invariant object category learning in What stream, and the
motorcycle is the last (Figure 10A; green curve).

Each view generated by an eye fixation is represented in retino-
topic coordinates and the representations of the attended object
will be shifted to the foveal region which is in the center of the
scene denoted as region 13. Therefore, when the shroud of the
soccer ball is active, several eye movements on the soccer ball
generate different boundary representations which activate differ-
ent view-specific category neurons at region 13 (Figure 10E1). In
addition, the view category integrator neuron that is activated by a
view-specific category as the eyes explore an object remains active
even after its view-specific category gets reset (Figure 10F1), after
which a new object can induce its surface-shroud resonance
(Figure 10A) and be attended while the eyes explore it and lead
to invariant object learning about it. After reset occurs due to
the collapse of the soccer ball’s shroud, the cellphone wins spatial
attention over the motorcycle and forms the next shroud.

When the cellphone shroud is active and before an eye move-
ment command is generated toward the attended cellphone, the
view-specific category neuron and the view category integrator
neuron is activated in response to the peripheral view of the cell-
phone at the 14th region (Figures 10E2,F2). After the eye fixation
is on the cellphone surface, it brings the cellphone into the foveal
region 13 (Figure 8C) leading saccadic eye movements to start
to explore the features on the cellphone. These explorations cre-
ate a series of foveal views at region 13 which trigger invariant
object category learning of cellphone until the reset occurs again
(Figure 10E1).

The same explanation holds for the motorcycle. Once the
collapse of the cellphone shroud triggers reset and before the
motorcycle is foveated, a view-specific category and view category
integrator neurons are activated in response to a peripheral view
of the motorcycle in the 6th region (Figures 10E3,F3). Then the
motorcycle is shifted from the retina periphery to the fovea at 13th
region (Figure 8D) to perform view-invariant motorcycle object
category learning.

The persistent activations of view category integrator neurons
throughout the search of each object help to keep the emerging
invariant object category active (Figure 10H) after the first view
category integrator activates it, after which multiple view category
integrator neurons can be associated with it.

Association of an active invariant object category with a
reinforcer-activated (Figure 10G) drive representation triggers
conditioned reinforcer learning and incentive motivational learn-
ing processes (Figure 4) that lead to enhanced activations of
value category neurons (Figure 10I) and object-value category
neurons (Figure 10J) through ITa-AMYG-ORB resonances, and
enhanced activations of the corresponding name category neu-
rons (Figure 10K). To distinguish the effects of reinforcement
learning, the ITa-AMYG-ORB resonances are shut off by fix-
ing the adaptive weights from the invariant categories to the
value categories and from the object-value categories to invari-
ant categories to equal zero before reinforcement simulation
trials. This simulation demonstrates that the model is capa-
ble of performing category learning in the absence of rein-
forcement learning. Figure 11 compares the neural responses,
when the cellphone’s shroud is active, across thirty trials with
(solid circles) and without (open circles) reinforcement learn-
ing, thereby showing how reinforcement learning enhances cell
activations.

For the soccer ball and motorcycle, the neural responses of
the categorical stages are similar to those activated by the cell-
phone because the model performs category learning of indi-
vidual objects through time. Before reinforcement learning, the
neural responses of the value category stay at the rest level due to
the absence of learned associations from the invariant object cate-
gories (Figure 11A2; open circles). After reinforcement learning,
the responses of view-invariant categories (Figure 11A1), value
categories (Figure 11A2), object-value categories (Figure 11A3),
and name categories (Figure 11A4) show enhanced activations
relative to their values in the absence of reinforcement learning.

8.2. POSITIONALLY-INVARIANT OBJECT CATEGORY LEARNING
This section uses the ARTSCAN Search model to simulate both
view- and positionally-invariant category learning. Positionally-
invariant category learning was carried out for all 24 objects in all
nine positions. To illustrate how the network behaves, Figure 12
shows a simulation in which three consecutive input scenes gen-
erate a series of shrouds through time. Each shroud controls a
sequence of 7–8 explorations of the positions of salient features,
or hot spots, by eye movements on the object surface and each eye
fixation provides either an extra-foveal or a foveal view for cate-
gory learning. About 21 views are hereby generated (three objects
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FIGURE 11 | (A) Trial-by-trial category activities during view-invariant object
category learning. Category learning activities are shown both without
(open circles) and with (solid circles) simultaneous reinforcement learning.
Each condition involves 30 trials with each trial processing a simulated
scene with an average duration of 4.05 s, corresponding to Figures 8B, 10.
Data points represent the average activity levels during cellphone learning.
Other objects generate similar learning curves. (1) Average view-invariant
object category responses. (2) Average value category responses. (3)

Average object-value category responses. (4) Average name category
responses. (B) Trial-by-trial changes in positional- and view-invariant object
category learning. Each trial processes three consecutive simulated
scenes, each with an average duration of 3.95 s, corresponding to
Figures 8E–G, 12. The curves are analogous to those in (A).

by approximately seven eye movements) during the simulation
trial learning of three cellphone exemplars. Because features on
an attended object surface that are selected by eye movements can
be repeatedly chosen when learning of same object at different
positions, the same features can activate the previously learned
view-specific category. As a result, these views are compressed to
16 view-specific categories through learning, and all the activated
view category integrator neurons are associated with the same
invariant object category, value category, object-value category,
and name category neurons.

Figure 12 illustrates this process by starting with the cell-
phone as the scenic input in the 7, 8, and 9th regions. The
following sequence of events occurs through time during learn-
ing of the cellphone’s positionally-invariant category. When the

cellphone begins in position 7, a cellphone surface-shroud res-
onance forms. The persistence of the shroud (Figure 12A, first
blue curve) enables saccadic eye movements to move from the
center of the scene and explore several hotspots on the cellphone
surface (Figure 12D1) while object category learning continues
until the shroud collapses, thereby triggering category reset sig-
nals (Figure 12B). The reset signals shut off the spatial attention
map and object surface representations, and inhibit the invari-
ant object category in the What stream. The transient burst of
the reset signal leads to depletion and replenishment of its gated
habituative transmitters through time (Figure 12C).

Cellphone learning proceeds as follows: Initially, one view-
specific category in region seven gets activated in response to
the extra-foveal view of the cellphone (Figure 12E1) and, in
turn, activates the corresponding view category integrator neu-
ron (Figure 12F1) which remains active and is associated with the
corresponding invariant object category neuron (Figure 12H).
After the first saccadic eye movement command is computed by
the eye movement map, the cellphone is shifted from the periph-
ery to the foveal region (region 13). The persistence of the shroud
enhances the surface representation and its surface contours,
whose selection controls eye movements that explore salient fea-
tures on the surface, thereby activating a sequence of foveal views
and the corresponding sequence of view-specific category neu-
rons (Figure 12E4) and their view category integrator neurons
(Figure 12F4). View category integrator neurons persist dur-
ing the active shroud even after the corresponding view-specific
category neurons get reset. Because the view-invariant object
category neuron is active before the object is foveated, these per-
sistent properties of view category integrator neurons help both
extra-foveal and foveal views to be associated with the emerging
invariant object category.

Reinforcement learning pairs activations of the emerging
invariant object category with a sequence of external reinforcing
inputs (Figure 12G). It hereby converts the active invariant object
category into a conditioned reinforcer and source of incentive
motivation by strengthening associative links from the category to
the value category, and from the value category to the object-value
category, respectively. In all, the corresponding ITa-AMYG-ORB
resonances lead to enhanced activities of invariant categories
(Figure 12H), value categories (Figure 12I) and object-value cat-
egories (Figure 12J), which influence the activations of the name
categories (Figure 12K).

The collapse of the cellphone’s shroud in region 7 results in
category reset at the view category integrator and view-invariant
object category layers [Equations (A61, A63)] as well as a com-
plete inhibition of activity across the spatial attention and object
surface layers. After the reset occurs, another simulated scene with
the cellphone in position 8 as in Figures 12F,D2 is fed into model
to repeat the learning processes. As explained above, the initial
eye fixation is located at the center of the scene, so the cellphone
generates an extra-foveal view to the What stream where a view-
specific category neuron in region 8 gets activated (Figure 12E2),
which activates the corresponding view category integrator neu-
ron (Figure 12F2), which persists and learns to be associated
with a new invariant object category neuron (Figure 12H, red
curve) and the subsequent categorical layers. After a saccadic eye
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FIGURE 12 | Model simulations of positionally- and view-invariant

cellphone object category learning, after 10 reinforcement simulation

trials. Model receives a sequence of three simulated scenes. Each scene
contains a single cellphone placed at different positions (see Figures 8E–G),
and the initial eye fixation is located at the center of the scene. Before the
object is brought to the foveal region by a saccadic eye movement, a view

from the retinal periphery is generated to activate the view-specific category
in the What stream and the subsequent categorical stages. An attentional
shroud forms around the cellphone in the Where stream and controls the eye
movements visiting several salient features on the cellphone surface which
generate a sequence of views to the What stream during shroud persistence.

(Continued)
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FIGURE 12 | Continued

After the collapse of an attentive shroud triggers a reset to inhibit the
spatial attention map, object surface map, view category integrator
neurons, and view-invariant object category neurons, another simulated
scene is fed to the model to repeat category learning until all the scenes
are learned. (A) Sum of the neural activities in three attentional shrouds
which are active at times 0–1.25, 1.25–2.6, and 2.6–3.95 s. (B) Object
category reset signals occur at times 1.25, 2.6, and 3.95 s when shroud
collapse reaches the reset threshold. (C) Habituative gate of reset signal.
(D) Eye movement traces scanning the cellphone presented in three
positions. (E) View-specific category activities of the corresponding
regions. Different colored lines indicate that each category activates for the
duration of an eye fixation and gets reset after the saccadic eye
movement occurs. (1) neural activation corresponding to the extra-foveal
view of the first cellphone input at region 7. (2) activation corresponding to
the extra-foveal view of the second input at region 8. (3) activation
corresponding to the extra-foveal view of the third input at region 9. (4)

activation corresponding to the foveal views of all the scenes at the foveal
region 13. (F) View category integrator neuron activities in corresponding
regions. (G) Reinforcing inputs (H) Invariant object category neuron
activities. From t = 0–1.25 s, the invariant category is activated via a series
of activations from view category integrators until it receives a reset
signal. Another invariant category neuron (red line) is activated
corresponding to the beginning of the second scene’s category learning
and then is inhibited by the previously learned invariant category which is
activated by a previous view-specific category when a feature on the
cellphone is repeatedly selected. The activation of the other invariant
category (green line) corresponds to the beginning of third scene’s
category learning and is inhibited by the first learned invariant object
category when a previously learned view-specific category is activated. (I)

Value category activities corresponding to the activations of invariant object
categories. (J) Object-value category activities corresponding to the
activations of invariant object categories. (K) Name activities corresponding
to activations of object-value categories.

movement is generated to bring the cellphone into the foveal
region (region 13), the active shroud of the cellphone in region 8
enables eye movement explorations to occur on the cellphone sur-
face and thus generate a sequence of foveal views that initiate new
view-specific category learning and view integrator activations
(Figures 12E4,F4).

However, as noted in section 2, how the eyes choose the next
saccadic target is not random. Surface contour signals are selected
to ensure that the eye movements select the salient features on
the attended object’s surface (Figure 12D2). The features that are
selected in the simulated scene of cellphone at region 7 are thus
chosen again when learning the cellphone located in the region
8. That is, at least one previously learned view-specific category
neuron is activated in turn activates the corresponding view cat-
egory integrator. This integrator learned to be associated with
the previously learned invariant object category. Due to the per-
sistent activities of view category integrator neurons, the view
category integrator neuron which is activated by the extra-foveal
view in region 8 can be associated through learning with the pre-
viously learned invariant object category (Figures 3, 12H, second
blue curve). As the result, the extra-foveal views of the cellphone
(regions 7 and 8) are linked to the same invariant object category,
thereby developing its positionally-invariant property.

After reset occurs due to collapse of the shroud of the cellphone
in region 8, a simulated input containing only one cellphone
object in the 9th region (Figures 8G, 12D3) is fed into the sys-
tem to extend the positional invariance of the emerging object
category. Before the cellphone is shifted into the foveal region
by a saccadic eye movement, a view from the retinal periphery
is generated and activates the view-specific category neuron in
region 9 (Figure 12E3) and the corresponding view category inte-
grator neuron (Figure 12F3) that activates a new invariant object
category neuron (Figure 12H, green curve). By the same process
that was explained above, the view category integrator neuron
can learn to be associated with the previously learned -invariant
object category that is activated by a view category integrator neu-
ron after a feature on the cellphone surface is repeatedly selected
(Figure 12D3). The same processes take place for objects appear-
ing at other extra-foveal positions. As a result, ARTSCAN Search
can perform positionally-invariant object category learning from
multiple initial object positions.

Figure 11B shows the development of model responses across
learning trials, with and without reinforcement learning. The
model requires approximately 30–40 trials before the associative
weights become asymptotically stable. Category learning with-
out reinforcement learning eliminates the ITa-AMYG-ORB res-
onances by setting the weights from invariant object categories
to value categories to zero. As a result, responses of the value
category remain zero (Figure 11B2, open circles), and responses
of the invariant category (Figure 11B1), object-value category
(Figure 11B3), and name category (Figure 11B4) show smaller
increments compared to those during reinforcement learning
trials.

To carry out the reinforcement learning trials, it was assumed
that the 24 objects that were conditioned were associated with one
of three value categories. For definiteness (although this has no
effect on the simulations), each value category was associated with
8 of the 24 objects. When the first object was associated with its
value category, there was no effect of other objects because their
initial conditioned reinforcer and incentive motivational weights
were chosen equal to zero. Consider learning trials with the sec-
ond object that is associated with a given value category. When
the value category gets activated, it can send incentive motiva-
tional signals to the object-value category of the first object to be
conditioned. However, as shown in Equation (A75), these condi-
tioned signals are modulatory. Since the first object is not present,
its invariant object category is inactive, and thus its object-value
category does not receive an input from the object category. As a
result, the object-value category of the first object remains inac-
tive. This is also true for all objects that were associated with a
given value category when a different object is presented.

8.3. TOP-DOWN PRIMED SEARCH TO WALDO DISCOVERY
Top-down search tasks are based on the view- and positionally-
invariant object category learning of 24 objects, described in
section 8.2, after the learned weights between categorical layers
have equilibrated. The top-down primed search can be triggered
either via a name category neuron in PFC by receiving a prim-
ing name input (Figures 6A,B) or via a value category in AMYG
by receiving sufficiently large internal motivational drive signal
(Figures 6C,D). Either way, the corresponding object-value cate-
gory in ORB can be activated and projects to the invariant object
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category in ITa. The amplified invariant object category top-down
primes multiple learned view-specific category neurons in ITp
through view category integrator neurons. During the primed
search processes, the object-value categories, the invariant object
categories, and view category integrators receive volition con-
trol signals from the BG to ensure the top-down prime to be
appropriately activated. Bottom-up inputs from the objects in
the viewed scene also activate the view-specific category neu-
rons in ITp. The view-specific category with the best combination
of top-down prime and bottom-up input will be mostly highly
activated. This enables a winner-take all choice of the primed
view-specific category, using the choice mechanism that was sum-
marized in section 7.3.7. The selected view-specific category can
induce eye movements toward the target object either via a direct
or an indirect pathway. For the scenes simulated in this article,
ARTSCAN Search achieves 100% performance accuracy of cor-
rectly finding Waldo. In response to realistic scenes, many factors
may reduce performance accuracy, including distractors, internal
noise, speed-accuracy tradeoffs, imperfections of figure-ground
separation, and the like.

Another important factor that can limit search accuracy in the
brain is the cortical magnification factor. As noted in section 9.2
pARTSCAN, and ARTSCAN Search enable positionally-invariant
category learning to occur with no loss of acuity for peripherally
detected objects. The high peripheral acuity is due to the fact that,
for simplicity, these models do not incorporate the cortical mag-
nification factor, which would cause object representations that
are processed from extra-foveal positions to have coarse sensory
representations. If several objects in a scene are featurally simi-
lar, their peripheral representations could then be associated with
more than one similar object in foveal view, and thus would not
unambiguously predict a definite object category. Rather, they
may only predict a coarser and more abstract category. However,
once these objects are foveated, they benefit from the higher
resolution of foveal processing.

Figures 13, 14 summarize model simulations of the cogni-
tively primed search (Figure 13) and a motivational drive search
(Figure 14). A search scene is composed of nine different learned
objects at the central nine positions within a 5 × 5 = 25 position
scene. Figure 13A is an exemplar of a search scene in which the
cellphone object is denoted as Waldo.

In the simulation of a cognitively primed search that is sum-
marized in Figure 13B, the name category neuron corresponding
to the cellphone receives a priming signal (Figure 13B1) and then
projects to the object-value category. The active object-value cate-
gory (Figure 13B3) continually excites the corresponding invari-
ant object category (Figure 13B4). To show the effect of a purely
cognitive prime, it is assumed that the value categories are not
active. In the simulation, this happens because the value cate-
gories do not receive any internal drive inputs, and thus their
activities remain at the rest level (Figure 13B2). The active invari-
ant object category, supplemented by volitional signals, top-down
primes all the view- and positionally-specific categories through
the view category integrator neurons. The view category integra-
tors corresponding to different positions receive both top-down
primes from the invariant object categories and volitional signals
from the BG. As a result, all the view- and positionally-specific

categories that were associated with cellphone object category
get amplified (Figure 13B5). The view-specific category with the
matched position from the bottom-up Waldo input gets the most
activation (Figure 13B6); that is, the category that encodes the
extra-foveal view of cellphone at the 9th position.

For the motivational drive search mechanism (Figure 14), the
value category corresponding to the cellphone receives an internal
drive input (Figure 14B) that triggers an incentive motivational
signal to the object-value category. To distinguish the effect of
motivational drive search from the cognitive primed search, the
connections from the object-value categories to name categories
are eliminated so that the name category neurons stay at their
rest level (Figure 14A). As noted in section 7.3.7, the competi-
tive dynamics of the model enable the active object-value category
(Figure 14C) to top-down excite the corresponding invariant
object category. As in the top-down cognitive primed search,
the enhanced invariant object category (Figure 14D) top-down
primes all the view category integrators (Figure 14E) and, in
turn, its view-specific category. This prime can now amplify
the most active view-specific category, which corresponds to the
extra-foveal cellphone view at the 9th position, (Figure 14F).

The selected view-specific category neuron in ITp induces an
eye movement to the Waldo target through either a direct or an
indirect route. The direct route from the view-specific category
layer to the eye movement map via a learned adaptive weight
can more quickly elicit a saccadic eye movement. The learning
between a view-specific category and the eye movement map
occurs during positionally-invariant category learning when a
non-foveal object learns to activate its view-specific category and
generates an eye movement command to move the eyes to its
position. Then both the view-specific category and the represen-
tation of the object’s extra-foveal position are active, so that an
association between them can be learned.

This direct search route can be triggered by either the cogni-
tive primed search pathway (Figure 6A) or the motivational drive
search pathway (Figure 6C). However, along the indirect route,
the selected view-specific category neuron selectively primes its
target boundary representation (Figure 13A3) which gates the
surface filling-in process to increase the contrast of the selected
target surface (Figure 13A4). Spatial attention corresponding to
the target surface competitively wins to form an attentional
shroud through a surface-shroud resonance (Figure 13A5). As a
result, the surface contour (Figure 13A6) of the attended surface
gets strengthened, leading to selection of its hot spots as eye
movement targets.

Figure 15 shows the search reaction times across search tri-
als. For example, the cellphone object in Figure 13A is set as a
Waldo target and is simulated under different search pathways
via either the direct or indirect route until Waldo is foveated. The
bottom-up search pathway has longer search reaction times com-
pared to the top-down cognitive primed and the motivational
drive pathways. This is because the bottom-up pathways require
more processing stage interactions (see Figure 5) to locate the tar-
get. In addition, the reaction time in the direct pathway is always
shorter than in the indirect pathway because the indirect pathway
has more stage interactions to compute the saccadic eye move-
ment. The search reaction times of the direct route in each search
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FIGURE 13 | Where’s Waldo cognitive primed search results. Search is
based on positionally-and view-invariant object category learning of 24
objects, as illustrated in (A). In (B), a cognitive primed search are illustrated.
(A) In the indirect route, the amplified view-specific category selectively
primes the target boundary to make it stronger than other object boundaries

in the search scene. (1) A typical input for the search task with the cellphone
denoted as the Waldo target. (2) Odd-symmetric kernels for V1
polarity-sensitive oriented simple cells. The kernels have four orientations and
three scales. (3) The boundary representation gates the filling-in process of

(Continued)
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FIGURE 13 | Continued

the object surface stage. Priming from the cellphone’s view-specific category
increases the contrast of its target surface. (4). The enhanced cellphone
surface representation competitively forms the cellphone’s attentional shroud
(5) within the spatial attention map. This shroud draws spatial attention to the
primed cellphone object. The hot spots on the cellphone’s enhanced surface
contour (6) determine eye movements to salient features on the cellphone.
(B) Cognitive primed search. The category representations in a top-down
cognitive primed search are consistent with the interactions in Figures 6A,B.
The bars represent category activities at the time when the view-specific
category is selectively amplified through the matching process. (1) Name
category. Only the cellphone category receives a cognitive priming signal. (2)

Value category. The value category remains at rest because no reinforcement
signals are received. (3) Object-value category. The object-value category
corresponding to the cellphone is primed by the cellphone name category.

The object-value category also receives a volitional signal (Figure 1B), which
enables its top-down prime to activate suprathreshold output signals. A
volitional signal also reaches the invariant object category and view category
integrator stages to enable them to also fire in response to their top-down
primes, as now discussed: (4) Invariant object category. The cellphone
invariant object category fires in response to its object-value category and
volitional inputs. (5) View category integrator. The view category integrators
corresponding to the cellphone also fire in response to their invariant object
category and volitional inputs. Colored bars in each position index activations
corresponding to the different objects. View category integrators at each
position that learn to be associated with the cellphone’s invariant object
category have enhanced representations. (6) View-specific category. The
view-specific category at position 9 receives a top-down priming input from
its view category integrator and a bottom-up input from the cellphone
stimulus. It is thereby selectively amplified.

FIGURE 14 | Where’s Waldo motivational drive search results. The
category representations during a motivational drive search are consistent
with the interactions in Figures 6C,D. The value category that was
associated with the cellphone receives an internal motivational priming input

that activates a motivational signal to the object-value category which,
supplemented by a volitional signal, amplifies the corresponding invariant
object category through an inferotemporal-amygdala-orbitofrontal resonance.
The various results are analogous to those in Figure 13B.

mechanism are similar because the eye movement is activated via
the learned pathway from the selected view-specific category and
the interactions between categorical layers are the same, whereas
the search reaction times in the indirect route are different for dif-
ferent targets due to the different surface contour strength of the
various objects.

The indirect path reaction times between 275 and 375 ms are
comparable to, say, the reaction times in the Brown and Denney
(2007) experiments on spatial attention shifts, which are quan-
titatively simulated in Foley et al. (2012) using the dARTSCAN
model.

9. DISCUSSION AND RELATED MODELS
The ARTSCAN Search model builds upon the ARTSCAN model
(Fazl et al., 2009) and its further development in pARTSCAN to
enable both view- and positionally-invariant object categories to

be learned (Cao et al., 2011). The model introduces several major
additional improvements and innovations. First, incorporating
positionally-invariant object category learning is necessary to per-
form the different search tasks, which all show how object atten-
tion in the What stream can activate spatial attention in the Where
stream. The model thus incorporates multiple bi-directional con-
nections between two cortical streams: from the Where stream
to the What stream to perform both view- and positionally-
sensitive and view- and positionally-invariant category learning,
and from the What stream to the Where stream to perform either
bottom-up or top-down primed searches. Second, volitional sig-
nals from the BG are needed to convert top-down priming signals
into suprathreshold activations during search tasks. Third, dur-
ing category learning in the What stream, cognitive-emotional
resonances can strengthen object category, value category, object-
value category, and name representations to enable valued objects
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FIGURE 15 | Search reaction times under different search conditions.

The search reaction times are statistically computed in the eye movement
map via bottom-up, cognitive primed, and motivational drive search
mechanisms through a direct and an indirect route. Blue bars correspond to
the direct route and red bars indicate the indirect route. The slowest RTs
are in the bottom-up pathway via the indirect route (375 ± 50 ms). The
simulation reaction times of the cognitive primed pathway (335 ± 40 ms)
and motivational drive pathway via the indirect route (335 ± 45 ms) are
similar. The RTs via the direct route are: bottom-up pathway (200 ± 10 ms),
cognitive primed pathway (180 ± 5 ms), and motivational drive pathway
(180 ± 5 ms), respectively. See the text for further discussion.

to preferentially compete for object attention during search tasks.
Fourth, all these processes, taken together, can support perfor-
mance of bottom-up or top-down cognitive or motivational,
direct or indirect pathway, Waldo searches. During the top-down
searches, a primed object name, or distinctive motivational source
in the What stream can interact with the Where stream to direct
spatial attention and eye movements to the position of the object.

9.1. SPATIAL vs. OBJECT ATTENTION
The ARTSCAN Search model explicates neural processes that
have been described in many psychological experiments and
models. A large number of visual search experiments and models
consider top-down priming, and how it may interact with par-
allel visual representations of target features (Wolfe et al., 1989;
Wolfe, 1994; Itti and Koch, 2001; Müller et al., 2003), by build-
ing on feature integration theory (Treisman and Gelade, 1980)
to bias spatial selection of target positions. Feature dimensions,
such as color, intensity, shape, size, orientation, etc., are combined
into a saliency map that enables bottom-up information to attract
an observer’s attention, whereas expectancies introduce top-down
constraints. Attention can be shifted to an object or a location
through a combination of bottom-up and top-down processing.

The Guided Search (Wolfe, 1994) and Saliency Map models
(Itti and Koch, 2001) rely on spatial competition to select the most
salient feature. Unlike the ARTSCAN Search, pARTSCAN, and
ARTSCAN models, these alternative models are all pixel-based,
rather than object-based, models. Observers detect whether a sin-
gle feature object was present or not during visual search experi-
ments; there was no need to identify the target. These models thus
do not include object-based attention or any of the other con-
cepts and mechanisms that are needed to learn object categories
and object-based searches, and cannot explain the corresponding
data bases. The ARTSCAN Search model, in contrast, provides a
detailed description of how spatial and object attention, invariant
object category learning, predictive remapping, eye movement

search, and conscious visual perception and recognition are inti-
mately linked. In particular, the surface-shroud resonance that is
predicted to correspond to paying focal spatial attention to an
object and to regulate invariant object learning and eye movement
search, has also been predicted to be the event that triggers con-
scious perception of visual qualia (Foley et al., 2012; Grossberg,
2012, 2013a).

Other models have focused on object recognition, rather than
visual search per se. Riesenhuber and Poggio (2000) proposed a
hierarchical model called HMAX to illustrate how view-invariant
object recognition occurs. The HMAX model is a feedforward
network that generates a sparse representation of the input to
achieve its categorizations by incorporating properties of ear-
lier models such as the Neocognitron (Fukushima, 1980, 1986)
and VIEWNET (Bradski and Grossberg, 1995) models. The view-
tuned units at the model’s lower stages, which are tuned to same
features of the object but at different scales, rotations, and illu-
mination, gradually and in parallel increase feature complexity
and receptive field size at the higher stages. The view-invariant
units at the higher stages are achieved by pooling together the
appropriate view-tuned units for each object. The HMAX model
differs from ARTSCAN Search in multiple ways. Most notably,
ARTSCAN Search is not a feedforward model and does not
depend upon generating a sparse representation of the input.
Instead, ARTSCAN Search includes both bottom-up and top-
down interactions, as well as recurrent interactions at multiple
processing stages, to carry out its attentional, learned catego-
rization, and search properties. In particular, in HMAX there is
no spatial or object attention, or coordination of the What and
Where cortical streams to learn invariant object categories and to
drive object searches. Moreover, ARTSCAN Search incorporates
ART dynamics to learn view-specific object categories that can be
chosen from a dense, non-stationary input environment, with-
out a loss of learning speed or stability (Carpenter and Grossberg,
1987, 1991; Carpenter et al., 1991). Feedforward categorization
models fall apart under such learning conditions (Grossberg,
1988).

Kanan and Cottrell (2010) have developed a model to clas-
sify objects, faces, and flowers using natural image statis-
tics. Their preprocessing tries to emulate luminance adaptation
within individual phororeceptors. To do this, they compute the
logarithm of each pixel intensity and then normalize the result.
The logarithm compresses the dynamic range of the image, but
has unbounded limiting values at high and low arguments, so
cannot be the correct form factor for biological preprocessing.
ARTSCAN Search does not try to model individual photorecep-
tors, although its front end can be augmented by detailed models
of vertebrate photoreceptor adaptation. These models show how
an intracellular shift property and Weber law can be achieved
using habituative transmitter gates that normalize photorecep-
tor response and quantitatively fit photoreceptor psychophysical
and neurophysiological data (Carpenter and Grossberg, 1981;
Grossberg and Hong, 2006). Instead, ARTSCAN Search embod-
ies the next stages of visual brain adaptation using a shunting
on-center off-surround network that computes a regional con-
trast normalization which also exhibits the shift and Weber law
properties (e.g., Grossberg, 1983, sections 21 and 23; Werblin,
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1971; Grossberg and Hong, 2006). See Equation (A6). Kanan and
Cottrell then use principal component analysis (PCA) to learn fil-
ters that play the role of simple cells. They discard the largest prin-
cipal component, and then select d of the remaining components
by optimizing performance on an external dataset. These useful,
but computationally non-local, computer vision operations do
not seem to have biological homologs. ARTSCAN Search does not
learn its simple and complex cell filters [see Equations (9–17)],
but these filters are similar to the oriented filters that self-organize
in response to image statistics in biological self-organizing map
models of cortical development (e.g., Olson and Grossberg,
1998). Kanan and Cottrell compute a saliency map from their
filters using a number of other non-local operations, and their
fixations are chosen randomly. In contrast, in ARTSCAN Search,
the salient features that are computed from the surface contours
of the attended surface generate predictive eye movement com-
mands to fixate the positions of these salient features, until the
surface-shroud resonance collapses, and enables another surface
to be attended and searched [see Equations (43–49)]. Random
fixations do not allow the autonomous learning of invariant
object categories, and do not occur in vivo (Theeuwes et al.,
2010). Kanan and Cottrell apply PCA to the collected feature
vectors, and the 500 components with the largest eigenvalues
are selected and normalized. This information is combined by
assuming fixations are statistically independent. After T fixa-
tions, the class with the greatest posterior is assigned. In contrast,
ARTSCAN Search can carry out incremental unsupervised or
supervised learning of both view- and positionally-specific cat-
egories and view- and positionally-invariant categories using
an ART classifier whose top-down expectations both dynami-
cally stabilize the learning of multiple categories and provide
the pathways for carrying out top-down Where’s Waldo searches
[see Equations (53–65)].

Grossberg et al. (1994) proposed in their algorithmic Spatial-
Object Search, or SOS, model how spatial attention and object
attention interact with visual boundary and surface representa-
tions to direct visual search. The ARTSCAN, pARTSCAN, and
ARTSCAN Search model greatly expand this framework to a
dynamical neural theory which proposes how identified cortical
cells in multiple regions of the What and Where streams may
achieve invariant object category learning and Where’s Waldo
searches.

Another extension of this framework is the ARTSCENE
Search model (Huang and Grossberg, 2010) which proposed how
contextually-cued search may occur (e.g., Chun and Jiang, 1998)
by accumulating and categorizing sequential spatial and object
contextual information via the parahippocampal and perirhinal
cortices, interacting with parietal, inferotemporal, and prefrontal
cortices, to direct a search based on spatial and object contextual
evidence, respectively. For example, after seeing a stove and a sink,
one expects to see a refrigerator more than a beach. This kind of
evidence accumulation is not modeled in ARTSCAN Search and
needs to be added to a future extension of the model.

9.2. CENTRAL vs. PERIPHERAL VISION
Due to the coarse resolution of peripheral vision, high-acuity
object recognition requires a combination of selective attention

and successive eye movements that bring the objects of interest
into foveal vision (Liversedge and Findlay, 2000). In contrast,
Thorpe et al. (2001) performed an experiment in which natu-
ral images are flashed at the retinal periphery. Human subjects
are asked to respond if a natural image contains an animal.
The results showed that, even in the absence of foveating eye
movements, visual information initiating in the retinal periph-
ery can be processed to make superordinate categorizations,
such as deciding whether or not an animal is contained in
the scene. However, the subjects failed to identify the animals
that they detected in the image. To identify a tiger as a tiger
(rather than as an animal), objects require a more detailed analy-
sis by foveally-mediated perceptual and categorization processes.
Although pARTSCAN and ARTSCAN Search enable positionally-
invariant category learning to occur, object representations that
are processed from extra-foveal positions in vivo have coarse sen-
sory representations due to the cortical magnification factor. If
several objects in a scene are featurally similar, they can be asso-
ciated with multiple similar objects in foveal view, and thus do
not unambiguously predict a definite object category. Rather, they
may only predict a coarser and more abstract category. However,
once these objects are foveated, they benefit from the higher reso-
lution of foveal processing. The current model does not simulate
the cortical magnification factor, for simplicity, since its focus is
on higher-level processes. View-invariant category learning has,
however, been demonstrated using log-polar preprocessing to
represent the cortical magnification factor and Fuzzy ARTMAP as
the view-specific category classifier (Bradski and Grossberg, 1995;
Fazl et al., 2009). These results show that including the cortical
magnification factor can be successfully incorporated in a future
version of the model.

9.3. TOP-DOWN PROCESSES: THREE MECHANISMS
Top-down processes occur in both cortical streams. For the Where
cortical stream, it has been suggested that top-down attention can
guide target selections by facilitating information processing of
stimuli at an attended location (Wolfe, 1994; Hyle et al., 2002;
Kristjánsson et al., 2002; Müller et al., 2003). Such top-down
modulation can enhance the effective contrast of an attended
stimulus (Carrasco et al., 2000; Reynolds and Chelazzi, 2004).
Fazl et al. (2009) proposed how a surface-shroud resonance can
enhance the contrast of an attended stimulus as part of the pro-
cess whereby the Where stream pays focal attention to an object
and modulates the learning of view-invariant object categories.
The ARTSCAN Search model extends this insight to the learn-
ing of view- and positionally-invariant object categories and the
capacity to carry out bottom-up and top-down searches.

For the What cortical stream, Bar (2003) proposed that low
spatial frequencies in the image rapidly project to PFC through
magnocellular pathways. PFC can then project back to inferotem-
poral cortex and to amygdala through orbitofrontal cortex. In
particular, activity in the orbitofrontal cortex is involved in pro-
ducing of expectations that facilitate object recognition (Bechara
et al., 1996; Frith and Dolan, 1997; Bischoff-Grethe et al., 2000;
Carlsson et al., 2000; Petrides et al., 2002). ARTSCAN Search,
and its precursors in the CogEM, MOTIVATOR, and START
models, simulate how the activation of IT is capable of learning
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a cognitive-emotional ITa-AMYG-ORB resonance that supports
motivated attention to top-down enhance an object category
representation and thus facilitate its recognition (Grossberg,
1975; Grossberg and Levine, 1987; Grossberg and Merrill, 1992;
Grossberg and Seidman, 2006; Dranias et al., 2008). ARTSCAN
Search further clarifies how a cognitively-mediated search that
engages PFC, and a motivationally-mediated search that engages
AMYG, can utilize these circuits.

A third and related mechanism drives a top-down primed
search process using knowledge about the learned objects (e.g.,
finding Waldo), with PFC as major source of inputs to IT
(Miller et al., 1996; Cavada et al., 2000). Bar (2003) also empha-
sized a top-down mechanism for facilitation of object recog-
nition from prefrontal region to the IT area via expectancies
from the orbitofrontal cortex. The ARTSCAN Search model, and
its CogEM, MOTIVATOR, and START precursors, also clarifies
the role of ORB in mediating object-value categories that are
enhanced when objects are emotionally salient and can then be
selectively attended through motivated attention during a primed
search task (Rolls, 1999, 2000; Baxter et al., 2000; Schoenbaum
et al., 2003; Pessoa and Ungerleider, 2004).

9.4. MODEL EXTENSIONS
The present model carries out all of its computations in
Cartesian coordinates. Future versions of the model that wish to
include the compression and other representational properties
of space-variant processing can preprocess the input images
using the cortical magnification factor (Schwartz, 1980; Seibert
and Waxman, 1992; Basu and Licardie, 1993; Bradski and
Grossberg, 1995), using the foundation that is summarized in the
section 9.2.

The present model simulates 2D images composed of non-
overlapping natural objects. Future model extensions need to
incorporate mechanisms for processing 2D images and 3D scenes
with overlapping objects to show how partially occluded objects
can be separated from their occluders and completed in a way
that facilitates their recognition. FACADE theory proposes neu-
ral mechanisms whereby 3D vision and figure-ground separation
occur, and these mechanisms have been embodied in laminar cor-
tical circuits within the 3D LAMINART model (Grossberg, 1994;
Grossberg and McLoughlin, 1997; Grossberg and Raizada, 2000;
Kelly and Grossberg, 2000; Grossberg and Howe, 2003; Cao and
Grossberg, 2005, 2012; Grossberg and Yazdanbakhsh, 2005; Fang
and Grossberg, 2009). These mechanisms can extend the cur-
rent model to carry out searches of scenes with partially occluded
objects.

In order to achieve contextually-cued search, ARTSCAN
Search can be combined with the ARTSCENE Search model
(Huang and Grossberg, 2010) to enable sequences of spatial and
object information to be stored in parallel working memories,
categorized, and used to determine contextually-sensitive search
decisions, by using interactions between ITa, perirhinal cortex
(PRC), and ventral prefrontal cortex (VPFC) in the What stream,
and PPC, parahippocampal cortex (PHC), and dorsolateral pre-
frontal cortex (DLPFC) in the Where stream.

Spatial attention may be distributed between several objects at
a time, and a scene does not go dark around a focally attended

object (Eriksen and Yeh, 1985; Downing, 1988; Pylyshyn and
Storm, 1988; Yantis, 1992; McMains and Somers, 2005). Foley
et al. (2012) extended the ARTSCAN model to the distributed
ARTSCAN (dARTSCAN) model to analyze how parietal and pre-
frontal representations of spatial attention can together enable
multi-focal attention to occur, including focal attention on an
object to be learned and distributed attention to the rest of the
scene, using a combination of sustained surface-driven spatial
attention and transient motion-driven spatial attention, thereby
enabling both attentional priming of positions where an object
recently disappeared or was occluded and rapid transient inter-
ruptions of attention. This extension enables many more data
to be simulated, including data about two-object cueing, useful-
field-of-view, and crowding.

In summary, ARTSCAN Search can be self-consistently
extended by using related models in the ARTSCAN modeling
framework to enable: figure-ground separation and comple-
tion of overlapping objects in both 2D pictures and 3D scenes,
contextually-cued search, and multi-focal attention and multiple
target tracking as part of its invariant object category learning,
recognition, and Where’s Waldo search capabilities.
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APPENDIX: MODEL EQUATIONS FOR INVARIANT OBJECT
CATEGORY LEARNING AND RECOGNITION
The model is a network of point neurons with single compart-
ment membrane voltage, V(t), that obeys:

Cm
dV(t)

dt
= − [V(t) − Eleak] γleak(t) − [V(t) − Eexcit] γexcit(t)

− [V(t) − Einhib] γinhib(t), (A1)

(Grossberg, 1973, 1980a,b). Constant Cm is the membrane capac-
itance; the constant conductance γleak controls membrane leak-
age; and the time-varying conductances γexcit(t) and γinhib(t),
respectively, represent the total excitatory and inhibitory inputs
to the neurons as specified by the model architecture. The three E
terms represent reversal potentials. At equilibrium, the equation
can be written as:

V = Eexcitγexcit + Einhibγinhib + Eleakγleak

γexcit + γinhib + γleak
, (A2)

Thus, increases in the excitatory and inhibitory conductance lead
to depolarization and hyperpolarization of the membrane poten-
tial, respectively. All conductances contribute to divisive normal-
ization of the membrane potential, as shown as the denominator
in Equation (A2). This divisive effect includes the special case
of pure “shunting” inhibition when the reversal potential of
the inhibitory channel is close to the neuron’s resting potential
(Borg-Graham et al., 1998). Equation (A2) can be re-written as:

dX

dt
= −AXX + (BX − X) γexcit − (CX + X) γinhib, (A3)

by setting Cm = 1, X = V , AX = γleak, Eleak = 0, BX = Eexcit , and
CX = −Einhib. Figure 7 summarizes the model interactions and
the variables at every model stage. All the variables that repre-
sent cell activities in a given brain region are listed in Table A1.
The adaptive weights are marked as W with superscripts and sub-
scripts and the connection descriptions are listed in Table A2.
Superscript letters signify the pre-synaptic cell and the postsy-
naptic cell, respectively. For example, the weight from the neuron
with activity Xi to the neuron with activity Yj is denoted by
WXY

ij . The model receives 2-D 500 × 500 pixel gray-scaled images
to represents the visual field during category learning and also
receives a constant volition control signal while the system per-
forms primed search. Model parameters were chosen to illustrate
how attentional shrouds may be sequentially activated when
a simulated scene contains multiple objects, in particular how
object surface with highest contrast activities can competitively
form the winning shroud while inhibiting other possible shrouds
in the spatial attention map. The simulations were carried out in
MathWorks MATLAB R2009a on a Microsoft Windows XP ×64
with Intel Quad-Core/2.33 GHz/14 GB of RAM.

A. RETINA AND PRIMARY VISUAL CORTEX PROCESSES
A.1. Retina and LGN cells
Due to the focus on the high-level interactions of the corti-
cal What and Where streams in the model, we simplify the

Table A1 | The variables in the mathematical equations that represent

the model brain regions.

Symbols Brain region

X g± Later geniculate nucleus (LGN)

Y g , Zg Primate visual cortex V1 (V1)

Sg±, SF Primate visual cortex V2/V4 (V2/V4)

Bg Primate visual cortex V2 (V2)

C Primate visual cortex V3 (V3)

E, E, yR Superior colliculus (SC)

IU , ID Lateral intra-parietal cortex (LIP)

A, yA, AI , RWHERE , yR Posterior parietal cortex (PPC)

V (q), V (q), V I,q Posterior inferotemporal cortex (ITp)

O, O Anterior inferotemporal cortex (ITa)

F, F Orbitofrontal cortex (ORB)

D, D, U, T Amygdala (AMYG)

N, N, P Prefrontal cortex (PFC)

G Basal ganglia (BG)

Table A2 | The adaptive weight variables in the model mathematical

equations.

Symbols Description

W BV Object boundary to view-specific category

W VB View-specific category to object boundary

W VO,q View category integrator to view-invarient object category

W OV ,q View-invarient object category to view category integrator

W OF View-invarient object category to object-value category

W FO Object-value category to view-invarient object category

W OD View-invarient object category to value category

W DF Value category to object-value category

W FN Object-value category to name category

W NF Name category to object-value category

W VE View-specific category to eye movement map

In the superscript notation for the weights W, the first letter represents the

presynaptic population and the second letter the postsynaptic population.

front-end image processing of the model. The retinal and LGN
polarity-sensitive cells include ON and OFF types. The ON-
cells (on-center off-surround) have small excitatory center and
broader inhibitory surround receptive fields, whereas the recep-
tive fields of the OFF-cells (off-center on-surround) have the
converse relation to the ON-cells. When these fields are approx-
imately balanced, the network discounts the illuminant and
contrast-normalizes cell responses (Grossberg and Todorović,
1988). Multiple scales (small, medium, large) input to the bound-
ary and surface representations that are used to drive spatial
attention, category learning, and search. The equilibrium activ-

ities X
g+
ij and X

g−
ij of ON and OFF output cells, respectively, at

position (i, j) with scale g = 1, 2, 3 (small, medium, large), are
defined by:

X
g+
ij =

[
x

g
ij

]+ (
1 + Ĝij

)
, (A4)

X
g−
ij =

[
−x

g
ij

]+ (
1 + Ĝij

)
, (A5)
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where

x
g
ij =

∑
pq

Ipq

(
D

cg
pqij − D

sg
pqij

)
1 + ∑

pq
Ipq

(
D

cg
pqij + D

sg
pqij

) , (A6)

Ipq is the image input at position (p, q), D
cg
pqij, and D

sg
pqij are,

respectively, the Gaussian on-center and off-surround receptive
fields:

D
vg
pqij = Nvg exp

(
− (i − p)2 + (j − q)2

2σ 2
vg

)
, v = c, s, (A7)

where constant Nvg in Equation (A7) is chosen so that
Nvg ∑

pq D
vg
pqij = 1. The LGN receptive fields with small, medium,

and large scales are cut off at 5 × 5, 17 × 17, and 41 × 41
pixels, respectively. The on-center and off-surround scale vari-
ances are determined by (σc1, σc2, σc3) = (0.3, 0.75, 2) and
(σs1, σs2, σs3) = (1, 3, 7), respectively. [ ]+ denotes half-rectified
activities with [a]+ = max (a, 0). A foveal advantage Ĝij in
Equations (A4, A5) is defined by a large 2D Gaussian kernel
placed in the center of the visual field which amplifies the activity
of the corresponding LGN cells, so that objects near the fovea have
gain-amplified representations that facilitate their recognition:

Ĝij = exp

(
− i2 + j2

2 · 62

)
. (A8)

A.2. V1 polarity-sensitive oriented simple cells
The oriented simple cells in primary visual cortical area V1 receive
bottom-up activated LGN ON and OFF cell activities which
are sampled as oriented differences at each image location. The
simple cell, Y

g
ijk, of orientation k and scale g obeys:

Y
g
ijk =

∑
(p, q)

y
g
pqijkX

g+
pq −

∑
(p, q)

y
g
pqijkX

g−
pq , (A9)

where X
g+
ij and X

g−
ij are the on-center and off-center LGN out-

puts at position (i, j), respectively, and the simple cell filter,
y

g
pqijk, is composed of oriented odd-symmetric Gabor filter ker-

nels (Figure 13A2) that are constructed from the combination of
a sinusoid function with a Gaussian function:

y
g
pqijk = 1

2πσhgσvg
exp

(
−1

2

(
x′2pqijk

σ 2
hg

+ y′2pqijk

σ 2
vg

))
cos

(
2π

x′
pqijk

λg

)
,

(A10)

where λ is the wavelength of the sinusoid factor with
(λ1, λ2, λ3) = (3, 5, 7), g is the scale factor, σ is the variance of
the Gaussian envelope with short-axis variance (σv1, σv2, σv3) =
(1, 1.5, 2) and long-axis variance (σh1, σh2, σh3) = (3, 4.5, 6),
and. x′

pqijk and y′
pqijk are given by:

x′
pqijk = (p − i) cos

(
πk

4

)
+ (q − j) sin

(
πk

4

)
, (A11)

and

y′
pqijk = −(p − i) sin

(
πk

4

)
+ (q − j) cos

(
πk

4

)
. (A12)

The simple cell receptive fields with small, medium, and large
scales are cut-off at 19 × 5, 29 × 7, and 39 × 9 pixels, respectively.
The outputs from model simple cells include both ON-cells and
OFF-cells which respond to opposite contrast polarities before
being half-wave rectified:

Y
g+
ijk =

[
Y

g
ijk

]+
, (A13)

and

Y
g−
ijk =

[
−Y

g
ijk

]+
. (A14)

A.3. V1 polarity-insensitive complex cells
The activities of polarity-insensitive complex cells, z

g
ij, are deter-

mined by summing the half-wave rectified outputs of polarity-
sensitive cells at the same position (i, j):

z
g
ij =

∑
k

(
Y

g+
ijk + Y

g−
ijk

)
, (A15)

where Y
g+
ijk and Y

g−
ijk are the outputs of on-center and off-center

polarity-sensitive cell activities, respectively. The output signals
of the complex cells, Z

g
ij, are normalized by divisive normalization

(Grossberg, 1973, 1980b) at each position:

Z
g
ij =

⎡
⎣ (

z
g
pq

)2

0.12 + ∑
pq Lpqij

(
z

g
pq

)2

⎤
⎦

+
, (A16)

where Lpqij is a Gaussian kernel:

Lpqij = 1

2π
exp

(
− (i − p)2 + (j − q)2

2

)
. (A17)

Divisive normalization helps to suppress stimuli that are pre-
sented outside of the receptive fields of neurons and sharpen
the Z

g
ij boundaries around an object (Grossberg and Mingolla,

1985; Heeger, 1992; Schwartz and Simoncelli, 2001). Since the
ARTSCAN Search model focuses on higher-level interactions
between the What and Where cortical streams that process non-
overlapping natural images with complete boundaries, several
image preprocessing stages are simplified or omitted, such as
interactions between cortical layers in V1 and V2 that con-
tribute to boundary completion and figure-ground separation
in response to 2D images and 3D scenes. Such interactions,
which are modeled in articles about FACADE theory and the
3D LAMINART model such as Cao and Grossberg (2005, 2012),
Grossberg (1999), Grossberg and Kelly (1999), Grossberg and
Swaminathan (2004), and Grossberg and Yazdanbakhsh (2005),
can be self-consistently added to the current model.
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A.4. V2 boundaries and surface-to-boundary attentional priming
The object boundary activities B

g
ij are computed using small,

medium, and large receptive fields, or scales, g that receive
multiple-scale bottom-up inputs from the complex cells Z

g
ij.

Each scale also receives modulatory surface-to-boundary feed-
back signals

∑
pq CpqFpqij from surface contours Cpq that sur-

round successfully filled-in surfaces; namely, surfaces that fill-in
within closed, connected boundaries (Grossberg, 1994; Kelly and
Grossberg, 2000; Grossberg and Yazdanbakhsh, 2005).

Surface contours of large-scale boundaries are also
strengthened by top-down spatial attentional signals∑

q

∑
k m(V

(q)
k )W

VB,q
qkij from the currently active view- and

position-specific category. This enhancement helps to drive
indirect searches for a Waldo object that codes this category. In
all, the object boundary activities B

g
ij at position (i, j) and scale g

have the equilibrium value:

(1) for small and medium boundary scales,

B
g
ij =

⎡
⎢⎢⎢⎢⎣

Z
g
ij

(
1 + 104 ∑

pq
CpqFpqij

)
− 0.4

∑
pq

Cpq

0.1 + Z
g
ij

(
1 + 104

∑
pq

CpqFpqij

)
+ 0.4

∑
pq

Cpq

⎤
⎥⎥⎥⎥⎦

+

, g = 1, 2;

(A18)

(2) for the large scale,

B3
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z3
ij

(
1 + 104 ∑

pq
CpqFpqij + ∑

q

∑
k

m
(

V
(q)
k

)
W

VB,q
qkij

)

− 0.4
∑
pq

Cpq

0.1 + Z3
ij

(
1 + 104 ∑

pq
CpqFpqij + ∑

q

∑
k

m
(

V
(q)
k

)
W

VB,q
qkij

)

+ 0.4
∑
pq

Cpq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

, (A19)

where Z
g
ij is the bottom-up complex cell input with three

scales g = 1, 2, 3, defined in Equation (A16); Cpq is the
surface contour cell activity at position (p, q), defined in
Equation (A27); and Fpqij is the Gaussian kernel from posi-
tion (p, q) on the surface contour to position (i, j) on the
object boundary:

Fpqij = 1

2π · 52
exp

(
− (i − p)2 + (j − q)2

2 · 52

)
. (A20)

In Equation (A19), the signal function m is defined by the sigmoid
function:

m(a) = [a]+
0.001 + [a]+ , (A21)

m(V
(q)
k ) is the output signal from the kth view-specific category

neuron in position q, defined in Equation (A55), and W
VB,q
qkij is

the adaptive weight from the kth view-specific category neuron to

the object boundary in position q. Boundary position q is defined
by a small region of the input scene into which an exemplar of an
object can occur. In the simulations, a 500 × 500 pixel input scene
is divided into 25 regions with 100 × 100 pixels. The large-scale
boundary Equation (A19) in each region can drive view-specific
category learning of the object [see Equations (A55–A60)] and,
as shown in Equation (A19), can receive learned top-down mod-
ulatory inputs from the corresponding learned view-specific cat-
egory neurons. Such large-scale boundary information alone,
without additional surface information about lightness or color,
is sufficient to carry out accurate Where’s Waldo searches of the
natural objects in the currently simulated data base.

A.5. V2 surface filling-in
Inputs from ON and OFF LGN cells activate a non-linear diffu-
sion process within surface Filling-In DOmain, or FIDO, cells.
The spread of LGN-activated surface activities is gated, or inhib-
ited, by boundary signals. The LGN inputs are also modu-
lated by top-down attentional inputs from whatever surface-
shroud resonances are active. These attentional inputs increase
the contrasts of the filled-in surface activities, and thus the
surface contours of the attended surface, leading to preferen-
tial choice of eye movements on that surface. The attentional
inputs are mediated by gain fields that convert the head-centered
shroud back to retinotopic coordinates. The surface neurons also
receive inhibitory inputs from reset neurons in the Where stream
that facilitate instatement of the next surface to be attended
after a spatial attentional shift. The ON and OFF cell sur-
face activities S

g+
ij and S

g−
ij , respectively, at scale g and position

(i, j) are:

dS
g+
ij

dt
= −80S

g+
ij +

∑
(p,q ∈ �ij)

P
g
pqij

(
S

g+
pq −S

g+
ij

)
+ 100X

g+
ij

(
1+SF

ij

)

− S
g+
ij RWHEREyR, (A22)

and

dS
g−
ij

dt
= −80S

g−
ij +

∑
(p,q ∈ �ij)

P
g
pqij

(
S

g−
pq −S

g−
ij

)
+100X

g−
ij

(
1+SF

ij

)

− S
g−
ij RWHEREyR, (A23)

where X
g+
ij and X

g−
ij are the bottom-up input signals from ON

and OFF LGN neurons, SF
ij are top-down attentional inputs from

the gain field neurons defined in Equation (A36), RWHERE is
the category reset signal defined in Equation (A50), and yR

is the reset habituative transmitter defined in Equation (A52).
The boundary-gated diffusion coefficient, Ppqij, that regulates the
magnitude of activity spread between position (i, j) and position
(p, q) obeys:

P
g
pqij = 104

1 + 40
(

B
g
pq + B

g
ij

) , (A24)

Frontiers in Integrative Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 43 | 38

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Chang et al. Where’s Waldo? Learning and searching

where

�ij = {
(i, j − 1), (i − 1, j), (i + 1, j), (i, j + 1)

}
, (A25)

are the nearest-neighbor neurons with which the diffusion occurs
around cell (i, j).

After ON and OFF filling-in processes occur, the outputs from
different scales are pooled to form a multiple-scale output signal
(Hong and Grossberg, 2004):

Sij = 0.05
(

S1+
ij + S1−

ij

)
+ 0.1

(
S2+

ij + S2−
ij

)
+ 0.85

(
S3+

ij + S3−
ij

)
. (A26)

This weighted distribution of scales, with the largest weight given
to the large scale to produce a more homogeneous surface rep-
resentation, is used in the competition for spatial attention to
choose a winning shroud.

A.6. Surface contours
The filled-in ON and OFF surface activities across multiple scales
of the attended object surface are averaged before being contrast-
enhanced by on-center and off-center networks, half-wave recti-
fied, and added to generate surface contour output signals Cij at
position (i, j):

Cij =

⎡
⎢⎢⎣

∑
pq

(
J+
pq − J−

pq

)(
K+

pqij − K−
pqij

)
40 + ∑

pq

(
J+
pq − J−

pq

)(
K+

pqij + K−
pqij

)
⎤
⎥⎥⎦

+

+

⎡
⎢⎢⎣

∑
pq

(
J+
pq − J−

pq

)(
K−

pqij − K+
pqij

)
40 + ∑

pq

(
J+
pq − J−

pq

)(
K+

pqij + K−
pqij

)
⎤
⎥⎥⎦

+

. (A27)

Surface contours strengthen the boundaries that formed them
and inhibit spurious boundaries, as in Equations (A18, A19).
When a surface-shroud resonance is active, it enhances the activa-
tion of the attended surface via gain field neurons, as in Equations
(A22, A23). The enhanced surface activation, in turn, strengthens
the surface contours of the surface via the signals J+pq and J−

pq that
are defined below.

In addition to selecting and strengthening the boundaries that
formed them, surface contours are also processed in a paral-
lel pathway that controls the target positions of eye movements
that scan the attended object, as in Equation (A43). The role of
surface contours in target selection is possible because surface
contours occur at positions where surface brightnesses and col-
ors change quickly across space, and thus mark positions where
salient features exist on the surface. When surface contours sig-
nals are strengthened by spatial attention, they can compete more
effectively in the eye movement map Equation (A43) to determine
the positions to which the eyes will move, therefore restricting
scanning eye movements to the attended surface while its shroud
is active.

Surface contours are determined by weighted ON and OFF
averages, J+

pq and J−
pq, respectively, of filled-in surface activities

across scales at each position (p, q). These averages give greater

weight to the small scale because it computes better localized,
signals around the salient features of the filled-in surface:

J+
pq = 0.8S1+

ij + 0.1S2+
ij + 0.1S3+

ij . (A28)

and

J−
pq = 0.8S1−

ij + 0.1S2−
ij + 0.1S3−

ij , (A29)

where K+
pqij and K−

pqij are on-center and off-center Gaussian ker-
nels, respectively:

K+
pqij = 1

2π
exp

(
− (i − p)2 + (j − q)2

2

)
, (A30)

K−
pqij = 1

2π · 32
exp

(
− (i − p)2 + (j − q)2

2 · 32

)
. (A31)

B. WHERE STREAM
B.1. Gain field
Model processes prior to the spatial attentional map are all in
retinotopic coordinates, so that object positions change with
every eye movement. In contrast, the spatial attention map is
in head-centered coordinates that are invariant to changes in
eye position. Gain fields mediate this transformation (Andersen
and Mountcastle, 1983; Andersen et al., 1985; Grossberg and
Kuperstein, 1986, 1989; Pouget and Sejnowski, 1997; Pouget and
Snyder, 2000; Deneve and Pouget, 2003). ARTSCAN adapted
the gain field model of Pouget and Snyder (2000), but this
model becomes computationally unwieldy when processing nat-
ural images. However, the implementation of gain filed trans-
formation in the ARTSCAN model increases the computational
loads when input image becomes large.

To overcome this problem, ARTSCAN Search modifies the
gain field model of Cassanello and Ferrera (2007), which com-
putes the visual remapping using a product of maps instead of a
linear combination. In addition, ARTSCAN Search separates the
gain fields into two parallel channels, a bottom-up channel and
a top-down channel. The bottom-up channel receives bottom-up
retinotopic surface inputs which are shifted according to the eye
position to the head-centric map, whereas the top-down channel
transforms the top-down head-centric map to a retinotopic map,
again modulated by eye position.

When both retinal and eye position maps are two-
dimensional, the gain field will be four-dimensional. In the
bottom-up channel, the activity IU

mnij of gain field cell at position
(m, n, k, l) is the product of the eye position map with the sum
of the object surface map and the spatial attentional map:

IU
mnkl = (

Sm − k,n − l + Amn
)

Ekl, (A32)

where is the object surface activity at position (m − k, n − l),
whose coordinates are shifted by the eye position at position
(k, l), Amn is the activity of spatial attention at position (m, n),
and

Ekl =
{

1 if eye position at (k, l),
0 otherwise.

(A33)
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The output signals AI
mn from the gain field to the spatial atten-

tional map are defined as the sum of all the gain field maps
corresponding to different eye positions:

AI
mn =

∑
kl

IU
mnkl =

∑
kl

(
Sm − k,n − l + Amn

)
Ekl = Sm − k0,n − l0

+ Amn if eye position is at (k0, l0) (A34)

In the top-down channel, as in the bottom-up channel, the activ-
ity ID

mnij of the gain field cell at position (m, n, k, l) is the
product of the eye position map at position (k, l) with the sum of
the shifted spatial attention map and the eye position map:

ID
mnkl = (

Am+k,n+l + Smn
)

Ekl, (A35)

where Am+k,n+l is the activity of spatial attention at position
; (m + k, n + l);, whose coordinates are shifted by the eye posi-
tion at position (k, l), and Smn is the object surface cell activity
at the position (m, n). The output signals SF

mn from the gain field
to the object surface are again defined as the sum of all gain field
maps across all the eye position maps.

SF
mn =

∑
kl

ID
mnkl =

∑
kl

(
Am+k,n+l + Smn

)
Ekl = Am+k0,n+l0

+Smn if eye position is at (k0, l0) . (A36)

B.2. Spatial attention: attentional shroud
The outputs of the bottom-up gain field input to the spatial
attention layer, where spatial competition chooses the attentional
shroud. The shroud, in turns, feeds back via the top-down gain
field to object surface representations and thereby enhances the
activities of the winning surface.

The spatial attention neurons receive excitatory bottom-up
inputs from the corresponding gain field neurons, as well as mod-
ulatory lateral excitation from other spatial attention neurons that
is gated by habituative transmitters (Grossberg, 1972b, 1980b).
Each spatial attention neuron also receives shunting lateral inhi-
bition from the sum of gain field and attentional output signals,
as well as transient reset signals that are also gated by habitu-
ative transmitters. The spatial attention neuronal activity Aij at
position (i, j) thus obeys:

1

10

dAij

dt
= −0.1Aij+

(
1−Aij

) (
g(AI

ij)

(
1+0.2

∑
mn

f (Amn)Cmnij

))
yA

ij

−Aij

(∑
mn

(
g
(
AI

mn

) + f (Amn)
)

Emnij + 10RWHEREyR

)
,

(A37)

where AI
ij is the gain field input defined in Equation (A39),

yA
ij is the excitatory habituative transmitter that gates the gain

field output signal g(AI
ij) and the total spatial attentional input

0.2
∑

mn f (Amn)Cmnij at position (i, j); see Equation (A42).
RWHERE is the category reset signal defined in Equation (A50),
and yR is the reset habituative transmitter; see Equation (A52).

The gain field signal function g is defined by the threshold-linear
function:

g(a) = [a − 0.05]+ , (A38)

the attentional signal function f is defined by sigmoid function:

f (a) = 4a4

0.354 + a4
, (A39)

Cmnij is the Gaussian excitatory on-center kernel from position
(m, n) to (i, j):

Cmnij = 1

10
exp

(
− (i − m)2 + (j − n)2

2 · 42

)
, (A40)

and Emnij is the Gaussian inhibitory off-surround kernel:

Emnij = 1

2 · 105
exp

(
− (i − m)2 + (j − n)2

2 · 2002

)
. (A41)

In Equation (A37), the habituative transmitter yA
ij that mediates

between the gain field output and its spatial attention cell at
position (i, j) obeys:

dyA
ij

dt
= KA

(
2 − yA

ij − 3 · 106

(
g(AI

ij)

(
1 + 0.2

∑
mn

f (Amn)Cmnij

))
yA

ij

)
,

(A42)

where KA = 10−8 is a slow rate that allows the persistence of
the attentional shroud during eye movement explorations of
the attended object surface, 2 − yA

ij is proportional to the rate
of transmitter accumulation and the attentionally-modulated

gain field input 3 · 106
(

g
(

AI
ij

) (
1 + 0.2

∑
mn f (Amn) Cmnij

))
yA

ij

determines the rate of transmitter inactivation. As the habitua-
tive transmitter depletes, the activity in the shroud neurons can
collapse enough to trigger the reset signals that enable another
group of neurons to form a shroud around a newly chosen surface
representation.

The reset signals in the Where stream are rendered transient by
habituative gates; e.g., see Equation (A37). Without these gates,
the otherwise tonically active reset signals could keep the spatial
attention network inhibited permanently.

B.3. Eye movements to salient features on the attended surface
The eye movement map receives inputs from the surface con-
tour cells and contrast-enhances them using a recurrent on-center
off-surround network to choose the most active neuron activity
as the next target for fixation. This decision is also influenced
by input from the currently active view-specific category which
provides a direct learned route from positionally-sensitive cate-
gories in the What stream to target positions in the Where stream
(see section 9). All the excitatory inputs are gated by habituative
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transmitters, which prevent perseveration on the previous target
choice. The eye movement cell activity Eij at position (i, j) obeys:

dEij

dt
= −Eij + (1 − Eij)⎛

⎝[Cij
]+ + 625

∑
mn

E2
mnJmnij +

∑
q

∑
k

m
(

V
(q)
k

)
WVE

qkij

⎞
⎠ yE

ij

− 0.01Eij

∑
ij

([
Cij

]+ +
∑
mn

E2
mnKmnij

)
, (A43)

and the most active eye movement neuronal activity EIJ is selected
corresponding to the next target position (I, J):

EIJ =
{

Eij, if Eij = maxpq (Epq > 0.58),
0, otherwise.

, (A44)

In Equation (A43), Cij is the surface contour neuron activity at

position (i, j), m(V
(q)
k ) is the output signal from view-specific

category neuron defined in Equation (A55), where the sigmoid
signal function m(a) is defined in Equation (A21), Jmnij is the
Gaussian excitatory on-center kernel:

Jmnij = 1

2π
exp

(
− (i − m)2 + (j − n)2

2

)
, (A45)

Kmnij is the Gaussian inhibitory off-surround kernel:

Kmnij = 1

2π · 52
exp

(
− (i − m)2 + (j − n)2

2 · 52

)
, (A46)

and yE
ij is the habituative transmitter that gates the input to eye

movement neuron at position(i, j):

dyE
ij

dt
= KE

(
2−yE

ij −3 · 106yE
ij

([
Cij

]++625
∑
mn

E2
mnijJmnij

))
, (A47)

where KE = 10−7. Because KE in Equation (A47) is larger than KA

in Equation (A42), an active shroud can be explored by several eye
movements before its attentional shroud collapses. The adaptive
weight WVE

qkij from the selected kth view-specific category neuron
at position q to the eye movement map at position (i, j) obeys:

1

500

dWVE
qkij

dt
= m

(
V

(q)
k

)
h(Eij)

(
Eij − WVE

qkij

)
, (A48)

where

h(Eij) =
{

1, if Eij = maxpq (Epq > 0.58),
0, otherwise.

(A49)

In Equation (A49), the function h(Eij) is the sign function that
indicates the chosen saccadic eye movement. The weight in
Equation (A48) obeys a steepest descent learning law that is called

outstar learning (Grossberg, 1980b, WHERE Stream). Due to out-

star learning, when the category V
(q)
k is active and the eye position

activity Eij is chosen, then the weight WVE
qkij approaches Eij.

B.4. Object category reset by transient parietal bursts
Category reset neurons are tonically active. Their tonic activity
is inhibited by inputs from all the active cells across the spatial
attention map. When an attentional shroud collapses, the reset
neurons are disinhibited, and generate a transient activity burst
that inhibits, and thus resets, the spatial attention and object
surface maps in the Where stream, as well as the view category
integrator neurons in the What stream. The activity RWHERE of
the reset cells obeys:

RWHERE = 100

[
100

100 + ∑
ij k(Aij)

− ε

]+
, (A50)

where Aij is the activity of the spatial attention neuron at position
(i, j), function k is defined by a steep sigmoid function:

k(a) =
[
a35

]+
0.2235 + [

a35
]+ , (A51)

with activity threshold [w]+ = max (w, 0) to count the number
of cells in the shroud that have activity greater than 0.22, and
ε = 0.07 equals the threshold total activity above which the reset
signal RWHERE turns on. By Equation (A50), the total output
signal

∑
ij k(Aij) from the shroud inhibits reset by making term

100
100 +∑

ij k(Aij)
smaller than ε. When the total shroud output gets

small enough, 100
100 +∑

ij k(Aij)
exceeds ε and the reset signal fires

(Figure 10B). The reset rule in Equation (A50) is more sensitive
to the gradual collapse of an active shroud and better able to com-
pletely reset the system after a spatial attention shift than the reset
rule used in Fazl et al. (2009).

Shortly after the transient reset is triggered, its activity-
dependent neurotransmitter yR habituates:

dyR

dt
= 6

(
2 − yR − 2y RRWHERE

)
, (A52)

thereby terminating the net reset signal 10RWHEREyR in Equation
(A37). The transmitter gradually replenishes through time while
a new object is attended, until the next reset event occurs
(Figure 10C).

C. WHAT STREAM
The inputs to the category-learning neurons in area ITp of
the model’s What stream are the object boundary neuron out-
puts in Equation (A19), which are connected to view-specific
category neurons through adaptive weights. While the surface-
shroud resonance of a particular object remains active, the view
category integrator neurons that are activated by that object’s
view-specific category neurons remain active even after the cor-
responding view-specific category neurons are reset in response
to eye movements that activate different boundary inputs. These
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view category integrator neurons are associated with invariant
object category neurons in the model’s area ITa, which in turn are
associated with name category neurons in its prefrontal cortex.
The first view-specific category to be activated in ITp by a given
object boundary activates cells in ITa that will become the invari-
ant object category through associative learning with multiple
view category integrator neurons. This learning is modulated by
a cognitive-emotional resonance through the invariant category,
value category, and object-value category neurons.

C.1. View-specific categories
Fuzzy ART learns the view-specific categories (Carpenter et al.,
1991, 1992). As noted in section A4, object boundary represen-
tations are presented in 25 distinct positionally-sensitive regions
that enable the system to learn positionally-invariant object cate-
gories. In particular, a scene of 500 × 500 pixels is divided into
25 regions of 100 × 100 pixels. Only the large-scale boundary
representations B3

ij in Equation (A19) are used as the inputs for
category learning. The superscript “3” is omitted for simplic-
ity. Each 100 × 100 subset of the object boundary representation
is then denoted as B(q)Bij, where q = 1, 2, 3, . . . , 25 and i, j =
12, 3, ..., 100 denotes the indices of that part of the boundary
vector that is restricted to the qth region. Each input boundary
is transformed into an ON and OFF cell normalized input vector
�B(q) by complement coding before being presented to the Fuzzy
ART algorithm:

�B(q) =
{

u
(

B(q)Bij

) (
B(q)Bij

)
, u

(
B(q)Bij

) (
1 − B(q)Bij

)}
, (A53)

where u(B(q)Bij) is given by:

u
(

B(q)Bij

)
=
{

1, if B(q)Bij > 0,

0, otherwise.
, (A54)

This transformation complement-codes the boundary within its
region while eliminating spurious OFF cell “1” values in all other
regions. As a result, 25 Fuzzy ART algorithms can independently
learn to categorize the complement-coded boundary vectors that
activate their respective regions.

As noted in section A6, boundaries are enhanced via surface
contour signals when the attended object surface receives top-
down excitatory feedback via a surface-shroud resonance. This
property is important, as shown below, in enabling learning to
occur of the attended object’s view-specific categories, which in
turn supports learning of its invariant category.

In addition to the bottom-up input from an object’s boundary
representation, a view-specific category also receives top-down
modulatory input from the corresponding view category integra-

tor neuron. In all, activity V
(q)
j of the jth view-specific category

neuron in position q in response to the boundary input �B(q)

obeys:

V
(q)
j =

(
1 + 0.1V

I,q
j

) ∣∣∣�B(q) ∧ W
BV,q
j

∣∣∣
10−5 +

∣∣∣WBV,q
j

∣∣∣ , (A55)

where W
BV,q
j is the learned weight vector between the input vec-

tor �B(q) and the jth view-specific category neuron, defined in

Equation (A58), and V
I,q
j is the activity of the view category inte-

grator cell [see Equation (A61)] which is connected one-to-one
to the corresponding view-specific category neuron. The fuzzy
AND operator, ∧, between two vectors is defined as(x ∧ y)i =
min (xi, yi), and the L1 norm operator, | • |, is defined as

∣∣p∣∣ =∑
i

∣∣pi

∣∣. The term �B(q) ∧ W
BV,q
j in the numerator can be inter-

preted as the expected number of learned sites W
BV,q
j that are

activated by the input vector �B(q). The more learned sites that get
activated, the more similar are the weight and the input vector,
and thus the more active the view category neuron becomes.

The most highly activated view-specific category neuron wins
the competition among all active category neurons at its position;
that is, the Jth category neuron in position Q is chosen if:

V (Q)
J = max

j

{
V

(q)
j : V

(q)
j > 0

}
. (A56)

As noted above, an attended object’s boundary representation
is amplified when its surface is part of a surface-shroud res-
onance. This boundary enhancement influences the choice of
view-specific categories via Equations (A55, A56).

The chosen view-specific category neuron is said to be in a
resonant state if the selected neuron meets the matching criterion:

∣∣∣�B(Q) ∧ WBV,Q
J

∣∣∣∣∣�B(Q)
∣∣ ≥ ρ, (A57)

where ρis the vigilance parameter that determines the sensi-
tivity of network to the match of the bottom-up input vector
�B(Q) and the learned top-down expectation with weight WBV,Q

J .
Inequality Equation (A57) says that the amount of matched

feature-expectation pattern,
∣∣∣�B(Q) ∧ WBV,Q

J

∣∣∣, exceeds the prod-

uct of the total input excitation
∣∣�B(Q)

∣∣ and the vigilance ρ. Thus,

vigilance is the gain of the excitatory input pattern �B(q). The vigi-
lance in the simulations is ρ = 0.85. Resonance triggers category

learning in the weights WBV,Q
J between the boundary input pat-

tern �B(Q) and the winning view-specific category neuron J in
position Q:

WBV(new),Q
J = β

(
WBV(old),Q

J ∧ �B(Q)
)

+ (1 − β)WBV(old),Q
J , (A58)

where the learning rate β is set to 1 for fast learning.
Mismatch reset occurs if inequality Equation (A57) is not sat-

isfied. As a result, a previously active view-category neuron J is
reset to inactive and the next most active view-specific category
neuron tries to satisfy the vigilance criterion. The search process
continues until the chosen winner satisfies inequality Equation
(A57).

In addition, to bottom-up category learning, resonance also
triggers top-down learning by the weight from the winning view-
specific category neuron to the object boundary. The top-down
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weight WVB,Q
QJmn in position Q is defined as a two-dimensional

map extracted from the ON cell part of the latest updated weight

WBV,Q
J which is given by:

WVB,Q
QJmn = WBV(ON),Q

J for (m, n) = 1, 2, 3, ..., 100. (A59)

The output signal V
(q)
j from the jth view-specific category neuron

in position q to the view category integrator neuron is defined by
a normalized quenching competition (see section 7.3.7)as:

V
(q)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V
(q)
j ,

if V
(q)
j = maxk (V

(q)
j ), and V

(q)
j >

V
(q)
k + 0.03, k �= j,

V
(q)
j

⎛
⎝ V

(q)
j∑

k ∈ 


V
(q)
k

⎞
⎠ ,

if
∣∣∣V (q)

j − V
(q)
k

∣∣∣ ≤ 0.03, k ∈ 
, and

minj ∈
(V
(q)
j ) > maxk /∈
 (V

(q)
k + 0.03),

0, if j ∈ 
.

(A60)

C.2. View category integrators
View category integrator activities preserve the activities of view-
specific category neurons during category learning. A view cate-
gory integrator neuron receives bottom-up input from the corre-
sponding view-specific category neuron in addition to top-down
modulatory input from invariant object category neurons. The

activity of the jth view category integrator neuron V
I,q
j in position

q obeys:

dV
I,q
j

dt
= −0.01V

I,q
j + τ

(
1 +

∑
i

m(Oi)W
OV,q
ij

)

([
V

(q)
j

]+ + G

)
− RWHERE, (A61)

where m(Oj) is the jth modulatory invariant object category out-

put signal defined in Equation (A64), W
OV,q
ij is the top-down

learned weight from the ith invariant object category neuron to
the jth view category integrator neuron in position q defined in

Equation (A75),V
(q)
j is the jth bottom-up view-specific category

neuron output signal in Equation (A60), and RWHERE is the reset
signal triggered by the collapse of a spatial attentional shroud
defined in Equation (A50). In Cao et al. (2011), parameter τ cal-
ibrates the duration that an object stays on at a particular retinal
position to be consistent with experimental data (Li and DiCarlo,
2008) showing that the time foveating an object is approximately
twice long as it stays in an extra-foveal position. The current sim-
ulations work if τ in Equation (A61) has twice the value at the
fovea than it does in extra-foveal positions, or the same value in
both. The simulations that are reported here use the value τ = 0.6
at all retinal positions.

Variable G in Equation (A61) is a basal ganglia volitional signal
that is turned on only when a top-down primed search is exe-
cuted. A volitional signal from the basal ganglia can change the
excitatory/inhibitory balance in the modulatory on-center of a
top-down expectation (Grossberg, 2000). In ARTSCAN Search,
during primed search, the volition control signals project to
view category integrators [Equation (A61)], invariant categories

[Equation (A63)], and object-value categories [Equation (A70)]
to enable a top-down prime to reach its associated view-specific
categories:

G =
{

0.1, during top − down primed search,

0, during category learning.
(A62)

C.3. Invariant object categories
Each invariant object category neuron is associated with mul-
tiple view-specific category neurons that represent different
views and positions of the same object. The current simula-
tions consider only positional variations, but the same mech-
anisms work for view changes. The invariant object cate-
gory layer has the winner-take-all properties of the normalized
quenching competition which selects the most active neuron
in response to bottom-up input from view category integra-
tor neurons, and a modulatory top-down feedback signal from
object-value category neurons. Invariant object category neu-
rons are connected one-to-one to object-value category neu-
rons [Equation (A70)]. In addition, when either a top-down
cognitive or a motivational primed search is processed, invari-
ant object category neurons receive an excitatory volitional
control signal that enables the primed category to fire. The
activity of the jth invariant object category neuron Oj thus
obeys:

1

20

dOj

dt
= −Oj +

(
1 + 2FjW

FO
j

)
(A63)

⎛
⎝0.5

∑
q

∑
i

m

([
V

I,q
i

]+)
W

VO,q
ij + G

⎞
⎠ − RWHERE,

where Fj is the modulatory top-down output signal from the jth

object-value category neuron defined in Equations (A70, A71),
WFO

j is the weight defined in Equation (A77) from the jth object-
value category neuron to the corresponding invariant category

neuron, m
(
[VI,q

i ]+
)

is the output signal from the ith view cate-

gory integrator through signal function m(a) defined in Equation

(A21), W
VO,q
ij is the weight defined in Equation (A65) between

the ith view category integrator and the jth invariant object cat-
egory, WFO

j is the weight defined in Equation (A77) from the

jth object-value category neuron to the corresponding invariant
category neuron, G is the volitional signal from the basal ganglia
defined in Equation (A62), and RWHERE is a reset signal triggered
when the attentional shroud collapses defined in Equation (A50).

Unlike the reset signals within the Where stream, What stream
resets [see Equations (A61, A63)] are not gated by a habitua-
tive transmitter. Instead, they are shut off by inhibition from the
next shroud that forms. This prevents the previously active invari-
ant category from being erroneously associated with view-specific
categories of the next object.

The invariant object categories compete with each other dur-
ing bottom-up processing to determine a winner-take-all choice
of the most highly activated category. On the other hand, if mul-
tiple view-specific categories are activated by multiple equally
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salient bottom-up inputs, then the invariant object categories
that they activate can all remain active, but their total activ-
ity is normalized. After they receive top-down primes from
the object-value categories, a winner can be chosen if its rep-
resentation is sufficiently more active than that of the other
categories. Thus, the output signal Oj from the jth invariant
object category neuron to its object-value category via a bottom-
up route, or its view category integrator neurons via a top-
down route, obeys a normalized quenching competition that is
given by:

Oj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
Oj
]+

,
if
[
Oj
]+ = maxk ( [Ok]+ ),

and Oj > Ok + 0.3, k �= j,[
Oj
]+ (

Oj∑
k ∈ 


Ok

)
,

if
∣∣Oj − Ok

∣∣ ≤ 0.3, k ∈ 
, and

minj ∈
(Oj) > maxk /∈
 (Ok + 0.3),

0, if j ∈ 
.

(A64)

During learning, the weight W
VO,q
ij in Equation (A65) from the

ith view category integrator to the jth invariant object category
obeys a competitive outstar learning law (e.g., Grossberg, 1980b;
Carpenter and Grossberg, 1987; Pilly and Grossberg, 2012):

dW
VO,q
ij

dt
= α

(
1 − W

VO,q
ij

) [
V

I,q
i

]+
m(Oj)

−βW
VO,q
ij

[
V

I,q
i

]+ ∑
k �=j

m
(
Ok

)
, (A65)

where V
I,q
i is the ith view category integrator activity, m(Oj) is the

invariant jth object category output through the signal function
m(a) in Equation (A21), α scales the learning rate with α = 0.003,
and β is competition gain with β = 0.001. It was shown in Cao
et al. (2011) how this learning law enables positionally-invariant
category learning to occur.

C.4. Value categories
Each value category, or drive representation, neuron is assumed
to occur in the amygdala (Aggleton, 1993; LeDoux, 1993). It
is activated by one or more invariant object category neu-
rons. In the present simplified simulations, where each invariant
object category activates only one value category. The connec-
tion between a value category neuron and a view-invariant object
category neuron can convert into a conditioned reinforcer by
strengthening its associative link from the category to the drive
representation. Value category neurons also receive external rein-
forcers that combine with inputs from object category neurons
to provide incentive motivation to the orbitofrontal representa-
tions (object-value category), or perform as the internal drive
state to initiate top-down primed search through inferotemporal-
amygdala-orbitofrontal resonance to strengthen the correspond-
ing view-invariant object category neurons. The value category
neuron activity Dj obeys:

1

20

dDj

dt
= −Dj + Uj + Tj + 0.1

∑
k

m(Ok)WOD
kj , (A66)

where Uj is an external reinforcer that inputs to the value category
neuron during learning when the attended object is recognized
and foveated:

Uj =
{

0.2, if the jth reinforcing input is on,

0, otherwise.
(A67)

For simplicity, it is assumed that the external reinforcer turns
on with the object category to which it is associated, and shuts-
off when the object category is reset. In the simulated network,
the simultaneous presentation of object category and reinforcing
input does not cause attentional blocking (Kamin, 1968, 1969)
because the reinforcer is assumed not to have an object repre-
sentation that can compete with the object to be conditioned.
Conditioning works just as well if the reinforcing input turns
on at a later time when the object category is still on (i.e., delay
conditioning). For simulations of how blocking can occur in an
extended network, see Grossberg and Levine (1987) and Dranias
et al. (2008).

Variable Tj in Equation (A66) is an internal drive input that
projects to a specific value category. Among other functional
roles, it can initiate a motivationally primed search:

Tj =
{

0.2, if jth value category neuron receives internal drive,

0, otherwise; (A68)

m(Ok) is the output signal of the kth invariant object category
neuron through the signal function in Equation (A21); and WOD

kj

is the weight defined in Equation (A78) from the kth invariant
object category to the jth value category. The outputs of the value
categories obey a normalized quenching competition:

Dj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dj,
if Dj = maxk (Dk), ;
and Dj > Dk + 0.1, k �= j,

Dj

(
Dj∑

k ∈


Dk

)
,

if
∣∣Dj − Dk

∣∣ ≤ 0.1, k ∈ 
,

and minj ∈ 
(Dj) > maxk /∈ 
 (Dk + 0.1),

0, if j ∈ 
.

(A69)

C.5. Object-value categories
Object-value category neuron representations receive a driving
bottom-up input from the corresponding invariant object cate-
gory, a basal ganglia volition signal G that is turned on during
volitional searches, and modulatory incentive motivational inputs
from value categories (Baxter et al., 2000; Schoenbaum et al.,
2003) as well as from name categories. The activity Fj of thejth

object-value category neuron obeys:

1

20

dFj

dt
= −Fj +

(
0.5m(Oj)WOF

j + G
)

(
1 +

∑
k

DkWDF
kj +

∑
i

m(Ni)WNF
ij

)
, (A70)

where m(Oj) is the jth invariant object category output signal
function m(a) defined in Equation (A21). The adaptive weights
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WOF
j defined in Equation (A76) are strengthened by presen-

tations of the invariant object category during reinforcement
learning trials. Also in Equation (A70), G is the volition con-
trol signal defined in Equation (A62) which is turned on with a
constant value equal to 0.1 when a top-down primed search is
initiated, Dk is the kth value category output, WDF

kj is the adap-

tive weight defined in Equation (A79) from the kth value category
neuron to the jth object-value category, m(Ni) is the output signal
of the ith name category representation through signal function
m(a), and WNF

ij is the adaptive weight defined in Equation (A81)

from the ith name category to the jth object-value The outputs
from object-value categories carry out a normalized quenching
competition:

Fj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fj, if Fj = maxk (Fk), and

Fj > Fk + 0.5, k �= j,

Fj

(
Fj∑

k ∈ 


Fk

)
, if

∣∣Fj − Fk

∣∣ ≤ 0.5, k ∈ 
, and

minj ∈ 
(Fj) > maxk /∈
 (Fk + 0.5),

0, if j ∈ 
.

(A71)

The object-value category output signals generate modulatory
top-down signals that amplify the activity of the corresponding
invariant object category, as in Equation (A63), and bottom-
up signals to activate name categories. During primed searches,
object-value categories receive modulatory priming inputs from
either name categories or value categories, as well as voli-
tional signals that enable these modulatory inputs to fully acti-
vate their targeted cells and to thereby enable them to drive
a search.

C.6. Name categories
The top What stream layer in the ARTSCAN Search model codes
name categories. During training, each name category neuron
receives inputs from object-value category representations and
learns to be associated with the active object-value category neu-
ron and generates feedback to strengthen the activity of this
object-value category. During cognitively primed search, a partic-
ular name category receives a priming signal to initiate a search.
The jth name category neuron activityNjobeys:

1

20

dNj

dt
= −Nj +

∑
i

m(Fj)WFN
ij + Pj, (A72)

where Fj is the output signal of the jth object-value category, WFN
ij

is the adaptive weight defined in Equation (A80) from the ith

object-value category neuron to the jth name category neuron,
and Pj is the top-down priming signal that activates a specific
name category to initiate a cognitively primed search:

Pj =

⎧⎪⎨
⎪⎩

0.5, if jth name category neuron receives a,

priming signal

0, otherwise.

(A73)

The outputs from the name categories compete to select the
maximally-activated name:

Nj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nj, if Nj = maxk (Nk), and

Nj > Nk + 0.1, k �= j,

Nj

(
Nj∑

k ∈ 


Nk

)
, if

∣∣Nj − Nk

∣∣ ≤ 0.1, k ∈ 
,

and minj ∈ 
(Nj) > maxk /∈


(Nk + 0.1),

0, if j ∈ 
.

(A74)

C.7. What stream learning
The model employs two basic weight learning rules. One
obeys the activity-gated steepest-descent outstar learning rule
(Grossberg, 1980b) where learning is gated by a presynaptic sig-
nal and synaptic weights learn about postsynaptic activity. The
connections from invariant category cells to object-value cate-
gory cells Equation (A76) and from object-value category cells to
name category cells Equation (A80) obey an outstar learning rule.
The other learning processes obey a doubly-gated outstar learn-
ing rule (Grossberg and Merrill, 1992; Grossberg et al., 2002).
Doubly-gated learning is gated by both presynaptic and postsy-
naptic neural activities, so that if either gate is inactive, the weight
between them does not change. When both gates are active,
the adaptive weight tracks the target signal by steepest descent.
Doubly-gated learning includes the connections from invari-
ant object categories to view category integrators in Equation
(A75), from object-value categories to invariant object categories
in Equation (A77), from invariant object categories to value
categories in Equation (A78), from value categories to object-
value categories in Equation (A79), and from name categories to
object-value categories in Equation (A81).

50

1

dW
OV,q
ij

dt
= m(Oi)

[
V

I,q
j

]+ ([
V

I,q
j

]+ − W
OV,q
ij

)
,(A75)
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1

dWOF
j

dt
= m(Oj)

(
m(Fj) − WOF

j

)
, (A76)

50

1

dWFO
j

dt
= m(Fj)m(Oj)

(
m(Oj) − WFO

j

)
, (A77)

50
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dWOD
ij
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(
m(Dj) − WOD

ij

)
, (A78)

50

1

dWDF
ij
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= m(Di)m(Fj)

(
m(Fj) − WDF

ij

)
, (A79)

50

1

dWFN
ij

dt
= m(Fi)

(
m(Nj) − WFN

ij

)
, (A80)

50

1

dWNF
ij

dt
= m(Ni)m(Fj)

(
m(Fj) − WNF

j

)
, (A81)

The output signals O, D, F, and N come from invariant, value,
object-value, and name categories, respectively. The sigmoid signal

functionm(a)isdefinedinEquation(A21).W
OV,q
ij isthemodulatory
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adaptive weight from the ith invariant object category neuron to
the jth view category integrator in position q, WOF

j is the weight

from the jth invariant object category to the corresponding object-
value category, WFO

j is the modulatory adaptive weight from the

jth object-value category to the corresponding invariant object
category, WOD

ij is the weight from the ith invariant object category

to the jth value category, WDF
ij is the modulatory weight from the ith

value category to the jth object-value category, WFN
ij is the weight

from the ith object-value category to the jth name category, and
WNF

ij is the modulatory adaptive weight from the ith name category

to the jth object-value category.

D. TOP-DOWN ATTENTIONAL PRIMED SEARCH
ARTSCAN Search proposes that different top-down pathways
from the What stream to the Where stream can achieve a Where’s
Waldo search. A top-down primed search can be initiated either
when a name category in Equation (A72) receives a priming sig-
nal in Equation (A73) or when a value category in Equation (A66)
receives an internal motivational drive signal in Equation (A68),
hereby priming the associated object-value category in Equation
(A70). When such a prime occurs when a volitional signal in
Equation (A62) is active, it can fire the corresponding invariant
object category in Equation (A63) and then attentively primes, via
the associated view category integration categories in Equation
(A61), the view-specific categories in Equation (A55) at multiple
positions. The most highly activated view-specific category can
trigger an eye movement in Equation (A43) toward the desired
Waldo target via a direct or an indirect route, respectively.

A value category may prime more than one object-value cat-
egory if multiple objects are associated with this value category
during reinforcement learning. As noted in section 7.3.7, if all the
primed object-value categories have equal or similar motivational
salience, then all the primed object-value categories can prime

the corresponding invariant object categories because the output
competition from the object-value categories in Equation (A71)
will have approximately equal responses as a result of the nor-
malized quenching competition. All the primed invariant object
categories can then prime the corresponding view-specific cate-
gories across all positions. In our search examples, just one Waldo
object is in a search scene. Whether the top-down prime, or the
bottom-up Waldo input, occurs first, when these bottom-up and
top-down signals are matched at the primed view-specific cat-
egory, its activity is enhanced relative to the activities of other
view-specific categories and thus can win the output competition
from the view-specific categories because of the winner-take-all
properties of the normalized quenching competition when one
activity is sufficiently big relative to the others.

This choice can then drive where the eyes will next look via
either the direct or indirect routes. The direct route (Figures 1B,
6A,C) activates the eye movement map Equation (A43) directly
from the view-specific categories Equation (A55). The eye move-
ment map can then make a winner-take-all choice based upon
the position of the value-enhanced category. The indirect route
(Figures 1C, 6B,D) uses the property that the competition among
view-specific categories enables the primed view-specific cate-
gory to win Equation (A60) after the view-specific categories
receive their top-down priming signals. As a result, just the win-
ning view-specific category can enhance the activation of its
boundary representation Equation (A19). The boundary repre-
sentation, in turn, can thereby increase contrast of its object
surface through the surface filling-in process Equations (A22,
A23). The enhanced surface representation projects to the spatial
attention map Equation (A37) to win its competition through a
surface-shroud resonance and its surface contour Equation (A27)
is thereby enhanced. This winning shroud thus draws spatial
attention as the largest hot spot on the enhanced surface contour
determines an eye movement Equation (A43) to the target.
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