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INTERRELATION BETWEEN ANXIETY AND MEMORY

A close interrelation between anxiety and memory was first suggested by Kalueff and Nutt
(1996), reviewing effects of γ-aminobutyrate (GABA) on both conditions. Wall and Messier (2000)
showed subsequently that pretreatment with an opioid kappa receptor antagonist was anxiogenic
and disrupted working memory. Additional papers supporting interactions between anxiety and
memory were cited by Kalueff (2007). They included demonstration of memory improvement by
serotonin, whereas a decreased ability to increase serotonin is a model of anxiety.

SEROTONIN AND THE 5-HT2B RECEPTOR

Serotonin acts on many different receptors. The present paper specifically deals with the 5-HT2B

receptor, which is expressed in human brain (Schmuck et al., 1994; Bonhaus et al., 1995). Its mRNA
expression is two times higher in freshly isolated (Lovatt et al., 2007) mouse astrocytes than in
neurons (Li et al., 2012). It is necessary for consolidation of one-trial aversive learning in day-old
chickens (Gibbs and Hertz, 2014) at an early stage of memory consolidation. It is also required for
the therapeutic effect of serotonin-specific reuptake inhibitors (SSRIs) in major depression (Diaz
et al., 2012; Li et al., 2012; Hertz et al., 2015b), a disease often accompanied by anxiety. The 5-
HT2B receptor in cultured astrocytes is stimulated by fluoxetine (Li et al., 2008: Qiao et al., 2015)
and all other SSRIs (Zhang et al., 2010). Chronic treatment of mice with fluoxetine for 14 days up-
regulates the astrocytic, but not the neuronal 5-HT2B receptor, although this receptor is expressed
in both cell types (Li et al., 2012; Hertz et al., 2015b). Decrease of its astrocytic gene expression
parallels development of a depressive phenotype in a mouse model of Parkinson’s disease (Zhang
et al., 2015), and Pitychoutis et al. (2015) reported schizophrenia-like symptoms in mice lacking the
5-HT2B receptor gene or treated with a receptor inhibitor. Schizophrenia is often associated with
depressed mood (Fortunati et al., 2015).
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5-HT2B RECEPTOR, [Ca2+]i,
GLYCOGENOLYSIS, GLUTAMATE, K+, AND
LEARNING

Inhibition of learning by a 5-HT2B/C receptor antagonist
(SB221284) and equipotent rescue of impaired learning by the
5-HT2B receptor agonists fluoxetine and paroxetine (Gibbs and
Hertz, 2014) injected intracerebrally at specific times shows the
importance of this receptor for establishment of memory soon
after training. The similar potency of the two drugs is important,
because they have widely different affinities for SERT (Wong
and Bymaster, 1995) whereas all SSRIs have similar affinity
for the 5-HT2B receptor (Zhang et al., 2010). Another SSRI,
citalopram, counteracts spatial memory deficits (Ren et al., 2015).
Mice lacking the 5-HT2B receptor gene show learning disabilities
(Pitychoutis et al., 2015).

Fluoxetine increases free cytosolic Ca2+ ([Ca2+]i) and
stimulates glycogenolysis (Chen et al., 1995) with similar
potency by stimulation of 5-HT2B receptors (Kong et al.,
2002; Figure 1A). [Ca2+]i regulates many astrocytic functions,
including gliotransmission and glycogenolysis (Gucek et al.,
2012; Hertz et al., 2015a). Inhibition of glycogenolysis with
DAB (1,4-dideoxy-1,4-imino-D-arabinitol) prevents 5-HT2B-
receptor-mediated memory enhancement by serotonin or
fluoxetine during the early part of memory formation after
one-trial aversive learning in the day-old chicken, a precocious
animal (Gibbs and Hertz, 2014). In brain both glycogen and
its degrading enzyme glycogen phosphorylase are virtually
confined to astrocytes (Ibrahim, 1975; Pfeiffer-Guglielmi et al.,
2003). Induction of glycogenolysis by fluoxetine occurs both
in our cultured astrocytes, differentiated by dibutyryl cyclic
AMP and in astrocytes grown in the absence of this agent
(Allaman et al., 2011). The association with increased [Ca2+]i
(Chen et al., 1995) is important because increased [Ca2+]i is
a requirement for stimulation of glycogenolysis in astrocytes
(Xu et al., 2014a; Hertz et al., 2015a) as in muscle (Ozawa,
2011). In rat brain 5-HT2 receptor stimulation similarly induces
glycogenolysis (Darvesh and Gudelsky, 2003). The enhanced
glycogenolysis is accompanied by an increased lactate release
(Allaman et al., 2011). This might affect neurons either by use
of lactate as an additional metabolic fuel, as suggested by Suzuki
et al. (2011) and Newman et al. (2011), or by lactate signaling
(Tang et al., 2014; Bergersen, 2015). The signaling mechanism
established by Tang et al. (2014) is, like memory (Gibbs et al.,
2006; Newman et al., 2011; Suzuki et al., 2011; Gibbs and
Hutchinson, 2012; Duran et al., 2013), glycogenolysis-dependent,
and its signaling is specifically directed to neurons releasing
noradrenaline. Noradrenaline has effects on both neurons and
astrocytes (O’Donnell et al., 2012).

Glycogenolysis is also required for formation of glutamate,
and its metabolite GABA (Figure 1B) in the brain in vivo (Gibbs
et al., 2007, 2008) at a time when glutamate production must
be evoked by 5-HT2B stimulation (Gibbs and Hertz, 2014). It
also increases uptake of glutamate into cultured astrocytes and
neurons as well as release of lactate from astrocytes (Sickmann
et al., 2009). Glutamate is synthesized intracerebrally from

FIGURE 1 | (A) Effects of fluoxetine concentrations between 100 nM and

100µM on glycogenolysis (filled squares and left ordinate) and [Ca2+]i (open

squares and right ordinate) in well differentiated cultures of mouse astrocytes.

Values significantly different from baseline are indicated by * for glycogenolysis

and by † for [Ca2+]i (From Chen et al., 1995). (B) Chart showing 5-HT2B
receptor-mediated effects on [Ca2+]i, glycogenolysis, and glutamate content

in astrocytes (blue) and effects of glutamate transfer to neurons (green arrow)

and of glycogenolysis-evoked release of lactate on neurons (red). These

effects are acutely important for learning, and drug-induced chronic effects of

5-HT2B receptor stimulation have therapeutic effect, also on impaired memory,

in major depression (fluoxetine) and in schizophrenia (clozapine). However, as

discussed in “Concluding remarks” in these situations it appears that it is a

decreased effect on the receptor or on [Ca2+]ithat is therapeutically effective.

glucose. This can only occur in astrocytes, because neurons
lack an enzyme, pyruvate carboxylase, needed for its synthesis
(reviewed by Gibbs et al., 2008; Hertz, 2013). Glutamate is
subsequently converted to glutamine and carried to neurons
(green arrow in Figure 1B) in an extremely active glutamine-
glutamate/GABA cycle, which also returns released transmitter
glutamate to neurons after its initial astrocytic accumulation
(reviewed by Hertz, 2013; Hertz and Rothman, in press). The
importance of glutamate receptor activity for memory is beyond
doubt (Riedel et al., 2003), and interruption of the glutamine-
glutamate/GABA cycle by inhibition of either glutamine
synthetase (Kant et al., 2014) or astrocytic glutamate uptake
(Gibbs et al., 2004) abolishes learning. GABA is also important
for learning (Kalueff and Nutt, 1996; Gibbs and Bowser, 2009),
and besides its neuronal effects stimulates glycogenolysis in
cultured astrocytes and brain slices (Xu et al., 2014a).
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A major role of glutamate (Figure 1B) is stimulation of
postsynaptic glutamate receptors, leading to increases in brain
metabolism (Howarth et al., 2012) and in extracellular K+

concentration (Hertz et al., 2015c and references therein).
Cellular re-accumulation of K+ includes an initial uptake
mediated by the astrocytic Na+,K+-ATPase (MacAulay and
Zeuthen, 2012; Hertz et al., 2015c), release of astrocytically
accumulated K+ by Kir4.1 channels (Bay and Butt, 2012) and
neuronal reuptake. The astrocytic Na+,K+-ATPase is important
for learning (Moseley et al., 2007; Schaefer et al., 2011; Hertz et al.,
2013; Tadi et al., 2015). Extracellular K+ concentrations high
enough to stimulate the Na+, K+, 2 Cl− co-transporter NKCC1
(>10–12mM) also causes release of gliotransmitters (Song et al.,
2014; Xu et al., 2014b; Liu et al., 2015). Both astrocytic release of
glutamate (Lee et al., 2014) and ATP (Gibbs et al., 2011; Stehberg
et al., 2012) are crucial for learning. Facilitation of learning by
K+-mediated depolarization of oligodendrocytes and increased
myelination at high extracellular K+ concentration (Roitbak,
1984) and attributed to increased ability of the myelinated
axon to carry out rapid impulse conduction has recently been
confirmed and characterized by Yamazaki et al. (2014).

5-HT2B RECEPTOR, [Ca2+]i,
GLYCOGENOLYSIS, GLUTAMATE, K+, AND
MOOD DISORDERS

Fluoxetine is better known for its antidepressant effect, which in
contrast to the acute stimulation of the 5-HT2B receptor during
learning takes several weeks to materialize. During this time
many changes occur in gene expression and editing, as shown in
mice chronically treated with fluoxetine. Studies in neuronal and
astrocytic cell fractions freshly obtained from these mice (Lovatt
et al., 2007) showed that most of these alterations occurred in
astrocytes, although some neuronal changes also took place (Li
et al., 2012; Peng et al., 2014; Hertz et al., 2015b). This finding
suggests that astrocytes play a major role in the antidepressant
effects of SSRIs (Li et al., 2012; Hertz et al., 2015b), a conclusion
in agreement with results by many other authors (e.g., Ongür
et al., 1998; Kugaya and Sanacora, 2005; Ongür et al., 2007;
Valentine and Sanacora, 2009; Rajkowska and Stockmeier, 2013;
Rajkowska et al., 2013; Bernstein et al., 2015; Hertz et al., 2015b
and references therein). It is especially interesting that Bechtholt-
Gompf et al. (2010) found that blockade of astrocytic glutamate
uptake in rats induces signs of anhedonia (a component of
depression that is easily measurable in animals) and impaired
spatial memory.

Some of the editing changes reduced normally occurring
effects of transmitters. Li et al. (2011) showed that in astrocyte
cultures treated for sufficient length of time with fluoxetine, the
effects on [Ca2+]i by acute administration of several transmitters
or ryanodine receptor agonists are reduced or abolished.
On the other hand, the effect of an increased extracellular
concentration of K+ was increased. Thus, chronic treatment
with an SSRI diminishes or alters some of the normal responses
of the 5-HT2B receptor to stimulation. This might partly be
explained by inhibition of capacitative Ca2+ entry, mediated by

glycogenolysis-dependent (Müller et al., 2014) TRPC1 channels,
which causes depletion of Ca2+ stores. Due to this inhibition
refilling of depleted Ca2+ stores by addition of 2mM CaCl2 to
the medium was greatly reduced (Li et al., 2011). All effects of
chronic fluoxetine administration could be replicated by TRPC1
channel antibody. However, the expression of Cav1.2, a gene
of an L-channel for Ca2+ which is stimulated by elevations in
extracellular K+ concentrations of at least 10mM is increased
(Du et al., 2014), probably explaining the enhanced K+ effect on
[Ca2+]i described above. The 5-HT2B receptor itself is also edited
by chronic fluoxetine treatment, rapidly reducing the effects of its
stimulation of the IP3 receptor (Peng et al., 2014). Since chronic
SSRI treatment improves memory in depressed patients (Table
in Krysta et al., 2015), inhibition of glutamate-induced increase
in astrocytic [Ca2+]i and thus in release of gliotransmitter
glutamate (Peng et al., 2012) has no deleterious effect on learning,
at least not when combined with [Ca2+]i increase by elevation of
the extracellular K+ concentration. In this connection it seems of
considerable interest that Medina et al. (2015) described down-
regulation of mRNA expression of glutamate transporters, K+

channels and gap junction proteins in hippocampus of patients
having suffered from major depression. Most of these genes are
selectively expressed in astrocytes. Abnormalities of Na+,K+-
ATPase function in depressed patients have been described by De
Lores Arnaiz and Ordieres (2014)

RELATED ASTROCYTIC MECHANISMS IN
SCHIZOPHRENIA

Schizophrenia is treatable both by the dopamine antagonist
haloperidol and atypical antipsychotics like clozapine, which
is an antagonist at the 5-HT2B receptor in the fundus of the
stomach (Villazón et al., 2003). Again, acute stimulation of the
5-HT2B receptor is likely to increase [Ca2+]i, glycogenolysis
and glutamate formation (Figure 1B). An increase in [Ca2+]i
by stimulation of astrocytic dopamine receptors is reduced by
exposure to clozapine (Reuss and Unsicker, 2001), and this seems
also to be the case after clozapine activation of 5-HT2B receptors.
A resulting reduced production of glutamate (Figure 1B) in mice
lacking 5-HT2B receptors may explain a decreased content of
glutamate in some brain areas (Pitychoutis et al., 2015), which
may contribute to the impairment of learning.

CONCLUDING REMARKS

Activation of the astrocytic 5-HT2B receptor stimulates an
increase in [Ca2+]i, glycogenolysis, glutamate formation, and
the effect of glutamate on extracellular K+, all of which are
involved in learning (Figure 1B). However, Sibille et al. (2015)
found that acute inhibition of Ca2+ signaling in astrocytes by
[Ca2+]i chelation potentiates excitatory synaptic transmission.
This apparent contradiction may be explained by the complexity
of astrocytic [Ca2+]i regulation (Volterra et al., 2014). An
important difference between Gibbs and Hertz (2014) and
Sibille et al. (2015) is that the latter authors elicited astrocytic
increase in [Ca2+]i in response to adjacent neuronal activity
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during GABAA receptor inhibition, whereas the former
described transmitter-induced, glycogenolytic (and thus Ca2+-
dependent) effects on learning without GABAA receptor
inhibition.

Drugs used for treatment of symptoms of major depression
(fluoxetine) and of schizophrenia (clozapine), which included
memory impairment, interfered with 5-HT2B receptor-
activated functions, but in different manners: the SSRI
fluoxetine edited and thereby reduced some normal effects
of this receptor, whereas clozapine caused a decrease in
[Ca2+]i. This effect is consistent with the enhancement
of excitatory synaptic transmission described by Sibille

et al. (2015). Disposition to both major depression and
schizophrenia is probably inborn, and perhaps these patients
display quantitative and/or qualitative abnormalities in 5-
HT2B-mediated signaling, which might also affect learning
processes. In agreement with this notion 5-HT2B receptors
play a major role during brain development (Lauder et al.,
2000).
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