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Biology is full of instances of exaptation, the functional shift or co-optation of a trait during
evolution (Gould and Vrba, 1982). Exaptation played a critical role in human brain evolution.
For example, hominin brain expansion is thought to have happened opportunistically upon food
resources rich in brain-selective nutrients (Tattersall, 2010). Prehensile hands and bipedalism were
other enabling factors in this process, as both features preceded the expansion of the brain, and
notably, the development and utilization of tools (Wood, 2010). Similarly, central and peripheral
vocal structures, initially used for a variety of non-linguistic reasons (chewing, larynx protection,
size exaggeration), were pre-existing conditions to, and provided the anatomical basis for, the
evolution of language (e.g., MacNeilage, 2010). The very emergence of abstract cognitive abilities
in humans are hypothesized to have evolved from faculties originally developed for other purposes
(Pinker, 2010).

The same mechanisms were likely involved in the evolutive selection (or exploitation) of
glutamate as the principal excitatory neurotransmitter of mammalian brain (reviewed by Mangia
et al., 2012). Notably, glutamate is a central compound in amino acid metabolism in virtually
all organisms, even those that lack a nervous system and even in unicellular organisms. In
multicellular organisms, signaling through glutamate receptors existed well before the divergence
between animal and plant phyla (Chiu et al., 1999). Of course, not all molecules that became
neurotransmitters had distinct and pre-existing roles in cell metabolism. For example, there is no
trace of noradrenaline (NE) receptors until multicellular organisms and cell-to-cell communication
(Venter et al., 1988). Similarly, not all molecules with a specific role in cell metabolism eventually
entered signaling pathways. Lactate was thought to be one of such molecules, and for many years it
was regarded as a waste end-product of anaerobic glycolysis (reviewed by Schurr, 2006).

In the brain in vivo, lactate is constantly produced in spite of adequate oxygenation, and
local increases in neural activity rapidly (i.e., within seconds) and transiently elevate lactate levels
around the activated cells (Li and Freeman, 2015). In vitro, cultured neurons and astrocytes both
release lactate. Although astrocytic release is higher under basal conditions, during metabolic
uncoupling with dinitrophenol, the neuronal lactate release becomes as high as the astrocytic
one (Walz and Mukerji, 1988). In 1994, Pellerin and Magistretti reported that lactate release and
concomitant glucose uptake in astrocytic cultures were stimulated by sodium-coupled uptake of
glutamate (Pellerin and Magistretti, 1994). Different laboratories attempting to replicate these
findings either confirmed or refuted them, possibly because of the employment of distinct culture
preparations (reviewed by Dienel, 2012). That glutamate can pay for its own uptake in cultured
astrocytes (McKenna, 2013) is evident from comparison between uptake (by the same carrier) of
the metabolizable L-glutamate and non-metabolizable D-aspartate showing that glutamate caused
no increase in glycolytic rate, whereas D-aspartate did (Peng et al., 2001). However, the stimulation
of glycolysis during glutamate uptake shown by Pellerin and Magistretti (1994) triggered the
hypothesis of an astrocyte to neuron lactate shuttle, setting the stage for subsequent research
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and debate in the field. During the last two decades a large
number of studies by many different investigators have been
carried out to prove or disprove this hypothesis. Whatever the
study and the specific outcome, the intercellular trafficking of
lactate was always interpreted as movement of fuel, i.e., energy
carbons useful for yielding most of the ATP that is achievable
from oxidative metabolism of glucose.

Although astrocyte-neuron lactate transfer in the
brain is relevant under some circumstances (e.g., during
development; see Medina and Tabernero, 2005) and involves
also oligodendrocytes (Sánchez-Abarca et al., 2001), recent
experimental evidence indicates that cerebral lactate has
signaling functions that are independent of its role as energy
source (Bergersen and Gjedde, 2012). In particular, the brain
expresses Gi-protein coupled hydroxycarboxylic acid (HCA)
receptors, the activation of which inhibits adenylate cyclase
(Lauritzen et al., 2013). Thus, the increase in brain lactate
levels that follows focal neural activation might have been
co-opted during evolution to serve signaling purposes. The
brain has high respiratory capacity and the increase in lactate
occurs through aerobic glycolysis, i.e., it is not due to oxygen
insufficiency (Dienel, 2012). This argument suggests a specific
role for glycolysis and lactate production in the brain, which
was maintained even when it eventually became dispensable.
Similar receptors evolved in adipose tissue to mediate the
insulin-induced inhibition of lipolysis (Ahmed et al., 2010).
A role for lactate as neuro/glio-transmitter in brain is a
paradigm-shifting concept that will require re-evaluation of
data obtained in the past decades that were interpreted only
as a result of the metabolic nature of lactate (i.e., its caloric
content). Elevated lactate was previously found to suppress
neuronal firing in hippocampus (Gilbert et al., 2006), and
a direct HCA1/GPR81 isoform-mediated inhibitory effect
of lactate (either L-lactate or its stereoisomer D-lactate) on
neuronal firing rate, with the relatively high IC50 ∼ 4.2mmol/L,
has recently been demonstrated in cultured glutamatergic
and GABAergic neurons from cerebral cortex (Bozzo et al.,
2013). In contrast, the noradrenergic neurons of the pontine
locus coeruleus (LC) were found to be stimulated by astrocyte-
released lactate, with EC50 ∼ 0.5mmol/L, seemingly through
a still unknown Gs-protein coupled receptor (Tang et al.,
2014). As cerebral cortex and hippocampus are extensively
innervated by LC axons it is conceivable that a minor,
physiological increase in cortical lactate concentration exerts
an excitatory effect on noradrenergic innervations, whereas
higher concentrations have an inhibitory effect on pyramidal
cells and interneurons, which would be useful as a negative
feedback for homeostatic control of excitation and associated
energy consumption. Astrocytes are primary targets for NE
signaling in the cerebral gray matter, and in these cells NE
potently stimulates breakdown of glycogen (reviewed by
DiNuzzo et al., 2015). Astrocytic glycogen has been proposed
to play a role in the rapid buffering of cellular ATP as well as in
the production of lactate and/or sparing of glucose (Swanson
et al., 1992; Shulman et al., 2001), although the role of brain
glycogen is not yet established in detail (Dienel and Cruz,
2015).

Glycogenolysis in astrocytes plus glycolysis in neurons are
proposed to contribute to the stimulation-induced rise in
extracellular lactate observed during learning (Bergersen, 2015),
and both glycogen and lactate are necessary for memory
consolidation. In particular, inhibition of glycogen phosphorylase
by 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) or isofagomine
resulted in short-term and long-term memory impairment
during different learning protocols and animal models (Gibbs
et al., 2006; Newman et al., 2011; Suzuki et al., 2011). These
studies showed that memory could be rescued by injection of
lactate, although the effect is dependent upon spatiotemporal
variables and is partly recapitulated by other compounds
including glucose, acetate and glutamine (aspects that are not
discussed here). The main point is that the capacity of lactate
to reverse memory impairment was regularly attributed to its
relevance as an energy fuel. To this end, several studies examined
the consequences of interfering with intercellular lactate
trafficking through inhibition of monocarboxylate transporter
(MCT) proteins.

In the brain, neurons predominantly express the MCT2
isoform, whereas astrocytes express both MCT1 and MCT4
isoforms. Intrahippocampal injection of the non-selective MCT
inhibitor α-cyano-4-hydroxycinnamate (4-CIN, ∼60µmol/L)
caused memory impairment that could be partly rescued, though
not significantly, by lactate (Newman et al., 2011). This finding
was interpreted as supporting the requirement for neuronal
lactate uptake, because the affinity of MCT2 for 4-CIN is much
higher (Ki = 24µmol/L) than that of MCT1 and MCT4 (Ki =

425µmol/L and 350–990µmol/L, respectively) (Bröer et al.,
1999; Dimmer et al., 2000; Manning Fox et al., 2000). However,
in addition to plasmalemmal MCTs 4-CIN potently inhibits
pyruvate uptake by mitochondrial MCTs (Ki = 6µmol/L) and
oxidative metabolism (Halestrap, 1975). Notably, both MCT1
and MCT2 colocalize with the mitochondrial inner membrane
marker cytochrome oxidase in brain (Hashimoto et al., 2008).
Yet, neurons and astrocytes are likely affected differently by
inhibition of mitochondrial pyruvate uptake, as for example
astrocytes but not neurons are capable of malate production
from pyruvate due to much higher expression of cytosolic malic
enzyme (Vogel et al., 1998), which can be followed by malate
entry into mitochondria via dicarboxylate carrier and reversal of
mitochondrial malic enzyme for regeneration of pyruvate.

Similar reasoning can be applied to the finding that reduction
in the expression of MCT2 by 25% was sufficient to impair
long-term memory formation (Suzuki et al., 2011). Under these
conditions lactate was unable to rescue memory, whereas it
reversed memory impairment after reduction in the expression
of either MCT1 or MCT4. It is difficult to understand how
a reduction of neuronal MCT2 as small as 25% could totally
abolish memory, especially if this outcome is interpreted as
precondition for lactate uptake in neurons. The higher affinity
of MCT2 for lactate (Km = 0.74mmol/L) compared to MCT1
and MCT4 (Km = 3.5–5.6mmol/L and 28–34mmol/L) implies
that lactate flow through neuronal MCT2 is already saturated
(i.e., cannot increase with increasing lactate) at resting brain
lactate level (about 1mmol/L; Bröer et al., 1997, 1999; Dimmer
et al., 2000; Manning Fox et al., 2000). Therefore, such an
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exceptional sensitivity toMCT2 levels is difficult to reconcile with
the observation that memory consolidation is accompanied by
increases in expression of MCT1 and MCT4 but not MCT2 (Tadi
et al., 2015).

The importance of oxidative metabolism during learning is
supported by the fact that memory is impaired, in addition to the
non-transportable 4-CIN, also by D-lactate, which is transported
but only slowly metabolized by D-lactate dehydrogenase, and
whose inhibition can be counteracted by addition of different
metabolic substrates (Gibbs and Hertz, 2008). Much like 4-CIN,
D-lactate also competitively inhibits brain mitochondrial MCTs
(Ling et al., 2012). Moreover, astrocytes have a high capacity
for lactate uptake from extracellular fluid as well as for lactate
dispersal via the astrocytic syncytium (Gandhi et al., 2009),
and trafficking of glucose and its metabolites through astroglial
networks via gap-junction (GJ) subunit proteins connexin 43
and 30 sustains synaptic transmission in hippocampus (Rouach
et al., 2008). These observations are consistent with the inhibition
of memory formation by the GJs uncoupler 18-α-glycyrrhetinic
acid (Hertz and Gibbs, 2009), which was found to damage
mitochondrial function in both astrocytes and neurons (Blanc
et al., 1998). A need for lactate transport through astrocytes,
not only out of astrocytes, might also be the reason for the
expression of the type 5 isoform of the lactate dehydrogenase,
which is the isoform of the enzyme that has the highest efficiency
to catalyze pyruvate transformation to lactate (e.g., Koukourakis
et al., 2003). Trans-astrocytic transport also entails that the
effect of drugs, such as 4-CIN or D-lactate, is blunted in GJ-
coupled astrocytes due to rapid dilution within these cells,
something that cannot happen in neurons. It is noted that GJ
proteins also mediate astrocytic release of lactate and other
compounds that are relevant to learning. For example, inhibition
of connexin 43 hemichannels was found to abolish long-term, but
not short-term, memory formation and this effect was prevented
by a mixture of several gliotransmitters, including glutamate,
glutamine, lactate, D-serine, glycine, and ATP (Stehberg et al.,
2012).

Activation of gene expression and associated protein synthesis
is a fundamental process underlying the acquisition of new
memories, which includes induction of phosphorylated cAMP

response element-binding protein (pCREB), activity-regulated
cytoskeleton-associated protein (Arc) and brain-derived
neurotrophic factor (BDNF), among others. The induction of
these plasticity-related genes depends on the activity of the
LC-noradrenergic system (Cirelli and Tononi, 2000). Support
for the view that noradrenergic signaling stimulates intracortical
glycogenolysis and increase in lactate comes from the important
observations that brain NE and lactate rise during wakefulness,
rapid eye movement (REM) sleep or sleep deprivation, and
decline during slow-wave non-rapid eye movement (NREM)
sleep (Cirelli et al., 2005; Naylor et al., 2012; Wisor et al., 2013),
while glycogen has the opposite dynamics (Kong et al., 2002).
Retention of new information is possible only during wakefulness
while it is largely impaired during NREM sleep (Emmons and
Simon, 1956; Simon and Emmons, 1956; Portnoff et al., 1966;
Koukkou and Lehmann, 1968). Similarly, hippocampal long-
term potentiation (LTP) occurs during wakefulness but not

during NREM sleep (Leonard et al., 1987; Bramham and Srebro,
1989). Notably, LTP and memory acquisition are impaired in
glycogen synthase-deficient mice (Duran et al., 2013).

In conclusion, the rise of extracellular lactate level in cerebral
cortex and hippocampus appears to be necessary for memory
formation. While the importance of the noradrenergic system in
learning has long been undisputed, evidence that glycogen is an
important link in the causal chain between NE and lactate has
only recently been established. The literature about brain lactate
described in this short communication is necessarily incomplete,
but it demands that intellectual efforts be aimed at further
investigating its receptor-mediated signaling not only its cellular
uptake.
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