
MINI REVIEW
published: 29 February 2016

doi: 10.3389/fnint.2016.00007

Frontiers in Integrative Neuroscience | www.frontiersin.org 1 February 2016 | Volume 10 | Article 7

Edited by:

Ye Chen,

Navy Medical Research Center, USA

Reviewed by:

Mikulas Chavko,

Naval Medical Research Center, USA

Peethambaran Arun,

Walter Reed Army Institute of

Research, USA

Esther Shohami,

Hebrew Universtiy of Jerusalem, Israel

*Correspondence:

Pamela J. VandeVord

pvord@vt.edu

Received: 31 October 2015

Accepted: 05 February 2016

Published: 29 February 2016

Citation:

Sajja VSSS, Hlavac N and

VandeVord PJ (2016) Role of Glia in

Memory Deficits Following Traumatic

Brain Injury: Biomarkers of Glia

Dysfunction.

Front. Integr. Neurosci. 10:7.

doi: 10.3389/fnint.2016.00007

Role of Glia in Memory Deficits
Following Traumatic Brain Injury:
Biomarkers of Glia Dysfunction
Venkata S. S. S. Sajja 1, Nora Hlavac 2 and Pamela J. VandeVord 2*

1Cellular Imaging Section and Vascular Biology Program, Department of Radiology and Radiological Science, Institute for

Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MA, USA, 2Department of Biomedical Engineering

and Mechanics, Virginia Tech University, Blacksburg, VA, USA

Historically, glial cells have been recognized as a structural component of the brain.

However, it has become clear that glial cells are intimately involved in the complexities

of neural networks and memory formations. Astrocytes, microglia, and oligodendrocytes

have dynamic responsibilities which substantially impact neuronal function and activities.

Moreover, the importance of glia following brain injury has come to the forefront in

discussions to improve axonal regeneration and functional recovery. The numerous

activities of glia following injury can either promote recovery or underlie the pathobiology

of memory deficits. This review outlines the pathological states of glial cells which

evolve from their positive supporting roles to those which disrupt synaptic function and

neuroplasticity following injury. Evidence suggests that glial cells interact extensively

with neurons both chemically and physically, reinforcing their role as pivotal for higher

brain functions such as learning and memory. Collectively, this mini review surveys

investigations of how glial dysfunction following brain injury can alter mechanisms of

synaptic plasticity and how this may be related to an increased risk for persistent memory

deficits. We also include recent findings, that demonstrate new molecular avenues for

clinical biomarker discovery.

Keywords: astrocytes, microglia, oligodendrocytes, traumtic brain injury (TBI), biomarkers, MRS spectroscopy,

memory impairment, gliosis

INTRODUCTION

It is generally accepted, that neurons make up less than 25% of the cells in the brain, yet are
responsible for information processing and control of bodily functions. Astrocytes, which make
up 30–65% of glia and are the most abundant cell type in the brain, are multifunctional cells
whose roles include maintaining osmotic balance and optimal ionic conditions for neurons,
information processing via neurotransmitter recycling, and metabolite homeostasis (Kimelberg,
2005; Buffo et al., 2010; Kimelberg and Nedergaard, 2010). Collectively, these functions, as well as
others, make the astrocytes indirectly involved in all brain function including memory formation
(Moraga-Amaro et al., 2014). Microglia compose approximately 10% of total glia in the brain
and are mainly identified by their function as immune cells of the central nervous system (CNS),
arriving first at the injury site to initiate the inflammatory cascade. However, evidence indicates
that “resting” microglia play a critical role in regulating synaptic and structural plasticity during
learning and memory (Kettenmann et al., 2011, 2013; Scheff et al., 2013). Lastly, oligodendrocytes
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provide support to axons with the production of the myelin
sheath, which is vital for fast impulse conduction through the
white matter (WM) tracts. These rapid interactions between
brain regions are required for higher order brain functions
like memory formation. Because of their high metabolic
rates, oligodendrocytes are susceptible to the molecular
consequences of tissue damage (McTigue and Tripathi, 2008).
Oligodendrocyte death causes demyelination, impairment of
axonal conduction, and ultimately axon death which contribute
to memory impairment. Collectively, dysfunction of glia
causes morphological and functional changes which effect the
neural-glial and glial-glial interactions. Synaptic disconnections,
imbalances of neurotransmitter homeostasis, and potential
axonal degeneration and neuronal death can ultimately lead to
memory impairment. Understanding the glia response, following
injury at the molecular level may provide clues to decreasing
chronic memory deficits.

SECONDARY INJURY AND METABOLIC
DYSFUNCTION

Traumatic brain injury (TBI) is a complex, progressive condition
that consists of primary and secondary injury mechanisms.
Primary injury is due to direct mechanical insult and is
the initiator of secondary molecular cascades. Secondary
injury is characterized largely by metabolic imbalance and
neuroinflammation (Figure 1). Following primary insult, brain
cells experience energy depletion and a loss of calcium
homeostasis, both of which are principal in mitochondrial
function. Mitochondrial disruption is well documented in acute
stages of TBI (Colicos and Dash, 1996; Xiong et al., 1997;
Sullivan et al., 1998, 2005; Singh et al., 2006; Gilmer et al.,

FIGURE 1 | Illustration of the glial contributions to secondary injury mechanisms associated with neurodegeneration following traumatic brain injury.

2009; Cheng et al., 2012). While these alterations are not
glia-specific, they are intensified by activated glia. Because
of the surge in extracellular ATP that results from damaged
cells, glia are activated leading to downstream calcium release

from endoplasmic reticulum (Locovei et al., 2006). Alterations
in expression of various metabotropic receptors can occur

as a result (Wang et al., 2012), contributing to surges of

intracellular calcium. Increased cytosolic calcium is balanced

by mitochondria at the expense of mitochondrial membrane

potential. Eventually, mitochondria are driven to calcium
overload and injury is exacerbated through generation of reactive
oxygen species (ROS). Neurons are limited in their antioxidant
capacity and thus rely on astrocytes to buffer ROS (Hamby
and Sofroniew, 2010). Otherwise, they become susceptible to

irreversible damage. Importantly, a pro-oxidative environment
contributes to lipid, protein, and nucleic acid damage manifested
largely in membrane disruption (Lewén and Hillered, 1998;

Miller et al., 2015) and induction of neuroinflammation (Hsieh
and Yang, 2013). Studies have concentrated on elucidating the

roles of cellular sensors and enzymes that modulate intracellular

calcium and ROS in metabolic dysfunction associated with

death (Lu et al., 2014; Angeloni et al., 2015; Rao et al., 2015).
Moreover, calcium signals in glial transmission are necessary

for information processing and neuronal-glial coordination.
Thus, impairment of glial-neuronal transmission contributes

to memory loss (Walker and Tesco, 2013; Croft et al., 2015;
Gundersen et al., 2015). In addition to calcium homeostasis,

it is necessary to consider the consequence of potassium
imbalances in secondary injury. Astrocytes normally uptake

extracellular potassium via channels and Na+/K+/ATPase which
in turn contributes to volume changes characteristic of TBI
(Macaulay and Zeuthen, 2012; Larsen et al., 2014). Disruptions
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in potassium homeostasis, alongside neurotransmitter receptor
activation, enhance neuronal impairment (D’Ambrosio et al.,
1999; Pietrobon and Moskowitz, 2014).

TRAUMA-ASSOCIATED EDEMA

Cerebral edema is induced by water imbalance in response to
trauma. Cytotoxic edema occurs in acute stages of TBI as a result
of dysregulated metabolism. Often, there is a biphasic edema
response in which early cytotoxic edema is followed by vasogenic
edema associated with compromised blood-brain-barrier (BBB).
Glia play an integral role in regulation of water and other
molecules that transverse the BBB. Astrocytic endfeet directly
contact brain vessels and are localized with aquaporin (AQP)
proteins, which are pore proteins for water passage (Nielsen et al.,
1997). Moreover, astrocytes are highly susceptible to swelling
due to expression of AQPs (Suzuki et al., 2006; Satoh et al.,
2007; Rao et al., 2011). Expression of AQP following trauma
suggests that sustained AQP expression is critical in alleviating
edema however, it is dependent on location relative to the injury,
time, and variations in TBI models (Kiening et al., 2002; Sun
et al., 2003; Zhao et al., 2005). A recent study reported only a
small reduction in brain volume in AQP4 knockout mice with
no evidence of difference in BBB disruption between AQP4
knockout and wildtype (Yao et al., 2015). Varied results may
be related to a differential role of AQPs in the biphasic edema
response. New theories hypothesize that AQP4 facilitates bulk
flow through the glymphatic system, which poses contradiction
to edema formation localized in astrocytic endfeet (Thrane
et al., 2014). Evidence also suggests, that crosstalk exists between
microglia and astrocytes in the regulation of AQP4 via microglial
pattern recognition receptor-mediated pathways (Laird et al.,
2014). Other studies are aimed to understand the effect of
modulation of AQPs to ameliorate neuronal injury and cognitive
deficits associated with TBI-induced edema (Tran et al., 2010;
Shenaq et al., 2012).

EXTENSION OF CELLULAR DEATH

Much of the intercellular molecular buffering required for
homeostasis in the brain is mediated by gap junctions (GJs),
which consist of connexin (Cx) hemichannels that transverse
the plasma membrane directly connect adjacent cells. Cx30 and
Cx43 are expressed by astrocytes while Cx32 is expressed only
by oligodendrocytes (Rash et al., 2001). GJs are necessary for
the formation of astrocytic networks that interconnect neurons
synapses and vessels (Giaume, 2010; Giaume et al., 2010). The
role of Cx43 in CNS injury has been debated as both protective
and detrimental for GJ communications (Chew et al., 2010).
GJs allow for the passage of ions, metabolites, and other small
molecules. Thus, an injured cell can distribute its damaging
components to adjacent healthy cells. While this is potentially
protective for injured cells, it also exacerbates the spread of
injury. Studies have investigated the role of Cx43 expression
in the expansion of cellular death (Frantseva et al., 2002; Lin
et al., 2008; Sun et al., 2014; Rovegno et al., 2015). Inflammatory
cytokines secreted by microglia activate Cx43 in astrocytes and

can enhance N-methyl-D-aspartate (NMDA) receptor-mediated
excitotoxicity in surrounding neurons (Froger et al., 2010).
Additionally, Cx hemichannels are a route for the release of ATP
to extracellular space, which exacerbates metabolic dysfunction
and inflammation (Cotrina et al., 1998; Frantseva et al., 2002;
Davalos et al., 2005; Figiel et al., 2007). It is also known, that
release of transmitters, including ATP and glutamate, can perturb
intercellular calcium signaling within astrocytic networks, which
in turn may contribute to neuroinflammation and cell death
(Choo et al., 2013; De Bock et al., 2014). There is evidence that
Cx expression influences functional and cognitive outcomes from
injury (Huang et al., 2012; Sun et al., 2015) as well as progressive
neurodegeneration (Orellana et al., 2009).

REACTIVE GLIOSIS

Subsequent to insult, glia are transformed into a reactive
state. Reactive gliosis is characterized by specific molecular
and morphologic changes in microglia and astrocytes. Upon
activation, microglia in combination with macrophages and
astrocytes secrete cytokines (interferon-γ, tissue necrosis factor-
α, interleukins-1 and 6 as well as transforming growth factor-
β (TGF-β)) (Morganti-Kossmann et al., 2001; Li et al., 2009;
Kumar and Loane, 2012; Aungst et al., 2014; Sajja et al., 2014b).
While activation is initiated immediately upon injury, it is often
sustained chronically which is linked to damaging neuronal
homeostasis and memory deficits (Hanisch and Kettenmann,
2007; Ramlackhansingh et al., 2011; Mannix and Whalen, 2012;
Smith et al., 2012; Johnson et al., 2013). Neuroinflammation is
associated with ROS and the exacerbation of astrocyte activation.
Evidence of prolonged neurotrophic effects from activated
microglia has been reported (Nagamoto-Combs et al., 2007). This
chronic inflammation has detrimental effects and contributes
to neurodegeneration and memory impairment (Faden and
Loane, 2015). Approaches to molecular and genetic influence
on decreased microglial activation have resulted in decreased
neuropathology (Yi et al., 2008; Dohi et al., 2010) and improved
cognitive and functional outcomes (Erlich et al., 2007; Li et al.,
2009; Kabadi et al., 2012; Cho et al., 2013).

Astrocyte reactivity or astrogliosis, is characterized by three
hallmarks: hypertrophy, increased expression of intermediate
filaments (glial-fibrillary acidic protein (GFAP), nestin and
vimentin), and increased proliferation (Baldwin and Scheff, 1996;
Sahin Kaya et al., 1999; Vandevord et al., 2008). Astrogliosis is
dependent on interplay with activated microglia (Di Giovanni
et al., 2005; Myer et al., 2006). Reactive astrocytes secrete
molecules for regulation of the existing neuroinflammatory
response (Panenka et al., 2001; Gorina et al., 2011), are integral
in creating physical barriers associated with the BBB, as well as
contribute to scar formation around injured tissue. The astrocytic
scar inhibits axonal regrowth as cells will secrete growth
inhibitors, such as TGF-β, thus affecting long-term cognitive
outcomes. Although, most research focuses on modulation of
astrogliosis, both the protective and inhibitory effects have been
evaluated in the context of improved neuronal survival and
cognitive abilities over time (Smith et al., 1997; Hoane et al., 2003;
Wu et al., 2010; Madathil et al., 2013).
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GLIAL CONTRIBUTION TO MEMORY
DEFICITS

Oligodendrocyte dysfunction due to inflammation or cellular
death impairs neurotransmission via degeneration of WM tracts
(Smith et al., 1997; Gorina et al., 2011). Pre-clinical and clinical
studies have shown axonal disruption associated with functional
impairment (Lu et al., 2012; MacDonald et al., 2013; Calabrese
et al., 2014). A non-human primate study reported a loss of
WM integrity and astrocytic hypertrophy with increased AQP-
4 contributed to cell death associated with cognitive impairment
(Lu et al., 2012). Specifically, learning and memory has been
shown to be associated with abnormal levels of myo-inositol,
which is an astrogliosis marker (Sajja et al., 2014b). Resultants
of gliosis directed toward dementia, such as tau and DNA
methylation markers are found to be upregulated following TBI
(Bailey et al., 2015; Sajja et al., 2015; Shultz et al., 2015). Another
indicator linked to memory deficits is the disrupted homeostasis
of extra and intra-cellular K+ channels in glia (D’Ambrosio
et al., 1999). Furthermore, it has shown, that by blocking glial
activation, cognition was improved (Homsi et al., 2010; Bedi
et al., 2013). New research has shown the role of ependymal
cells in contributing to memory deficits. Ependymal cells are
specialized glia, that line the ventricles of the CNS. Ependymal
cell lose was found to decrease ventricular flow following TBI
which could negatively affect the waste and nutrient exchange
within the brain (Xiong et al., 2014). Additional research that
helps decipher the molecular pathways between glia and memory

deficits will be vital for development of better clinical tools for
gauging memory loss.

GLIA-BASED BIOMARKERS

The response of glia to TBI is multifaceted, supporting the
importance of these cells to recovery. However, the intricate
chemical and physical reactions of glia are very difficult to detect
in the clinical setting. It is technically challenging to diagnosis and
study the involvement of the glia in the recovery stages following
injury and their contribution to memory deficits. Most minor
TBI cases have normal findings in conventional neuroimaging
[computed tomography (CT) and magnetic resonance imaging
(MRI)]. While both basic and clinical research have made
significant improvements, advancements are vital to fill the
translational gap. Innovative technologies have emerged, such as
serum biomarkers and in vivo magnetic resonance spectroscopy
(1H-MRS) whichmay provide the link needed to branch the basic
and clinical arenas (Figure 2).

Serum Biomarkers
Minimally invasive techniques, such as serum biomarkers, can
be used to detect brain-specific pathologies. With technological
advancements in proteomics and lipidomics, finding accurate
biomarkers that reflect glial health status would be tremendously
valuable. GFAP is a common astrocytic marker, that has been
detected in serum following TBI in both pre-clinical and clinical
studies (Fraser et al., 2011; Vajtr et al., 2012; Papa et al., 2014;

FIGURE 2 | Clinically translatable biomarkers for traumatic brain injury. In vivo magnetic resonance spectroscopy (1H-MRS) and glial-specific serum

biomarkers may provide the link needed to branch the basic and clinical research arenas.
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Huang et al., 2015). Significant accumulation of GFAP persisted
in blood up to 7 days post-injury (Svetlov et al., 2009; Boutté
et al., 2015). Some have suggested, that the use of GFAP as a
TBI biomarker yields a net benefit above clinical screening alone
and may help avoid costly imaging scans without sacrificing
diagnostic sensitivity (McMahon et al., 2015). S100 calcium-
binding protein B (S100-β) is another serum biomarker that
is clinically used to help in diagnosis of neurological disorders
(Bouvier et al., 2012; DeFazio et al., 2014; Thelin et al., 2014).
S100-β is expressed primarily by mature astrocytes and is
present in the extracellular space surrounding glia, assisting
with regulation of the cell calcium influx/efflux, but also linked
to apoptotic environments (Gyorgy et al., 2011; Vajtr et al.,
2012). Studies have identified S100-β as biomarker that could
potentially be used in TBI diagnosis, however, others suggest, that
GFAP is a better evaluator of TBI without skull fractures (Papa
et al., 2014). Myelin-basic protein (MBP) is a specific marker of
oligodendrocytes and was detected in blood, indicating potential
disruption in myelin, thus leading to axonal injury (Gyorgy et al.,
2011; Yan et al., 2014; Papa et al., 2015).

Lipid-based biomarkers such as sphingolipids, specifically
sphingomyelins and ceramides, have recently become an active
area of biomarker research. Sphingomyelin is abundant in the
myelin membrane and abnormal levels in blood can constitute
changes in myelin health and associations with oligodendrocyte
injury (Haughey, 2010; Abdullah et al., 2014; Novgorodov et al.,
2014; Henriquez-Henriquez et al., 2015; Koal et al., 2015). In
addition, ceramide is metabolized from sphingomyelins and vice
versa by sphingomyelinase. Ceramide is known to serve as a
secondary messenger for intracellular activation of caspase-3
levels in cellular apoptosis (Haughey et al., 2010). Therefore,
combination of changes in ceramide and sphingomyelin levels
can predict the overall lipid status of myelin in the brain.
Lipids are highly sensitive to changes in brain health, so they
offer new diagnostic possibilities due to the development of
robust and sensitive analytical methods (Touboul and Gaudin,
2014).

1H-MRS
MRI is a non-invasive and widely accepted diagnostic modality
to study brain abnormalities. While T1, T2, and T2∗ MRI can
provide information related to gross anatomical changes, edema
and cerebral hemorrhaging, 1H-MRS provides more detailed
chemical insight into the functional status and pathological
prognosis of the brain (Sajja et al., 2012; Kantarci, 2013). Pre-
clinical 1H-MRS can resolve∼25 and clinical 1H-MRS about∼10
metabolites depending on peak-suppression parameters (Moore
and Galloway, 2002; Moffett et al., 2007; Sofroniew and Vinters,
2010).

N-acetyl aspartate (NAA) is a neurometabolite synthesized
from aspartate and acetyl co-enzyme A. NAA or NAA/creatine
(Cre) is trans-regulated between oligodendrocytes and neurons
and can provide insight to structural integrity of WM (Charlton
et al., 2006; Ariyannur et al., 2008; Kantarci, 2013). Studies have
shown NAA levels in brain correlate with altered WM integrity
following TBI (Pendlebury et al., 2000; Brooks et al., 2001; Shiino
et al., 2004). Disruption in neuron-oligodendrocyte homeostasis

can affect axon potentials and eventually neurotransmission,
leading to an altered cognitive status. Since, alterations in the
levels of NAA in WM-rich regions could indicate health status
of oligodendrocytes and it can be measured by both pre-clinical
and clinical 1H-MRS, it has the potential to be an innovative
translational avenue.

Reactive astrocytes rapidly accumulate in the injury region
and alter their morphology, typically inducing swelling. This is
related to osmolarity changes that result from edema or ischemia
following TBI (Sofroniew and Vinters, 2010). Myo-inositol (Ins)
is a primary metabolite that maintains brain osmolarity. Clinical
studies have reported that an up-regulation of Ins correlates
with astrogliosis in pathophysiological conditions such as TBI,
dementia, and glioblastoma (Hattingen et al., 2008; Kantarci,
2013; Kierans et al., 2014). Pre-clinical studies have demonstrated
that 1H-MRS-resolved Ins was associated with astrogliosis and
impaired cognition following TBI (Kierans et al., 2014; Sajja et al.,
2014a).

In conjunction with astrocytes, microglia actively participate
in clearing debris resulting from neuroinflammation. Changes
in metabolites such as phosphoryethanolamine (PEA),
glycerophosphocholine (GPC), and cholines (Cho) have been
linked to microglia. PEA and GPC are involved in cell membrane
turnover indicating neuroinflammation and GPC/PEA levels
change depending of cell activation status (Sajja et al., 2012).
Thus, they indicate compromised cellular activities.

Resolving 1H-MRS peaks with lower signal-to-noise ratios
depends on the field strength of the scanner, time of acquisition
and number of repetitions of acquisition. Although, many
metabolites can be resolved using pre-clinical MR scanners,
only a small portion can be resolved with a clinical scanner
which limits clinical translation. However, NAA, Ins, and Cho
can be resolved with clinically available MR scanners. Thus,
we highlighted the potential utility of clinical 1H-MRS in
combination with other modalities for differential diagnosis.

CONCLUSION

We have reviewed several glial-based molecules, that give clues
to glia health status following TBI. There is a general consensus
that a panel of markers will provide the most clinically relevant
diagnostic tool. Thus, understanding how glial dysfunction
following injury can alter mechanisms of synaptic plasticity
and its relationship to an increased risk for persistent memory
deficits is necessary for advancement. Researchers are actively
pursuing new targets for a minimally invasive tools which
can accurately and objectively detect brain injury. Combining
sophisticated tools, such as serum biomarkers and MRS, will
provide for an accurate differential diagnosis following TBI.
Moreover, a temporal pattern of these markers could offer
prognostic clues as to neuronal plasticity leading to memory
formations.
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