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Under physiological conditions, astroglial hemichannels and pannexons allow the release
of gliotransmitters from astrocytes. These gliotransmitters are critical in modulating
synaptic transmission, plasticity and memory. However, recent evidence suggests
that under pathological conditions, they may be central in the development of
various neurodegenerative diseases. Here we review current literature on the role of
astroglial hemichannels and pannexons in memory, stress and the development of
neurodegenerative diseases, and propose that they are not only crucial for normal
brain function, including memory, but also a potential target for the treatment of
neurodegenerative diseases.
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CONNEXIN HEMICHANNELS AND PANNEXIN CHANNELS

In the 90’s, a handful of studies demonstrated that molecular and ionic interchange between
the intracellular and extracellular compartments can occur via a family of plasma membrane
channels called hemichannels (Goodenough and Paul, 2003). Originally known as the building
blocks of gap junction channels (GJC; Revel and Karnovsky, 1967), hemichannels release
relevant quantities of autocrine and paracrine signaling molecules (e.g., ATP, glutamate,
NAD+ and PGE2) to the extracellular milieu, as well as the influx of small molecules and
ions of up to ∼1.5 kDa (e.g., glucose, cADPR and Ca2+) (Bruzzone et al., 2001; Stout
et al., 2002; Ye et al., 2003; Cherian et al., 2005; Retamal et al., 2007; Song et al., 2011;
Fiori et al., 2012). Each hemichannel or connexon is comprised of six connexins (Cxs). Cxs
encompass a highly conserved protein family encoded by 21 genes in humans and 20 in
mice, with orthologs in other vertebrate species (Eiberger et al., 2001; Abascal and Zardoya,
2013). Recently, another gene family encoding a set of three membrane proteins, termed
pannexins (Panx 1-3), was identified (Panchin et al., 2000). Pannexins form single plasma
membrane channels (Bruzzone et al., 2003) termed pannexons that participate in paracrine
and autocrine signaling among cells (Bao et al., 2004; Locovei et al., 2006a).

Several studies show that hemichannels and pannexons play different physiological roles
in the central nervous system (CNS), including ischemic tolerance (Orellana et al., 2014),
establishment of adhesive interactions (Cotrina et al., 2008), fear memory consolidation
(Stehberg et al., 2012), synaptic transmission (Prochnow et al., 2012; Chever et al., 2014),
spontaneous electrical activity (Moore et al., 2014), glucose sensing (Orellana et al., 2012),
chemoception (Reyes et al., 2014), blood-brain barrier (BBB) permeability (De Bock et al.,
2011), redox sensing (Retamal et al., 2006) and neuronal migration (Liu et al., 2012).
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HEMICHANNELS AND PANNEXONS
IN ASTROCYTES

Astrocytes play key roles in CNS function by providing
nutrients (e.g., lactate; Pellerin, 2008) and redox molecules
(Wilhelm and Hirrlinger, 2012), maintaining ionic balance
(Kimelberg, 2005), K+ clearance mediated by Na+/K+-ATPase
(Sibille et al., 2014), glucose and lactate metabolism (Allaman
et al., 2011), and neurotransmitter recycling of the two most
abundant neurotransmitters in the brain: glutamate and GABA
(Simard and Nedergaard, 2004). They also regulate cerebral
microcirculation (Takano et al., 2006), and BBB permeability
(Alvarez et al., 2013), among many other roles essential for
normal brain function.

Additionally, it has been proposed that astrocytes actively
participate in neuronal transmission and synaptic plasticity
(Barres, 1989; Nedergaard, 1994; Parpura et al., 1994), via
the release of molecules, known as gliotransmitters, into
the synaptic cleft. In this context, Araque et al. (1998a,b)
found that astrocytes surround synaptic buttons and release
molecules into the synaptic cleft, modulating both pre-
and post-synaptic activity. The term ‘‘tripartite synapse’’ was
coined to describe synapses between neurons and astrocytes
(Araque et al., 1999). Henceforth, several studies have proposed
different pathways of gliotransmitter release from astrocytes,
which appear to act in parallel and include P2X7 receptors
(Duan et al., 2003), pannexons (Iglesias et al., 2009), Cx43
hemichannels (Cotrina et al., 1998), transporters (Szatkowski
et al., 1990), and vesicles (Parpura et al., 1994). For a
summary of main gliotransmitter release mechanisms see
Figure 1A.

Astrocytes show the highest level of Cx expression among
brain cells, with Cx43 being the most abundantly expressed both
in vitro and in vivo (Dermietzel et al., 1991; Naus et al., 1991).
Astrocytes also express Cx30 (Nagy et al., 1999), Cx26 (Rash
et al., 2001), and may also show Panx1 (Iglesias et al., 2009), at
least after stress (Orellana et al., 2015). Cx43 and Panx1 form
functional hemichannels and pannexons in astrocytes in vitro
and ex vivo (Contreras et al., 2002; Iglesias et al., 2009; Orellana
et al., 2011a).

Embedded in the ‘‘tripartite synapse’’, astrocytes express a
plethora of receptors (reviewed in Moraga-Amaro et al., 2014)
and respond locally to neurotransmitters through the above
mentioned mechanisms of gliotransmitter release, including
the activation of hemichannels and pannexons (Malarkey and
Parpura, 2008). Indeed, several gliotransmitters such as D-
serine, glutamate, ATP and lactate have been reported to be
released via astrocytic hemichannels (Stout et al., 2002; Ye
et al., 2003; Karagiannis et al., 2015) or pannexons (Iglesias
et al., 2009; Pan et al., 2015) in vitro. This gliotransmitter
release has been proposed to be necessary for different CNS
functions in vivo (Orellana and Stehberg, 2014; Montero and
Orellana, 2015). Other in vitro studies have reported Cx43
hemichannels to be permeable to NAD+ (Bruzzone et al.,
2001), glucose (Retamal et al., 2007), taurine (Stridh et al.,
2008), and Ca2+ (Schalper et al., 2010). Moreover, given
that GJCs have been shown to allow for the passage of

small peptides with a molecular weight of up to 1.8 kDa
(Neijssen et al., 2005) and short interfering RNAs (Valiunas
et al., 2005), it is possible that hemichannels may also allow
the passage of such molecules, hypothesis that has not been
tested so far.

Most early studies on hemichannels were performed
in vitro, and suggested that Cx43 hemichannels have a
low open probability in physiological conditions, requiring
depolarized membrane potentials as high as +60 mV. Given
that astrocytes are considered non-excitable cells in terms
of membrane potential, their opening under physiological
conditions was considered virtually impossible. However, later
studies showed hemichannel opening at negative membrane
potentials as measured by hemichannel-mediated dye uptake
and ionic currents (Contreras et al., 2003; Retamal et al.,
2007).

Recent in vitro studies have shown that astroglial Cx43
hemichannel activity changes in response to general anesthetics
(Liu et al., 2016) antidepressants (Jeanson et al., 2015) and
modafinil (Duchêne et al., 2016), suggesting that they may also
be drug targets.

EVIDENCE FOR ASTROGLIAL
HEMICHANNEL FUNCTION IN VIVO

The evidence of a role for astroglial hemichannels and pannexons
in vivo in astroglial physiology and CNS function is much
more limited, and is only now beginning to emerge. A recent
study reported that astroglial Cx43 hemichannels are active in
hippocampal slices during basal conditions and that astroglial
Cx43 hemichannel-dependent release of ATP increases basal
excitatory (glutamatergic) synaptic transmission through P2
receptors (Chever et al., 2014). Similar results were reported
in neurons that project to the vagal nerve (Retamal et al.,
2014).

Astroglial Cx43 hemichannel opening may also contribute to
neuronal oscillations. Roux et al. (2015) reported that astroglial
Cx43 hemichannel opening in olfactory bulb slices increases
the amplitude of slow oscillations in mitral cells, affecting their
firing rate. Hemichannel activity is also necessary formaintaining
spontaneous activity in the cortex during development (Moore
et al., 2014). It remains unknown whether hemichannels are still
relevant for spontaneous activity in the adult cortex.

Yet another example of the role of astroglial hemichannels
in CNS function measured in vivo can be found in the
retrotrapezoid nucleus, in which the firing rate of CO2/H+-
sensitive neurons acting as chemoreceptors (Wenker et al., 2012;
Reyes et al., 2014) is modulated by ATP release from astrocytes
via Cx26 hemichannels (Huckstepp et al., 2010).

In a recent study by Orellana et al. (2015), we reported
from ex-vivo hippocampal slices that acute 2 h restraint stress
in mice induces opening of astroglial Cx43 hemichannels,
while chronic 10-day immobilization stress—a model used
to induce depression in rodents—leads to increased opening
of Cx43 hemichannels, and recruitment of astroglial Panx1
channels. This increase in hemichannel activity correlated with
an increase in glutamate and ATP release, being dependent on
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FIGURE 1 | The tripartite synapse; hemichannels, pannexons and their role in memory consolidation. (A) Astrocytes release gliotransmitters
(e.g., glutamate, D-serine and ATP) through Ca2+-dependent exocytosis (1) and opening of connexin (Cx) and pannexin (Panx) hemichannels (2). Long-lasting
activation of P2X7 by ATP may lead to large currents and release of gliotransmitters (3), effect that may be mediated by Panx1 hemichannels (4). Gliotransmitter
release may also occur through volume-regulated anion channels (VRAC) (5) and different carriers and/or co-transporters acting normally or in reverse (6) (e.g.,
excitatory amino-acid transporters, the cysteine-glutamate antiporter and the D-serine/chloride co-transporter). Astrocytes can also communicate with neurons via
the release of vesicles (e.g., exosomes, microparticles and apoptotic bodies), containing different cellular messengers (e.g., mRNA, viruses and organelles) (7).
Adjacent glial cells and neurons can communicate directly through F-actin-based transient tubular connections known as tunneling nanotubes (8), via cell-to-cell
contacts between membrane-bound ligand molecules and their receptors (9) or intercellular channels known as gap junctions (10). (B–D) Blockade of astroglial Cx43
hemichannel opening in the basolateral amygdala by intra-BLA microinjection of TAT-L2 mimetic peptide had (B) no effect in short term fear conditioning memory,
(C) but blocked fear memory consolidation as assessed 24 h after training. This amnesic effect was also found after injection of the more unspecific hemichannel
blocker GAP27, but was absent when a scrambled peptide was used (scr) or a similar peptide to TAT-L2 with two aminoacids mutated (L2-mut) to interfere with its
affinity for Cx43. (D) A minimal dose of TAT-L2 still capable of blocking memory consolidation (TAT-L2) was co-injected into the basolateral amygdala with a mixture of
TAT-L2 and various putative gliotransmitters (TATL2 + cocktail), including glutamate, D-serine, glycine, ATP, etc. The microinjection of the mixture prevented the
amnesic effects of intra-amygdalar TAT-L2 peptide (reprinted from Stehberg et al., 2012 with permission). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.
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glutamatergic N-methyl-D-aspartate (NMDA) and purinergic
receptor signaling (Orellana et al., 2015). Moreover, Garré
et al. (2016) showed that FGF-1 promotes inflammatory
responses in acute spinal cord slices by a mechanism that
involves release of ATP through Panx1 channels. Finally,
in another study we shall discuss in more detail later, we
showed that Cx43 hemichannels are necessary for fear memory
consolidation in the basolateral amygdala (Stehberg et al.,
2012).

As can be deduced from the above paragraph, in vivo
evidence supporting a role for hemichannels and pannexons
in CNS function is very recent, still limited in number but
growing fast.

Astroglial hemichannels open in response to local increments
in intracellular Ca2+. Astrocytes express receptors and respond
to most neurotransmitters known to be relevant for memory
(for a review see Moraga-Amaro et al., 2014) via fast and
local Ca2+ oscillations or inter-astrocytic Ca2+ waves at speeds
matching neuronal activity (Winship et al., 2007). Thus,
astroglial activation may trigger the opening of hemichannels or
pannexons and the concomitant release of D-serine, glutamate,
ATP and lactate, among various other gliotransmitters (Orellana
and Stehberg, 2014). D-serine is a co-agonist of NMDA
receptors critical for synaptic plasticity (Henneberger et al.,
2010). Glutamate is the main excitatory neurotransmitter in
the CNS and lactate is critical for brain metabolism and
acts as a neurotransmitter activating NMDA receptors (Yang
et al., 2014), all of which are critical for synaptic plasticity
and memory. ATP mediates propagation of inter-astrocytic
Ca2+ waves by activating astroglial purinergic receptors,
whereas its conversion into adenosine may activate neuronal
purinergic receptors (Zhang et al., 2003). As a consequence,
it is likely that these functions are mediated by astroglial
hemichannels and pannexons, but direct in vivo evidence is still
lacking.

ASTROGLIAL HEMICHANNELS AND
PANNEXONS IN MEMORY

As mentioned earlier, astroglial hemichannels and pannexons
allow for the delivery of a wide variety of gliotransmitters to
the extracellular milieu. However, the role of these channels in
brain function under physiological conditions, and particularly
in memory, has only recently begun to be elucidated. In 2012,
we demonstrated that blockade of Cx43 hemichannels at the
basolateral amygdala in vivo, using a mimetic peptide known as
TAT-L2, had no effects on short term memory (Figure 1B), yet
blocked memory consolidation, inducing amnesia for auditory
fear conditioning 24 h after training (Figure 1C). Interestingly,
the amnesic effect of the peptide was prevented by co-injecting it
together with a cocktail of gliotransmitters, including glutamate,
D-serine, glycine, lactate, ATP and glutamine (Figure 1D;
Stehberg et al., 2012). This indicates that the opening of Cx43
hemichannels permits the release of gliotransmitters necessary
for memory consolidation, but we were not able to identify
the gliotransmitter or combination of gliotransmitters that
is critical for memory. In this respect, a previous study by

Henneberger et al. (2010) reported that preventing calcium
oscillations in astrocytes averted long-term potentiation (LTP,
a model of synaptic plasticity associated to memory) in
hippocampal slices. This effect was reverted by exogenous
administration of D-serine to the preparation (Henneberger
et al., 2010). D-serine is a co-agonist of glutamate NMDA
receptors which is secreted by astrocytes and is critical for LTP
induction (Henneberger et al., 2010; Kang et al., 2013). There is
currently no direct evidence that D-serine can be released via
Cx43 hemichannels, but it is possible, as astroglial pannexons
have been reported to release D-serine in vitro (Pan et al.,
2015).

Genetic studies affecting Cx expression have had limited
value in deciphering the role of hemichannels, as current genetic
approaches affect the expression of both hemichannels and GJCs
and do not allow for the distinction of the effects of either. Double
knockout mice for both Cx43 and Cx30, the two main Cxs
expressed in astrocytes, show enhanced synaptic transmission,
attenuated LTP and increased long-term depression (LTD) in
hippocampal CA1 pyramidal cells (Pannasch et al., 2011), which
are critical for memory formation.

It is still debated whether Pannexons form GJCs in vitro
(Sosinsky et al., 2011; Sahu et al., 2014). Unlike Cx43, which
is expressed mainly in astrocytes (also reported in microglia,
radial glia and neural progenitors; Nadarajah et al., 1997; Boucher
and Bennett, 2003), Panx1 is expressed in both astrocytes
and neurons (Zoidl et al., 2007; Iglesias et al., 2009; Santiago
et al., 2011). Thus, Panx1 deficiency by genetic knockout
or pharmacological approaches cannot distinguish neuronal
from astroglial pannexons. Both pharmacological blockade
and genetic deficiency of Panx1 channels induce increased
excitability, enhanced LTP, reduced LTD and impairments in
object recognition and spatial memory (Prochnow et al., 2012;
Ardiles et al., 2014). This evidence depicts a clear role for Panx1
in synaptic plasticity and memory, regardless of whether they
originate from astrocytes, neurons, or both.

HEMICHANNELS AND PANNEXONS IN
PSYCHIATRIC DISORDERS ASSOCIATED
WITH COGNITIVE DYSFUNCTION

Thus far no study has reported a direct role for astroglial
hemichannels in psychiatric disorders that can be associated
with memory. However, in Orellana et al. (2015), we showed
that astroglial Cx43 hemichannel activity in the hippocampus
is increased after acute restraint stress in mice, effects that were
associated with a Cx43-dependent increase in extracellular levels
of glutamate and ATP (Orellana et al., 2015). Interestingly, when
mice underwent a protocol of chronic restraint stress commonly
used to induce depressive-like symptoms inmice, an even greater
increase in Cx43 hemichannel activity was induced, together
with Panx1 channel opening, with the concomitant Cx43- and
Panx1-dependent release of glutamate and ATP (Orellana et al.,
2015). This study was followed by the work of Quesseveur et al.
(2015), reporting that knockdown of Cx43 in mice induced
anxiolytic- and antidepressant-like effects and an increase in
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FIGURE 2 | The role of astrocytic hemichannels and pannexons during neurodegeneration. During the early stages of various neurodegenerative diseases,
increased inflammation opens astrocytic Cx43 hemichannels and Panx1 channels (1). This results in the release of the gliotransmitters ATP and glutamate, and
increases activation of neuronal NMDA and P2X7 receptors (2). It is hypothesized that NMDA and P2X7 receptor activation increases the opening of neuronal Panx1
channels through phosphorylation of Panx1 by Src family kinases (SFKs) and direct protein-to-protein interactions, respectively (3). These P2X7-related protein
interactions could affect intracellular Ca2+ homeostasis resulting in cell death. Uncontrolled activation of astrocytes may result in reactive astrogliosis and further cell
death by a mechanism related to the opening of connexons and pannexons (4). In particular, dysregulated opening of Cx43 and Panx1 channels could elicit cellular
damage by different mechanisms. At one end of the connexon, the entry of Ca2+ via the Cx43 hemichannels or Panx1 channels. The added Ca2+ activates
phospholipase A2, thus generating arachidonic acid and activating the cyclooxygenase and lipoxygenase pathways, resulting in increased free radicals, lipid
peroxidation and plasma membrane damage (5). At the other end of the connexon, Na+ and Cl− entry via Cx43 hemichannels or Panx1 channels may trigger cellular
swelling due to an increased influx of H2O via aquaporins (6). Finally, given that astrocytes provide support to neurons, astroglial cell damage associated with
hemichannel/pannexon opening could indirectly increase neuronal susceptibility and vulnerability due to the homeostatic imbalance occurring during
neurodegeneration.

freezing in the fear-conditioning paradigm. Interestingly, it was
found that chronic corticosterone administration (anothermodel
used to induce depression in rodents), caused an increase in
the expression of phosphorylated Cx43 in the hippocampus,
effect that was reversed by successful antidepressant treatment
(Quesseveur et al., 2015). This is further supported by a
recent study showing that antidepressants affect astroglial Cx43
GJC and hemichannel activity (Jeanson et al., 2015). The
above findings suggest that hippocampal Cx43 hemichannel
activity may be important in stress responses and for the

pathophysiology of depression. How they may contribute to
arousal-induced memory enhancements, post-traumatic stress
disorder or depression-associated cognitive impairments are
exciting questions that may be answered in the near future.

HEMICHANNELS AND PANNEXONS IN
NEURODEGENERATIVE DISEASES

Many neurodegenerative diseases are characterized by
destruction of memory related areas, including the hippocampus,
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prefrontal cortex, mediotemporal lobe, nucleus basalis, basal
ganglia, etc. (for reviews on areas involved in memory
see Packard and Knowlton, 2002; Jeong et al., 2015). For
example, in Alzheimer’s disease (AD), extensive damage
to the hippocampus and cortical areas has been associated
with cognitive deficits (reviewed in Pini et al., 2016).
Likewise, in frontotemporal dementia, damage to frontal
and anterior temporal lobes was also associated with cognitive
deficits (Finger, 2016), while in Parkinson’s disease (PD),
damage to basal ganglia and frontal connectivity has also
been correlated with cognitive deficits (Zgaljardic et al.,
2003).

Various studies have linked dysregulation of hemichannel
and pannexon permeability and expression, with the progression
of different neurodegenerative diseases (Orellana and Stehberg,
2014; Penuela et al., 2014). However, the mechanisms by
which astroglial hemichannels and pannexons contribute
to neuronal damage remain elusive. It is possible that
enhanced reactive astrogliosis evoked by neuroinflammation
may alter different astroglial functions necessary for proper
astrocyte-to-neuron crosstalk and neuronal survival, including
synaptic gliotransmission, Ca2+ and NO signaling, as well
as antioxidant and inflammatory responses. Hemichannels
and pannexons are both affected by multiple inflammatory
mediators released by reactive astrocytes and microglia (e.g.,
cytokines, NO and ROS; Retamal et al., 2007; Abudara
et al., 2015). Inflammatory conditions could increase
astroglial hemichannel/pannexon opening, leading to an
uncontrolled influx of potentially toxic agents, as is the case
of Ca2+. Because hemichannels are permeable to Ca2+ (De
Bock et al., 2012; Fiori et al., 2012), and their opening is
controlled by intracellular Ca2+ (De Bock et al., 2012), it
is possible that overactivation of hemichannels/pannexons
results in intracellular Ca2+ overload and the subsequent
impairment of vital functions for astroglial survival; including
energy metabolism, Ca2+ handling, osmotic regulation and
antioxidant defense. Consistent with this notion, hemichannel
and pannexon activity has been linked to an alteration
in Ca2+ dynamics and cell death in reactive astrocytes
(Orellana et al., 2010; Abudara et al., 2015; Rovegno et al.,
2015). In addition, osmotic and ionic imbalances induced
by uncontrolled influx of Na+ and Cl− through these
channels could result in further cell swelling and plasma
membrane breakdown. Given that astrocytes provide metabolic,
synaptic and trophic support to neurons and maintain the
extracellular microenvironment, astroglial cell damage or
dysfunction associated with hemichannel and pannexon
opening could increase neuronal susceptibility to different
pathological conditions (Contreras et al., 2004; Orellana et al.,
2009).

Alternatively, uncontrolled opening of hemichannels
and pannexons induced by inflammatory conditions may
trigger excessive release of molecules at toxic levels, such
as glutamate and ATP. Consistent with this idea, astrocytes
stimulated with amlyloid-β (Aβ) peptide exhibit increased
Cx43 hemichannel-dependent release of glutamate and
ATP, which are toxic for hippocampal and cortical neurons

(Orellana et al., 2011a). Similarly, a follow-up work showed
that astrocytes pre-treated with conditioned media from Aβ

peptide-stimulated microglia release neurotoxic amounts
of glutamate and ATP via Cx43 hemichannels when
subjected to hypoxia in high glucose conditions (Orellana
et al., 2011b). Interestingly, their release reduced neuronal
survival via activation of neuronal NMDA/P2X7 receptors
and Panx1 channels in neurons (Orellana et al., 2011a,b).
Neurons express functional hemichannels formed by Cx36
and pannexons formed by Panx1 (Thompson et al., 2006;
Zappalà et al., 2006), and the opening of Panx1 channels
could occur via protein-protein interactions with activated
P2X7 receptors (Iglesias et al., 2008), through increases
in intracellular Ca2+ or phosphorylation triggered by
activation of P2Y (Locovei et al., 2006b) or NMDA receptors
(Weilinger et al., 2012). For a scheme of proposed roles for
hemichannels and pannexons in neurodegeneration, see
Figure 2.

CONCLUDING REMARKS

Exciting research on astrocytes and particularly on astroglial
hemichannels and pannexons characterizes the last few years.
Although hemichannels and pannexons initially appeared to
be one of the many cellular mechanisms used by astrocytes to
share their gliotransmitters, accumulating evidence indicates
that astroglial hemichannels play a key role in brain function
under physiological conditions, and in pathology. In normal
conditions astroglial hemichannels and pannexons are important
for memory consolidation, stress response, and possibly even
for the pathophysiology of depression. Given their role in
NMDA-dependent plasticity, they may also prove to be
relevant in depression-associated memory impairments. Yet
in pathological conditions, they appear to have a central
role in the development of neurodegenerative diseases.
Although many questions remain unanswered regarding
their role in memory and in cognitive dysfunction, it is
clear that astroglial hemichannels and pannexons play
essential roles, in sickness and in health, until death do us
part.
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