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Marta Bieńkiewicz,

UMR7313 Institut des Sciences

Moléculaires de Marseille (ISM2),

France

Jorge V. Jose,

Indiana University Bloomington,

United States

*Correspondence:

Elizabeth B. Torres

ebtorres@rci.rutgers.edu

Received: 21 February 2017

Accepted: 15 May 2017

Published: 07 June 2017

Citation:

Torres EB, Mistry S, Caballero C and

Whyatt CP (2017) Stochastic

Signatures of Involuntary Head

Micro-movements Can Be Used to

Classify Females of ABIDE into

Different Subtypes of

Neurodevelopmental Disorders.

Front. Integr. Neurosci. 11:10.

doi: 10.3389/fnint.2017.00010

Stochastic Signatures of Involuntary
Head Micro-movements Can Be
Used to Classify Females of ABIDE
into Different Subtypes of
Neurodevelopmental Disorders
Elizabeth B. Torres 1, 2*, Sejal Mistry 3, Carla Caballero 1, 2 and Caroline P. Whyatt 1, 2

1Department of Psychology, Rutgers University, Piscataway, NJ, United States, 2Computer Science Department and Rutgers

Center for Cognitive Science, Center for Biomedical Imaging and Modeling, New Brunswick, NJ, United States, 3Department

of Biomathematics, Rutgers University, Piscataway, NJ, United States

Background: The approximate 5:1 male to female ratio in clinical detection of Autism

Spectrum Disorder (ASD) prevents research from characterizing the female phenotype.

Current open access repositories [such as those in the Autism Brain Imaging Data

Exchange (ABIDE I-II)] contain large numbers of females to help begin providing a new

characterization of females on the autistic spectrum. Here we introduce new methods to

integrate data in a scale-free manner from continuous biophysical rhythms of the nervous

systems and discrete (ordinal) observational scores.

Methods: New data-types derived from image-based involuntary head motions and

personalized statistical platform were combined with a data-driven approach to unveil

sub-groups within the female cohort. Further, to help refine the clinical DSM-based ASD

vs. Asperger’s Syndrome (AS) criteria, distributional analyses of ordinal score data from

Autism Diagnostic Observation Schedule (ADOS)-based criteria were used on both the

female and male phenotypes.

Results: Separate clusters were automatically uncovered in the female cohort

corresponding to differential levels of severity. Specifically, the AS-subgroup emerged

as the most severely affected with an excess level of noise and randomness in the

involuntary head micro-movements. Extending the methods to characterize males of

ABIDE revealed ASD-males to be more affected than AS-males. A thorough study of

ADOS-2 and ADOS-G scores provided confounding results regarding the ASD vs. AS

male comparison, whereby the ADOS-2 rendered the AS-phenotype worse off than the

ASD-phenotype, while ADOS-G flipped the results. Females with AS scored higher on

severity than ASD-females in all ADOS test versions and their scores provided evidence

for significantly higher severity than males. However, the statistical landscapes underlying

female and male scores appeared disparate. As such, further interpretation of the ADOS

data seems problematic, rather suggesting the critical need to develop an entirely new

metric to measure social behavior in females.

Conclusions: According to the outcome of objective, data-driven analyses and

subjective clinical observation, these results support the proposition that the female
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phenotype is different. Consequently the “social behavioral male ruler” will continue

to mask the female autistic phenotype. It is our proposition that new observational

behavioral tests ought to contain normative scales, be statistically sound and combined

with objective data-driven approaches to better characterize the females across the

human lifespan.

Keywords: females, head micro-movements, autism, AS, stochastic signatures, resting state fMRI

INTRODUCTION

Autism Spectrum Disorder (ASD) presents a diagnosis ratio
estimated between 4:1 and 5:1 males to females (Volkmar
et al., 1993; Mandy et al., 2012), a figure that is further
exacerbated by evidence indicating that females are diagnosed
significantly later than males (Lai et al., 2015). Indeed, studies
show that observational clinical tools, such as the Diagnostic
Statistical Manual (DSM) [ASD; APA 4] and Autism Diagnostic
Observation Schedule (ADOS) (Lord et al., 2000, 2012) may
need modifications to detect symptomatology earlier in females.
Such adaptations could help further our understanding of
differential sex contribution to the ASD phenotype. Namely,
the DSM-V shows a marked division from the DSM IV
by encompassing ASD, Asperger’s Syndrome (AS), and other
similar developmental disorders under an umbrella diagnostic
label of Autism Spectrum Disorders, yet the diagnostic
implications with respect to sex-level differences has yet to be
elucidated. Unfortunately, the current diagnostic rates present
tangible difficulties in exploring ASD within the wider female
population—most notably challenges in recruiting a sufficient
number of female participants. The current methods are
therefore grounded on the observation of social behaviors within
the male phenotype. However, we know that expectations of
social behavior vary from culture to culture. As such, they carry a
heavy subjective weight. Thus, the question posed is, how can we
use objective means and take advantage of contemporary data-
driven techniques, to assess the question of sex differences in
ASD?

In recent years, access to open scientific repositories of data
has enabled researchers to rethink the issue of sex differences
in ASD—providing access to a range of data to achieve
higher levels of statistical power and female representation. For
instance, a number of publications have pointed at presumed,
fundamental, differences in brain signal variability (Takahashi
et al., 2016) and patterns of connectivity between the typically
developing (TD) brain and the ASD brain (Cheng et al., 2015;
Falahpour et al., 2016) by drawing on brain imaging data
banks. Importantly, such research highlights specific sex-based
differences (Alaerts et al., 2016), including differentiations in
structural organization of the motor systems, which are discussed
in light of repetitive behaviors (Supekar and Menon, 2015),
cortical volume and gyrification (Schaer et al., 2015), among
other morphological parameters. Such evidence for fundamental,
physiological differences in ASD expression between the sexes
may allude to new, refinedmethods to isolate and quickly identify
ASD symptomatology in females; a population that has been thus
far difficult to diagnose.

But how accurate and reliable are these claims? A series of
recent papers have begun to question the “black-box” treatment
of functional magnetic resonance imaging (fMRI) data analyses
(Power et al., 2012), particularly when related to ASD (Tyszka
et al., 2014). More specifically, there is an analytic pipeline
following a “one size fits all model” under assumptions of
normality, linearity and stationarity in the imaging data that
does not necessarily conform to the characteristics inherent
in the variability of such data. Part of the problem stems
from the pervasive effects of involuntary head motion on all
measures of morphometry and functions derived from structural
MRI or resting state fMRI data (rs-fMRI). As such, fMRI
experiments require maximal dampening of head movements
that may occur during the scanning session (i.e., while lying
inside the scanner) to prevent artifacts due to involuntary
movements (Deen and Pelphrey, 2012; Power et al., 2012;
Tyszka et al., 2014). Yet, even upon padding the head during
the scan to minimize movement, these minute fluctuations
in head motion are detectable and known to confound the
data if no motion correction procedures are in place (Friston
et al., 1996; Hutton et al., 2002; Jenkinson et al., 2002). This
problem often leads to the removal of large portions of datasets
so as to enable statistical inferential analyses. Furthermore,
recent work underscores the importance of not making a
priori statistical assumptions about the underlying stochastic
features of biophysical rhythms harnessed from the nervous
systems (Torres, 2011, 2013a; Torres et al., 2013a, 2016a).
In particular, such work demonstrates that when empirically
estimated, the probability distributions that characterize such
signals are generally not normal; rather, they are subject
to non-linear and stochastic variations inherently present
in signals derived from complex systems. These biophysical
signals include those derived from fMRI involuntary head-
motion related data (Eklund et al., 2016; Torres and Denisova,
2016).

Considering the inherent nature of the empirical data rather
than a priori imposing theoretical assumptions for statistical
inference seems particularly relevant when analyzing cross-
sectional data from the population at large. Neurodevelopment
is, indeed, non-uniform and highly non-linear in its early stages
(Torres et al., 2016b), with the statistical properties of biorhythms
from the developing nervous systems changing dramatically with
age (Figure 1) (Torres et al., 2013a, 2016a). In particular, the
degree to which spontaneous involuntary fluctuations in the
nascent nervous systems can be dampened on command is in
itself a sign of maturity (Torres et al., 2013a), as the nervous
systems transition into more stable states. In the case of ASD
and other neurodevelopmental disorders, the coping nature of
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FIGURE 1 | Age dependent shifts in the non-Gaussian stochastic signatures of motion variability. Physical motion starts from conception and ends with death. We

propose that during early stages of life the nascent immune and autonomic systems scaffold self-supervision and autonomy, respectively thus endowing the nervous

systems with features to be poised to grow and mature intelligence by partly supervising and using its own feedback to learn and adapt. As such, the variability

inherently present in the biorhythmic motions of the person—e.g., in deliberate voluntary motions, spontaneous involuntary motions and the inevitable autonomic

motions serve as a form of kinesthetic feedback from various systems. It is our finding that these motions are not characterized by symmetric distributions with

non-stationary properties. Rather, the probability density functions empirically derived from actual physical data are skewed; shift skewness with aging and the rates of

change of the shifts in skewness change within different age groups. For example, early in neonatal stages the female and male phenotypes separate according to the

generalized coefficient of variation (CV) of their rates of growth, which is reflected as well in their rate of change of motion stochastic signatures (Torres et al., 2016b)

[Data obtained from 26,985 babies per summary point (13,623 girls, 13,362 boys) publicly available from the methods to build the WHO-CDC Growth Charts]. Babies

were longitudinally tracked for 24 months upon which cross-sectional data was used to build the charts up to 5 years of age (Kuczmarski et al., 2002; de Onis and

Onyango, 2003). Inset highlights the non-Gaussian nature of the variability of this parameter of physical growth and the inflecion point attained earlier (at 224 days) in

females than males (at 252 days). Later on in life such sex differences are less obvious (Torres et al., 2013b), but using the fluctuations in motion parameters (e.g.,

those changing in cross-sectional data spanning 3–77 years of age) can be informative of subtle differences in speed micro-movements denoting different degrees of

skewness and dispersion along with different age-dependent rates of change in this stochastic signatures (data extracted from controls (CT) in 176 participants

reported in Torres et al., 2016a) Yellow and black PDFs are from a deafferented participant for reference of a system without (or very poor) kinesthetic reafference

manifested in the typically aging elderly.

the nervous systems adds a layer of instability that can be
tracked through the assessment of involuntary motions (Torres,
2013a), particularly those that are still present in excess in the
system despite instructions to remain still (Torres and Denisova,
2016). Indeed, recent results on the role of head motion micro-
movements during rs-fMRI revealed elevated levels of noise-to-
signal ratio (NSR) in the ASD population at large (Torres and
Denisova, 2016). These elevated NSR in involuntary head micro-
movements were detected with or without medication intake,
suggesting that the presence of involuntary motions with excess
NSR levels could serve as an important biological feature of
nervous systems with developmental problems. In addition, this
previous work illustrated differences between individuals as a
function of medication intake (Torres and Denisova, 2016); a
comparison dominated by a cohort consisting of majority males
participants.

The prior work, however, did not have a sufficiently
large number of female participants to examine if male
participants primarily drove the elevated NSR, or if the
females with a diagnosis of ASD/or AS also have inherently
elevated levels of NSR. If so, this signature of stochastic
motor variability may provide a route of non-invasive
diagnosis, one that may tap into underlying symptomatology
associated with a diagnosis of ASD in females. Within the
context of resting state imaging studies involving ASD

participants, questions have therefore been raised over
claims on connectivity and morphometry variation as
individuals with a disorder of the nervous system—including
those considered a “mental illness” by the DSM (American
Psychiatric Association, 2013)—often move more, which impacts
statistical inferences and interpretations made (Pardoe et al.,
2016).

Given the pervasive noisy and random somatic motor micro-
movements signal in ASD across sex and ages (Torres et al.,
2013b), severity (Torres and Denisova, 2016) and levels of motor
control (voluntary, Torres et al., 2013a; automatic, Torres et al.,
2016c), autonomic (Torres and Lande, 2015; Kalampratsidou
and Torres, 2016; Torres et al., 2016b), the present work
aimed to investigate if involuntary micro-movements of head
motion recorded within the scanner had a statistically different
rate of noise accumulation in ASD females in relation to TD
control females. Further, this was examined in light of male-
specific ASD-TD differential patterns to consider the impact
of gender. For the purposes of our inquiry, it was not as
important to consider if the person affected with ASD moved
more (since we suspected they did and others corroborated
that guess already in affected adults, Tyszka et al., 2014).
The question is whether the continuous random process that
we used to characterize those fluctuations in head motion
amplitude (as spike trains) revealed higher cumulative effects
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of noise and randomness in females with ASD, (including
as well those with a DSM-IV AS-related diagnosis) than in
female controls. We report evidence that the ABIDE data sets
contain information of use to help define the ASD female
phenotype.

METHODS

Demographics of ABIDE I and ABIDE II
All datasets included in this study are from the Autism Brain
Imaging Data Exchange (ABIDE) databases: ABIDE I (http://
fcon_1000.projects.nitrc.org/indi/abide/abide_I.html) and
ABIDE II (http://fcon_1000.projects.nitrc.org/indi/abide/abide_
II.html). The work is in compliance with Frontiers guideline
on the use of human subject’s data. To that end, quoting from
ABIDE “In accordance with HIPAA guidelines and 1,000
Functional Connectomes Project/INDI protocols, all datasets
have been anonymized, with no protected health information
included.”

Collectively, these open access databases contain datasets with
a much larger number of females (and males) than one could
find in any given single study in the literature. The breakdown
of demographics used in the present study is summarized in
Figure 2. The study includes four main comparisons:

1. ASD, AS, TD: Comparison of stochastic signatures of head
micro-movements extracted from individuals who have a
formal DSM diagnosis of ASD, a DSM-IV-TR (American
Psychiatric Association, 1994) diagnosis of AS and TD
controls, but are not on medication.

2. Medication vs. no Medication: Comparison of individuals with
a diagnosis who reported medication use vs. those who did not
report medication use.

3. ADOS-2 vs. ADOS-G: Comparison of ADOS-2 and ADOS-G
scores (Lord et al., 1989, 2000) whenever available for set in (1)
above.

4. Females vs. Males: Comparison of females vs. males according
to the above mentioned metrics and selected across ABIDE
based on the inclusion/exclusion criterion next defined.

Inclusion/Exclusion Criterion
We included those sites in ABIDE I and II that contained
information regarding participant medication intake (Table 1
of the Supplementary Material lists sites with summary
information). From those sites, we first isolated female
individuals who did not take medication (n = 76). From these
individuals, we isolated those with a diagnosis of ASD and
those with a diagnosis of either AS (n = 27), or a mixed
diagnosis of AS or a pervasive developmental disorder not
otherwise specified PDDNOS/PDD (n = 32). ABIDE I was
published before the DSM-5 (American Psychiatric Association,
2013) was released and only reports information as per
DSM-IV-TR (American Psychiatric Association, 1994) while
ABIDE II reports both DSM-IV-TR and DSM-5 diagnostic
information. Due to the augmentation of terminology in
DSM-5 (American Psychiatric Association, 2013) leading to
putative overlap between ASD and AS, the ASD individuals
were from the non-DSM-IV column of the demographics
data set. The AS individuals (and diagnosis) were isolated
using the next column representing DSM-IV-TR classification
only. Thus, the main question was whether the two groups
(non-DSM-IV ASD and the DSM-IV AS) were in any way
distinguishable. Then we examined 63 age-matched (TD)
females, a group of comparable size, from ABIDE I as the control
group.

FIGURE 2 | Inclusion/Exclusion criteria for the ABIDE I and II data sets used in this study. (A) Females: TD females are from ABIDE I and include all individuals with no

medication intake only from ABIDE I sites that reported medication intake in the demographics were included as the group size covered the proper age range and

comparable number of participants to those with ASD. ASD females are from column 1 DSM of demographics records across ABIDE I and II with a diagnosis of ASD;

DSM-IV-TR AS diagnosis of column 2 of demographics records; MIX includes all AS, PDDNOS, PDD from column 2 DSM-IV (no ASD from DSM IV). NoMEDS refers

to all with a diagnosis of ASD (column 1 and 2 of the demographics records), all with a diagnosis of AS or PDDNOS or PDD who were not on medication (i.e., from all

sites that reported medications). MEDS were as before, all participants with a diagnosis but not on medication. (B) The same as (A) for males.
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A second level comparison was to select all participants with
a given diagnosis (i.e., ASD from the first DSM column, ASD
from the second column with the DSM-IV diagnosis and those
with AS, PDDNOS, PDD) who were on medication (n= 76) and
those who were not on medication (n = 35). Here, the goal was
to compare their involuntary head micro-movements signatures
and ask if medication intake in the females had an effect on the
stochastic signatures of the head motions. Figure 2 summarizes
these demographics.

Lastly, we compared ADOS-2 and ADOS-G scores, whenever
available, for the groups above and included the males selected
under the same criteria for this comparison (Table 2 of the
Supplementary Material lists sites with summary information).
The idea was to uncover differential patterns (if any) between
female-female statistically significant differences and male-male
statistically significant differences. Summary of these results and
the levels of statistical significance are shown in Tables 1, 2 of the
Supplementary Material.

Motion Extraction
Motion extraction was performed using the Analysis of
Functional NeuroImages (AFNI) software packages (Cox, 1996).
Single subject processing scripts were generated using the
afni_proc.py interface1. Skull stripping was performed on
anatomical data and functional EPI data were co-registered to
anatomical images. The median was used as the EPI base in
alignment. Motion parameters, 3 translational (x, y, and z) and 3
rotational (pitch-about the x axis, roll-about the y axis, and yaw-
about the z axis), from EPI time-series registration was saved.

Statistical Analyses
In the present work we assess the scan-by-scan velocity-
dependent variations in the linear displacement and in
the angular rotations of the head during rs-fMRI sessions.
The analyses specifically refer to the stochastic signatures
of the micro-movements (as generally defined below), their
accumulation and empirically estimated statistical features under
a statistical platform for individualized behavioral analysis
(SPIBA). In the specific case of rs-fMRI data, the data types
are not the original head motions per se, but rather derivative
information pulled out from the original time series that the
head-motion extraction methods create (Friston et al., 1995;
Worsley and Friston, 1995). The commonly used methods
to estimate volume-to-volume head movements from fMRI
data were therefore used to obtain the original time series of
(raw) head motion data (see section Methods for head motion
extraction above).

Micro-Movements as a New Waveform
Data Type for Analyses of Motions
Embedded in the Biorhythms Harnessed
from the Nervous Systems
Given the disparate sampling resolutions (SR) across sites
reporting data to ABIDE, we here use a data type that is
insensitive to the differences in stochastic processes that such

1https://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html

different SR give rise to Caballero et al. (2017). The micro-
movements (see below) are a new waveform introduced earlier to
analyze motion data from various sensors used in motion caption
sampling with different degrees of accuracy, frequency and
temporal resolutions (Torres et al., 2013a). Instead of examining
a time series of time dependent values, we rather focus on a
waveform of the fluctuations in signal amplitude in the order in
which the changes in the peaks of the signal occur. In the present
work we use the raw linear and angular speeds extracted from
the imaging data to build the micro-movements. To that end,
we examine the changes in amplitude in a dynamic-independent
fashion.

To derive the micro-movements, we obtained the series of
local peaks (speed maxima) and divided them pointwise by the
sum of the speed maximum value and the local average speed
between the two minima,

NormSpeedMax =
SpeedMax

SpeedMax+ AvrgSpeed
(1)

The spike trains of amplitude fluctuations derived from this
normalized version of the raw data are the waveform used as
input to the SPIBA. We combine this waveform with a Gamma
process to empirically estimate the Gamma parameters and
track their values on the Gamma parameter plane, compute the
probability distribution functions (PDFs), obtain the Gamma
moments and the summary statistics (see Figure 3).

Presented in prior work (Torres, 2011, 2013a; Torres et al.,
2013a, 2016a,c; Torres and Denisova, 2016) and patent pending
technology (Torres and Jose, 2012), the micro-movement
approach examines the orderly series of peaks and valleys across
biophysical data continuously registered from physiological
sensors, from which such spikes can be extracted. Specifically,
the fluctuations in amplitude (and timing when the instrument’s
sampling resolution is uniform across the data set) of such spikes
are assumed to characterize a continuous random process where
events in the past may (or may not) accumulate evidence toward
prediction of future events (see Figure 4). Figure 4 provides a
summary of the data types used in the stochastic analyses with
sample raw data in Figures 4A–D, and micro-movements plots
in Figure 4E.

This method has been applied to other biorhythms harnessed
non-invasively from various processes of the nervous systems
ranging from deliberate-voluntary to spontaneous-automatic,
spontaneous-involuntary, to inevitable-autonomic (e.g., output
from EEG, output from ECG, skin temperature probes, output
from inertial measurement units, output from electromagnetic
sensors, output from camera based systems, among others,
Torres (2013b), Torres et al. (2013a), Kalampratsidou and Torres
(2017), Ryu and Torres (2017), and Whyatt and Torres (2017).

Within this framework, the rate of change of raw linear
displacement of the head position was obtained in vector form
(a three-dimensional velocity field over time). For each velocity
vector the Euclidean norm was used to obtain the magnitude of
each element in this scalar field over time, i.e., the linear speed
temporal profile corresponding to the given session (denoted
LS). The time-series of the LS values were then plotted for
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FIGURE 3 | SPIBA using the Gamma process for statistical inference and interpretation of biophysical data. (A) Obtain frequency histograms of biophysical parameter

and derive micro-movements from the waveform. Empirically estimate the PDF’s using maximum likelihood estimation with high confidence and plot the estimated

parameters on the Gamma plane. (B) The Gamma plane statistical inference for interpretation of biophysical data, (e.g., the biophysical rhythms harnessed from the

Central and Peripheral Nervous Systems) is shown here in schematic form. The empirical estimation of the shape and scale Gamma parameters has provided a range

of empirical data from movements encompassing a range of voluntary control levels (e.g., autonomic, spontaneous, automatic, involuntary and voluntary). Along this

gradient we have profiled the autistic phenotype and found empirical evidence for the prevalence of the Exponential distribution SHAPE value of 1 to the left of the

shape-axis. In contrast, the typically developed young participants tend to manifest symmetric shapes to the right of the SHAPE-axis, with skewed distributions

between these two extremes prevalent across the adult population at large. Along the SCALE-axis (denoting the noise to signal ratio (NSR) of the biophysical rhythms

from movements comprising multiple levels of control) the autistic population remains high in ranges of NSR in relation to the typical controls with lower levels in the

steady state regimes of a task (i.e., when the person is proficient at it). This empirical evaluation of human biorhythms harnessed during natural behaviors defines two

quadrants of interest to track in any experimental setting involving individualized behavioral analyses: the left upper quadrant of the Gamma plane (LUQ) and the right

lower quadrant (RLQ) of the Gamma plane. Each quadrant provides (theoretical) statistical inference information amenable to interpret the actual biophysical data. The

subdivision has also been used to characterize and map out the statistical ranges of human behavior with pathologies of the nervous systems in relation to normative

data from typical fellows. (C) Different scenarios of the Gamma plane and its statistical-inference quadrants are shown in schematic form to invite its use for the

tracking of stochastic trajectories of a given individual derived during a given session of a given study. The longitudinal evolutions of the probability distribution

functions from the LUQ to the RLQ are important to consider in individualized neurodevelopmental data but also possible to track in scenarios comprising

cross-sectional data (such as the present one).

each participant as a linear speed profile where each unit time
depends on the scan specs (frames per second in Hz) across
the lengths of the scanning sessions (plotted in Figures 4A,B

for the age-matched TD vs. ASD representative samples and
in Figures 4C,D for age-matched TD vs. AS and PDDNOS
participants).

The fluctuations in amplitude (of LS maxima) were then
normalized as in Torres (2011) and Torres et al. (2013a),
using equation 1 above, scaled between 0 and 1 to account
for allometric (head or body size) effects in cross-sectional
data from the population at large (Lleonart et al., 2000). This
standardized way of examining physiological signals (the micro-
movements data type) further permits grouping of themovement
data using clinical and demographic features of participants

with heterogeneous demographics and phenotypic information
(Torres and Jose, 2012).

The normalized peaks in the order in which they appeared
are plotted in Figures 4E and for each type of participant.
This waveform then served as input to a Gamma process and
stochastic characterizations of their fluctuations in amplitude
were used to provide a signature of the ASD, AS, and TD
groups. Thus, we examined the continuous spike train data of
orderly speed amplitude shifts as a Gamma process under the
general rubric of a Poisson Random Process (PRP), assuming
independent and identically distributed (IID) random variables.
This assumption will be relaxed in future work; but for the
purposes of our examination concerning the traditional a priori
assumption of normality in such biophysical data, it should
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FIGURE 4 | Involuntary head excursions were detected during the resting state fMRI sessions. (A) Linear displacements vs. angular rotations of the head contrasting

ASD females vs. age-matched TD controls. (B) Raw data consisting of linear speed and angular speed extracted from the position and orientation tri-axial trajectories

contrasting TD vs. ASD participants. (C,D) Same as in (A,B) for the females of ABIDE I and II with a DSM-IV diagnosis of AS and PDDNOS vs. the age-matched TD

controls in (A). (E) Micro-movements extracted from rs-fMRI head linear displacements in TD, ASD, and AS combined with PDDNOS participants.

suffice to consider the simpler case of a point process where the
distributions have various degrees of dispersion, skewness, i.e.,
are not normal and different kurtosis.

Briefly, the Gamma probability distribution function is given

by: y = f (x|a, b) = 1
Ŵ(a)ba

xa−1e
−x
b , in which a is the shape

parameter, b is the scale parameter, and Ŵ is the Gamma
function (Ross, 1996). We used in-house developed software
and MATLAB version 8.3 (R2014a) (The MathWorks, Inc.,
Natick, MA) functions to estimate the Gamma parameters
and corresponding PDF (and CDF) using maximum likelihood

estimation (MLE) with 95% Confidence Intervals (CIs). To that

end, we compared different families of probability distributions

(e.g., the Gaussian, Normal, Lognormal, Exponential and

Gamma) and chose the best fit in an MLE sense. Owing to our
prior work using the ABIDE sets (Torres and Denisova, 2016)

we were able to determine that the Gamma had the best fit in
an MLE sense. Of particular importance, the (NSR), a.k.a. the

Fano Factor (FF, Fano, 1947) is obtained from the empirically
estimated Gamma variance divided by the empirically estimated
Gamma mean. The Gamma mean is given by µ = a · b and the

Gamma variance is given by σ 2 = a · b2. The NSR in this case

is also the Gamma scale parameter since σ 2

µ
= /a·b/2

/a·/b
= b (Ross,

1996). This is important as we will be assessing the levels of noise
in relation to the empirical estimation of the Gamma parameters

from the data as a function of group type. Higher levels of noise
in the left upper quadrant of the Gamma plane (Gamma-LUQ)
will correspond to increases of the b scale parameter along the
vertical axes of the Gamma plane; whereas lower levels of noise
in the right lower quadrant (Gamma-RLQ) will correspond to
lower values along the scale axis of the Gamma plane. This is
shown in Figure 3B in schematic form with schematic examples
of stochastic trajectory evolution across the quadrants of interest
in Figure 3C. The quadrant’s limiting values (represented by
the quadrant-dividing lines) are derived from the stochastic
signatures of the evolution set as the median values of the scale
or shape empirically estimated parameters.

It is also important to emphasize that when the shape
parameter a of the Gamma family a = 1 at the Gamma-
LUQ, the data follows the memory-less Exponential probability
distribution. This is the most random distribution whereby
events in the past do not accumulate information predictive of
events in the future (Ross, 1996). Larger values of the shape
parameter toward the Gamma-RLQ tend toward the symmetric
distributions, with a variety of skewed distributions between the
two extremes.

The scatter of points on the log-log Gamma plane gives rise
to a power-law relation between the shape and the dispersion of
the distributions [the scale parameter or Noise-to-Signal Ratio
(NSR)]. The extent to which the scatter points deviate from
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this pattern can be quantified. To that end, it is possible to
measure the residuals from the linear polynomial fit (denoted
here as delta) and obtain a parameter plane involving the delta
values vs. the corresponding NSR for each point (representing a
participant) in the scatter. This information can thus give rise to
statistically driven clusters (Nguyen et al., 2016) to classify various
subtypes of patients.

Here we adopt such a metric (that we introduced in Nguyen
et al., 2016 and adapted to rs-fMRI data from ABIDE in Torres
and Denisova, 2016) to ask if the females of the ABIDE sites that
reported medication intake follow any type of automatic sub-
group classification. Note here that we do not include females
for whom medication status was unknown. To that end, we
integrated information from theNSR and the delta residuals from
the linear polynomial fit (power-law relation) associated to the
scatter of the log-shape and log-scale values on the Gamma plane
and will examine the ranges of parameter values within each
group. In the text we will refer to the level of randomness in the
empirically estimated shape parameter (when close to a = 1), the
limiting Exponential case; or we will point out increasing values
of the shape parameter toward more symmetric distributions
tending to the Gaussian limiting case. Likewise we will refer to
higher or lower NSR levels according to the empirically estimated
b Gamma scale parameter value relative to the age-matched TD
control values (as normative data) Figure 3A.

RESULTS

Significant Differences in Physical Head
Excursions Distinguish ASD and AS
Females from TD Females
We examined the relative head excursions during rs-fMRI
sessions for each individual female in the cohort. To that end,

the cumulative sum of speed values over all frames was obtained
(i.e., the physical path length the head traveled) and divided
by the number of frames for each participant. The rate of
change raw data (before normalization) can be seen for TD
vs. ASD in Figure 4A with their speed profiles in Figure 4B.
Figure 4C shows the comparison for the TD age-matched vs. the
AS. Figure 4D shows the corresponding speed profiles for each
group.

The distributions of the relative head excursion ratios were
well fit by the continuous family of Gamma PDFs. Figure 5A
shows the empirical cumulative probability distribution (eCDFs)
and the estimated CDFs for all three groups of age-matched
females. The inset shows the estimated first and second Gamma
PDFs. Figure 5B shows the signatures localized on the Gamma
parameter plane. The estimated Gamma moments were also
obtained and the results are summarized in Table 3 of the
Supplementary Material.

We next focus on the linear displacements. We compare the
relative head excursions pairwise across each female group. To
that end we used the non-parametric Mann-Whitney-Wilcoxon
U rank-sum test. We found statistically significant differences
between the pooled data of ASD females and age-matched TD
female controls (rank sum test p < 2.22e-06), with notably more
head movement (as recorded by physical head excursion) for
the ASD female group (see Figures 4C,D vs. Figures 4A,B). This
was further identified in a significant comparison between the
AS females, and age-matched TD female controls (rank sum test
p < 1.95e-05), but no significant differences were found in the
length of head excursions between ASD and AS females (p <

0.39). Furthermore, we used the Kolmogorov-Smirnov goodness-
of-fit hypothesis test from MATLAB to compare two empirically
estimated eCDFs. The pairwise comparison for the relative head
excursion parameter yielded significant differences for TD vs.
ASD (p< 3.42e-05) and for TD vs. AS (p< 1.72e-04) but was not

FIGURE 5 | Differences in relative physical head excursions manifest in female participants during rs-fMRI session upon instruction to remain still. (A) The empirical

cumulative distribution functions (eCDFs) estimated using Gamma fits to the empirical data pooled across all subjects per pre-labeled group separate age-matched

TD participants from ASD and AS. Note that eCDFs from ASD and AS participants also separate, but the separation has non-statistical significance (see text). The

inset shows the estimated Gamma PDFs. (B) Using the SPIBA Gamma process the involuntary head micro-movements of each labeled cohort localize AS and ASD

on the LUQ of the Gamma plane with more elevated NSR relative to TD controls localized on the RLQ of the Gamma plane.
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significant for ASD vs. AS (p < 0.54). The ASD vs. AS proximity
in the distributions can be appreciated in Figure 5A and the
overlapping confidence intervals in Figure 5B, along with their
separation form TD controls.

Similar analyses were performed to compare all females with
a diagnosis on medication vs. those who reported not being on
medications. No significant differences were found between the
ASD and AS groups of females (p < 0.31).

Data-Driven Separation of ABIDE Females
We used SPIBA to examine the micro-movements of the head
linear displacements extracted from the rs-fMRI. As explained in
the methods section, these spike trains were used as inputs to
a Gamma process and the Gamma shape and scale (the NSR)
parameters are plotted on the Gamma plane (Figure 6A). The
log-log plot of this scatter yielded a power relation, whereby a
polynomial of degree 1 was fit using polyfit via the MATLAB
curve fitting toolbox [Linear Model Poly1 f (x) = p1 · x+ p2 with
p1 = −1.03(−1.09, 1.02) and p2 = −0.369(−0.4185, −0.3194)].

The goodness of fit was SSE 0.06, Adjusted R-square 0.9962 and
RMSE 0.01.

The residuals (delta) from the linear fit against the actual
scatter of points were examined and plotted on the bottom
panel of Figure 6A. The deltas vs. the log of the Gamma scale
(NSR) were plotted on a parameter plane in the random order
in which they were examined. Three groups emerged with
clear separation—see Figure 6B. The scatter was subsequently
colored coded according to the diagnosis label (Figure 6C). As
is evidenced in Figure 6C, the ASD females separated from the
AS females, while both groups separated from the TD controls.
We underscore here that the bottom panel of Figure 6A contains
the deltas in random order. There is no a priori-selection
that leads to Figure 6B systematic separation. It is rather a
systematic separation that self emerges without the use of the
labels (unsupervised mode). Then Figure 6C is colored with the
labels (supervised mode). Further, the cumulative path/frame
(head excursion ratio) was plotted along the z-axis (Figure 6D)
and the groups further separated (surprisingly) showing the AS
group as the farthest apart from the age-matched TD controls.

FIGURE 6 | Data-driven approach for cluster detection based on stochastic properties of the head micro-movements data of the females in ABIDE. (A) Individually

estimated Gamma probability distributions of the females and power relation fit using polynomial of degree 1 on the log-shape vs. log-scale parameter plane (top

panel). Bottom panel shows the residuals (delta) obtained from the error between the polynomial fit and the actual scatter points. (B) Parameter plane distinguishes

three clusters along the Delta vs. log (scale) or noise to signal ratio (NSR). (C) Scatter colored by DSM labels reveal clusters congruent with the diagnosis. (D) Further

separation of the groups emerges when using the relative head excursion (cumulative path length per frames), with the AS group singled out as the farthest apart from

the age-matched TD controls.
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Data-Driven Separation of ABIDE Males
Given the results in the female cohort, the SPIBA approach paired
with the Gamma process was used to examine the males across
ABIDE using the same inclusion-exclusion selection criteria as
with the ABIDE females. Figure 7 shows the resulting plots
from these analyses. As in Figure 6A involving the females,
we found that the log-log plot of this scatter yielded a power
relation whereby a polynomial of degree 1 was fit using polyfit
via the MATLAB curve fitting toolbox [Linear Model Poly1
f (x) = p1 · x + p2 with p1 = −1.02(−1.024, 1.015) and p2 =

−0.423(−0.4364, −0.3879)]. The goodness of fit was SSE 0.488,
Adjusted R-square 0.9947 and RMSE 0.02, Figure 7A.

The delta residuals in random order are plotted in Figure 7A-
bottom panel. They give rise to two main groups in the
unsupervised case plotted in Figure 7B. The supervised case
in Figure 7C reveals that in the males of ABIDE, the AS
group overlaps with the TD controls. It is instead the male-
ASD group that falls farther apart from the controls and AS
groups. This comparison revealed a marked contrast with the
ABIDE females in Figure 6, suggesting that the male ASD

and the female ASD are two distinct somatic-motor phenotypic
groups.

Impact of Clinical Severity
Given this result, severity metrics were examined to consider
the symptomatology composition of the ASD and AS cohorts.
As such, ADOS-2 (Autism Diagnostic Observation Schedule,
Edition 2; Lord et al., 2012) and ADOS-G (Autism Diagnostic
Observation Schedule Generic; Lord et al., 2000), scores were
extracted where possible, to characterize associated severity.
Table 2 of the Supplementary Material lists the ABIDE
sites providing such information. Operationalizing clinical
diagnostic criteria stipulated via the DSM (American Psychiatric
Association, 1994, 2013), these “gold standard” (Lord et al.,
1989, 2000, 2012; Gotham et al., 2008), clinical tools provide
standardized scoring metrics to quantify and characterize axes of
ASD, whereby “higher” scores are reflective of more pronounced
symptoms, thus severity. The aims were therefore (1) to examine
if female ASD and AS participants with DSM-based labels
could be further refined by ADOS-based severity criteria; (2)

FIGURE 7 | Data-driven approach for cluster detection based on stochastic properties of the head micro-movements data of the males in ABIDE. (A) Individually

estimated Gamma probability distributions of the females and power relation fit using polynomial of degree 1 on the log-shape vs. log-scale parameter plane (top

panel). Bottom panel shows the residuals (delta) obtained from the error between the polynomial fit and the actual scatter points. (B) Parameter plane distinguishes

three clusters along the Delta vs. log (scale) or noise to signal ratio (NSR). (C) Scatter colored by DSM labels reveal clusters congruent with the diagnosis. (D) Further

separation of the groups emerges when using the relative head excursion (cumulative path length per frames), with the ASD group singled out as the farthest apart

from the age-matched TD controls and AS subgroup overlapping with the TD controls.
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to examine if male participants with ASD and AS DSM-based
labels could be further refined by ADOS-based severity criteria
and (3) if ADOS-based severity in males vs. females provided
further information to further integrate both clinical and research
criteria with the objectively determined subtypes (see Figure 8

and Supplementary Materials for information on other ADOS-
sub-scores).

To that end, the ADOS-G and ADOS-2 scores were first
normalized relative to the maximum values allowed for each sub-
score scale. Further, as age-related coping mechanisms in ASD
appear to impact the stochastic signatures of micro-movements
(Torres, 2013a; Torres et al., 2013a), the age of the participant
at the time of the scan was used to correct for possible age
differences due to the developing mechanisms. As such, we
normalized the scores by age and set them on a 0–1 scale.
These normalized scores reflect a measure obtained relative
to the individual. However, due to the clinical characteristics
of the ADOS-2 and ADOS-G scales (Lord et al., 2000), with
no normalized population data for comparisons, it is difficult
to anchor the ADOS-based scores to normative data to help

interpret performance in relation to the neuro-typical population
(unlike the analyses in Figures 6, 7 providing a relative metric, in
relation to TD controls).

Comparisons were then made between the ADOS-2—total,
severity and sub-scales (RRB–restricted repetitive behaviors
and SA–social affect). As illustrated in Tables 1, 2 of the
Supplementary Material, the overarching severity score and
total scores were significantly different across the cohort. This
pattern was further reflected in a significant difference between
overarching ADOS-G total scores for each group. Yet, upon
closer inspection of the metrics derived, these results illuminate a
number of interesting, and somewhat puzzling findings.

First, the summative statistics, empirically derived through
distribution fitting (rather than theoretically assuming
normality), yielded higher average measures for each of the
female and male AS sub-groups in relation to the corresponding
ASD group. As measured by the ADOS-2, denoting the feature
quantified by each element (sub-score and total metrics), the
average was worse in AS females than in ASD females of
comparable neuro-developmental age (as measured by the age

FIGURE 8 | Age corrected (incremental) ADOS-2 scores mark statistically significant differences between ASD and AS observational phenotypes in the

cross-sectional data form ABIDE I and II of sites that reported medication status. (A) Females with an AS diagnosis have higher age-corrected ADOS-2 severity scores

than ASD females (Table 1 in Supplementary Material) reports the Gamma fit first (mean) and second (sigma) moments from highly skewed distribution of incremental

scores considering physical age of the person at the time of the test (i.e., this is different corrective criterion than adjusting for mental age, already factored into the

module selection process). (B) Same trend as in (A) for the age-corrected ADOS2-total reveals worse scores for AS females. (C,D) The analyses of (A,B) for females

were performed on the males. Similar statistical features were detected for the incremental age-corrected ADOS-2 scores: skewed distributions with higher mean

values for AS in relation to ASD.
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corrected scale). We underscore however, that this somewhat
counterintuitive finding is underpinned by empirically derived
estimates of the mean and variance, rather than a priori
assumptions of normality across the data. In particular, the
parameters of interest were extracted, normalized and the
probability distribution function that best characterized the
distribution of the data harnessed to extract both the mean and
variance (see Figure 8). These results map onto the patterning
derived through empirical, objective (unsupervised) examination
of the underlying head micro-movement during rs-fMRI (see
Figure 6), whereby female AS participants are found to be
notably separated from the female TD group. Indeed, the female
ASD group appears to display more commonality to the TD
group at this objective level.

Second, this pattern is further mirrored in “higher” ADOS-
G results for the female cohort, again implying pronounced
symptomatology for the female AS group in comparison to the
female ASD group. Yet, despite this pervasive finding across
the female cohort, mapping well onto the pattern of grouping
according to stochastic signature of physiological variability, the
male cohort fail to display this feature consistently across the
ADOS-G parameters. In particular, at this level, the male group
inverts, whereby male participants diagnosed with ASD display
“higher” ADOS-G scores in relation to the corresponding AS
male group—a finding that is consistent across this clinical tool
i.e., sub-scales and total metrics. More in keeping with traditional
expectations (i.e., more pronounced symptomatology associated
with ASD), this finding may also point to the similarities we
unveiled in Figure 7 between TD and AS male participants in
relation to objective (unsupervised) profiling of the stochastic
signature of micro-movements.

When examining the profile of significant differences between
individuals with ASD and AS across the ADOS-2 and ADOS-
G for both the female and male cohorts, further differences
are highlighted. Specifically, fewer axes of both the ADOS-2
and ADOS-G significantly differentiate between female ASD and
AS, whereas more consistently significant differences are found
between the male ASD and AS groups (see Tables 1, 2 of the
Supplementary Material). This pattern may be indicative of the
sensitivity (or lack thereof) of the clinical assessment tools to
quantify and classify symptomatology of ASD in females.

Further comparison between AS males and females, and
ASD males and females were performed in relation to ADOS-
G and ADOS-2 scores. These are provided on Tables 4, 5 of the
Supplementary Material. All ADOS-G scores yielded significant
differences with higher average scores for females (suggesting
higher severity). Several ADOS-2 scores also yielded statistically
significant differences and higher scores on average for the
females. Yet, despite empirically derived, these summary statistics
are based upon different probability distribution functions (in
some instances) for each sex, as shown by Supplementary Tables
and Figures. Indeed, overall, the distribution of ADOS-2 and
ADOS-G sub-scores in the cases of ASD and AS females have
very different tails than that of the males (Figure 9). This hints
at a different statistical landscape altogether for the female case.
Combined, such results caution that it may be inappropriate to
continue the use of a social-behavior male ruler as imposed by

clinical tools to measure the female ASD phenotype—a feature
already unveiled by the somatic-motor metrics of involuntary
motion in Figures 6, 7 underlying any behavior (social or
otherwise.) See additional figures in Supplementary Material
which provide sub-score distributions and Tables 4 and 5 lists
the outcome from the male-female comparison with the caveat
(as with Tables 1, 2 above) that we do not have any reference to
normative population data (i.e., preventing us from using relative
population scores) to anchor these results to (i.e., while using
absolute population scores).

DISCUSSION

Arguably, the most striking result in the present work stems from
the data-driven approach that revealed automatic clustering of
subgroups with fundamentally different patterns between females
and males. Specifically, the head motion patterns obtained from
imaging data during resting state fMRI experiments—which are
commonly used to remove motion artifacts from the images—
can be harnessed to serve other purposes, namely to facilitate
diagnosis and classification of separable subtypes. Indeed, groups
appeared on a parameter plane according to the NSR within the
head-motion signal, and the extent to which the participant’s
stochastic signature departs from a power relation between the
shape and dispersion of the empirically estimated distributions
derived from their involuntary head motions. Further, groups
separated according to the relative head excursions that the
individual experienced while resting in the fMRI session under
the instruction to remain still. In the female cohort this result
pointed at the AS group as the one having the most dissimilar
involuntary micro-movements’ signatures from the age-matched
TD controls. In contrast, the male AS group overlapped with the
TDmale participants, potentially more in-line with expectations.
Indeed, in this instance it was the ASD subgroup that emerged as
the most dissimilar with respect to the TD controls.

Such results suggest that the stochastic signature of
physiological variability may provide a physical, non-invasive
method to objectively characterize the ASD phenotype. In
particular, this method may provide a novel insight into
the functioning and expression of ASD across the female
population—a cohort known to be difficult to diagnose and
examine. Indeed, current discussion points toward an under-
diagnosis of ASD in the female population, with a number of
females potentially missing diagnosis or being misdiagnosed in
the clinical field (Gould and Ashton-Smith, 2011; Wing et al.,
2011), developing coping strategies or mechanisms that result in
the failure to diagnose and thus provide services to these females
when exclusively basing their diagnosis on a male model of social
behavior.

The extent to which these somatic-motor disturbances may
be captured by observational tools may be reflected in the
age-corrected ADOS-2 severity and total scores that reached
statistical significance for comparisons between ASD vs. AS
females. Specifically, the pattern of separation between the ASD
and AS groups of females (at this observational level) is reflected
in a distinct unsupervised separation of groups in relation to

Frontiers in Integrative Neuroscience | www.frontiersin.org 12 June 2017 | Volume 11 | Article 10

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Torres et al. Objective Female Autistic Phenotype

FIGURE 9 | ADOS-2 and ADOS-G scores at a glance taken from all subjects we included in the analyses. (A) Females with a non-DSM-IV diagnosis of ASD.

(B) Females with a DSM-IV diagnosis of AS. (C) ASD Males as in (A). (D) AS Males as in (B). Note the skewness of these distributions and the differences in their tails

separating the two sexes. As detected by the non-parametric Rank-Sum test, the ADOS-2 severity and the ADOS-2 total do not tapper off as the individual ages,

physically grows and develops neutrally at irregular rates.

underlying stochastic signature of the physiological signature.
Combined, these results suggest that an increase in somatic-
motor noise in AS females distinguishes this group from the ASD
group (and TD group)—a distinction reflected in the clinical tool
assessment. Yet, interestingly, this separation is in a—perhaps
counterintuitive—direction, with more pronounced difficulties
or symptomatology recorded in female AS participants. When
these analyses were extended to the males under similar criteria,
the separation between ASD and AS males remained strong and
the age-corrected ADOS-2 severity score also separated them
with statistical significance. Yet, unlike in females, the head
micro-movement analyses in males did not reveal fundamental
statistical differences between the TDmale controls and themales
with an AS DSM-IV diagnosis.

The age-corrected ADOS-G scores provided a somewhat
different landscape from those of the ADOS-2. Specifically, the
pattern illustrated across the female cohort was inverted for
the males. As demonstrated, AS females displayed systematically

higher age-corrected ADOS-G scores than ASD females, a trend
that persisted across both the ADOS-2 and ADOS-G. According
to clinical interpretation, such results infer worse social-related
symptoms in AS females than ASD females (communication,
social and stereotypic behaviors)—a pattern also reflected at
the physiological level. Yet, in comparison, the male AS cohort
demonstrate systematically lower age-corrected ADOS-G sub-
scores across all categories listed in the ADOS-G (see Table 2
of the Supplementary Material); a result that is an inversion to
the pattern across the female group, and indeed, an inversion to
the result displayed by the male AS group examined using the
ADOS-2 (See summary Figure 9 to see the results at a glance).
This (implicitly) may imply that their social behavior asmeasured
by these tests and the scores they provide (as properly corrected
here by physical age) point at AS males being closer to TD
controls than the ASD males. We underscore here the word
“may implicitly imply” because the paper describing the ADOS-G
explicitly states the need to test this inventory with typical control
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participants. As such, we deduce that the scores of the ADOS-G
as those of the ADOS-2 are absolute, rather than derived relative
to normative data.

Yet, why the different pattern of results between sexes, and
what can this tell us in light of the physiological metrics? First, the
pattern of pronounced difficulty across the female AS cohort in
relation to the ASD groupmay infermore pronounced symptoms
in the female AS participant pool. Indeed, social-behaviors, such
as those examined and quantified by the ADOS-2 and ADOS-
G, intrinsically depend upon a level of motor control. As such,
the result that individuals with higher levels of sensory-motor
noise display “higher” scores capturing more pronounced ASD
symptomatology may not be surprising. Further, it must be noted
that the pattern of significant differences, across the clinical
assessment are constrained to the total and severity metrics
for the female cohort—perhaps reflective of the complexities
associated with profiling the subtleties of ASD behaviors in the
female population. Indeed, in line with physiological assessment,
the one sub-scale (across both the ADOS-2 and ADOS-G)
in which significant difference between the female sub-groups
emerge is that of stereotyped behaviors in ADOS-G. It may
be the case that this form of movement variability—both at
an observational and micro-level—is a characteristic feature
associated with AS in the female cohort. Secondly, the inversion
of the male cohort at the level of ADOS-2 and ADOS-G is
puzzling. With the ADOS-G outcomes sitting in line with the
physiological metrics (i.e., with male AS participants being more
in line with TD participants than those with ASD–see Figure 8),
the objective physiologically driven results may place more
weight on the outcomes of the ADOS-G. However, the ADOS-G
criteria is (according to their authors) incomplete to completely
render a diagnosis of ASD as it lacks the repetitive behavior sub-
scores (Lord et al., 2000)–which we see here as the one sub-score
with somewhat explicit motor component form overt observable
behaviors that we could more directly relate to the data-driven
results. On the other hand, the ADOS-2, which contains the sub-
score from repetitive behaviors the ADOS-G lacks, does not align
with the data-driven results based on involuntary motor issues.
In fact, the males, which dominate ASD research due to the
5:1 male to female ratio, are according to the ADOS-2, better
off in the non-DSM-IV ASD classification than in the DSM-IV
AS classification (Figure 10, Tables 1–5 of the Supplementary
Material). Yet, according to the ADOS-G, it is the opposite: the
ASD males are worse off than the males with AS in all social and
communication aspects.Which one is it?

A further element of potential concern with such
observational clinical assessment tools, such as the ADOS-
2 or ADOS-G aimed to operationalize the working DSM model,
is the underlying assumption of a theoretical normal distribution
across the population. This assumption underpins the ability
for such tests to derive and report a (assumed) mean and
standard deviation from their empirical computations. Yet,
here the distribution of observational outcomes (i.e., those
with the ADOS-2 and ADOS-G) were collated, the probability
distribution that best characterized that metric empirically
estimated (see Supplementary Material) were not symmetric.
Such empirical work illustrates the inherent variability, even

FIGURE 10 | Contradictory results between the ADOS-2 and ADOS-G

reported demographics in ABIDE I and II in relation to the non-DSM-IV ASD

and the DSM-IV AS phenotypes. According to the theoretical population

assumptions underlying the ADOS-based scoring systems, if we were to have

a random draw of one male individual with a diagnosis of ASD and one male

individual with an AS diagnosis from the ABIDE population that reports

medication, we would find that the ASD individual is likely to be worse off than

the AS under ASD-G criteria (enclosed rectangle) but better off than the AS

under the ADOS-2 criteria (enclosed rectangle). In contrast, if we were to do

this with females, both ADOS-based criteria would yield a better outcome

score for the ASD than the AS DSM-driven phenotype (enclosed rectangle

comprising both ASD-2 and ASD-G). Note here that these are the outcomes

of statistical tests. We are not interpreting here the data beyond that outcome

from the ABIDE data (see p-values and empirically estimated summary

statistics in Tables 1, 2 of the Supplementary Material).

at this level, of ASD characteristics, with the underlying
distribution across the population of scores extracted from the
ABIDE databases best characterized by PDFs including the
Gamma family, the generalized extreme value, and exponential
distributions. This raises a fundamental question on the ability
of such population data to be accurately reflected in clinical
tools; tools that largely dominate the research domain and
advocate a “one size fits all” model (Torres et al., 2016a).
Such a model is inadequate as it remains incongruent with
empirical data from motions at all levels of nervous systems
functioning that our proposed taxonomy defines (Torres, 2011):
deliberate-voluntary (Figure 1 and see Torres et al., 2016a);
spontaneous-involuntary (explored in this work, Torres and
Denisova, 2016; and inevitable-autonomic, Ryu and Torres,
2017).

The Question of Medication Intake
The present work also demonstrates atypically elevated levels
of NSR and randomness in the amplitude fluctuations of the
involuntary head micro-movements of female participants with
ASD and ASD-related diagnoses (AS and PDDNOS, PDD) in
relation to age-matched TD controls, whether or not they took
medication. That is, even the medication naïve ASD and AS
females demonstrated noisy and random involuntary motor
signatures. It is our proposition (Brincker and Torres, 2013) that
this excess noise from the periphery may compromise kinesthetic
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feedback, echoing a form of persistently corrupted re-afferent
feedback loop. This result is interesting in light of the prior work
involving ABIDE I participants (Torres and Denisova, 2016),
which had predominantly ASD male participants, but produced
results that demonstrated differences according to the quantity of
medication intake and medication classes. As such, there seems
to be a difference between males and females on the spectrum
regarding medication and involuntary head micro-movements.
Larger sets involving females only with more detailed medication
information (e.g., dosage, class, time on treatment, etc.) will be
required to further investigate this hypothesis, nonetheless, the
question of medication and mental illness is complex.

These new results are, however, a step forward toward
the integration of ordinal discrete data from observational
inventories with physically driven objective criteria from
continuous data. In particular, the present criteria are derived
directly from biorhythms of the nervous systems—which may
mark nervous systems’ disorders. Indeed, the 5:1 male to
female ratio from observational methods currently employed
to diagnose ASD strongly suggests that these observational
criteria appear to “miss” the females early in life. In this sense,
physical parameters providing objective assessments of somatic-
motor measures and other related physiological signatures may
boost the early detection rate and help distinguish sub-types
of females in the spectrum relative to neuro-typical controls.
Building on prior work quantifying differences in patterns of
voluntary control that differentiate between males and females
with ASD (Torres et al., 2013b) during a decision-making
task, the present results demonstrate the ability to detect sex
differences by analyzing involuntary head motion extracted
from resting state activity during fMRI experiments. Perhaps
combining these levels of enquiry we can further refine our
understanding between different female subgroups. Specifically,
we propose that neurodevelopmental fields dealing with criteria
for mental illness, as defined by the DSM and ADOS, may utilize
objective metrics grounded on somatic-motor physiology—in
a move toward the Precision Psychiatry agenda (Torres et al.,
2016a) and the Research Domain Criteria (RDoC) of the NIMH
(Insel et al., 2010; Insel, 2014).

Unfortunately, both psychological (ADOS-2/ ADOS-G) and
psychiatric (DSM) criteria for the diagnosis of ASD exclude
somatic-motor criteria. For instance, the ADOS-2 manual states
(author emphasis added):

“Note that the ADOS-2 was developed for and standardized using

populations of children and adultswithout significant sensory and

motor impairments. Standardized use of any ADOS-2 module

presumes that the individual can walk independently and is free of

visual or hearing impairments that could potentially interfere with

use of the materials or participation in specific tasks” (Lord et al.,

2012).

While, the DSM-criteria also avoid somatic-motor issues on the
grounds thatmany individuals on the autism spectrum, including
infants and young children, are on psychotropic medication
which may impact the nervous systems functioning. Indeed,
under the DSM-5 (American Psychiatric Association, 2013)

section entitled “Medication-Induced Movement Disorders and

Other Adverse Effects of Medication”, several disorders are
listed as byproducts of adverse effects from psychotropic
medication intake. Within this setting, the DSM-5 explicitly
states, “Although these movement disorders are labeled

‘medication induced’, it is often difficult to establish the

causal relationship between medication exposure and the

development of the movement disorder”, (DSM-5; medication
section, American Psychiatric Association, 2013). While none of
this section makes direct reference to developmental disorders
like ASD or ADHD that under DSM-5 (but not under DSM-IV)
are allowed to be comorbid (American Psychiatric Association,
1994, 2013), such developmental disorders are heavily medicated
worldwide (Zito et al., 2003; Chai et al., 2012; Zhang et al., 2013)
with uncertain consequences. Future consideration of the impact
ofmedication intake on somatic-motor criteriamay help separate
involuntary motor issues from those present across the spectrum
regardless of medication.

Finally, such results indicate that the ASD and ASD-
related female phenotype (i.e., AS, PDDNOS and PDD) can be
distinguished according to stochastic signatures of involuntary
head micro-movements. Likewise, the ASD male phenotype can
be distinguished from the AS and TD controls. However, the
age groups in ABIDE start at 6 years of age. These distinctions
need to be made within the first couple of years of life before an
observational diagnosis or a diagnosis based on parental reports
is already in place. By then, the problems are obvious to the
naked eye, suggesting they have reached a more steady-state
status with a tendency to become harder to readapt once the
rates of adaptive change in the nervous systems slow down or
plateau.

It is our proposition that perhaps to detect risk for a
neurodevelopmental disorder earlier in life, we could begin to
combine the types of neuro-motor control related biometrics
explained here with patterns of physical growth that are
already tracked by pediatricians in the newborn -as we did
in a small cohort of 36 babies, some at risk of stunting
in neurodevelopment (Torres et al., 2016b). Indeed, female
newborn babies are already separable from the male newborn
babies according to their patterns of physical growth. This
should be particularly important in the nascent nervous
systems of the newborn baby, or the rapidly developing
nervous system of a young infant. During the pre-cognitive
state of the neonate, accelerated rates of change in physical
growth are accompanied by rapid neurodevelopment of motor
control when typical development is in place (Torres et al.,
2016b). Indeed failing to follow this coupled rate of change
trajectory reveals stunting in neurodevelopment rather early.
As such, objectively tracking physical parameters may help
us identify the females with neurodevelopmental issues much
earlier than current observational inventories or parental
reports allow. The latter are of outmost importance. But
if we were to complement them with physical criteria
and properly derive and standardize their statistical ranges
using normative approaches, more progress on the early
detection of risk for neurodevelopmental issues would be
ascertained.
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CONCLUSIONS

The present methods were adapted to the personalized
assessment of nervous systems biorhythms to objectively
quantify: (1) the excess involuntary motions present as the
person laid down in resting state and was instructed to
remain still; (2) the cumulative effects of continuous head
motions on the NSR and randomness of this physiological
waveform; and to (3) distinguish females across the human
spectrum of typical and atypical development resulting in
an ASD or AS/PDDNOS diagnosis. Notwithstanding the
limitations of the study owing to the need for more females
of diverse age groups, more information on medication intake
(dosage, classes, time of treatment, etc.), and the issues with
the ADOS-based criteria, we demonstrate that it is possible
to initiate the path of better defining the ASD female
phenotype by employing objective quantitative means and
publicly available large data sets. As our bodies are in constant
motion (even when seemingly at rest) these methods may be
extended to use with wearable sensing technology and cloud
updating under the mobile-Health concept, contributing to
progress toward a mathematically-driven model of Precision
Psychiatry.
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