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The variability inherently present in biophysical data is partly contributed by disparate

sampling resolutions across instrumentations. This poses a potential problem for

statistical inference using pooled data in open access repositories. Such repositories

combine data collected from multiple research sites using variable sampling resolutions.

One example is the Autism Brain Imaging Data Exchange repository containing

thousands of imaging and demographic records from participants in the spectrum of

autism and age-matched neurotypical controls. Further, statistical analyses of groups

from different diagnoses and demographics may be challenging, owing to the disparate

number of participants across different clinical subgroups. In this paper, we examine the

noise signatures of head motion data extracted from resting state fMRI data harnessed

under different sampling resolutions. We characterize the quality of the noise in the

variability of the raw linear and angular speeds for different clinical phenotypes in relation

to age-matched controls. Further, we use bootstrapping methods to ensure compatible

group sizes for statistical comparison and report the ranges of physical involuntary

head excursions of these groups. We conclude that different sampling rates do affect

the quality of noise in the variability of head motion data and, consequently, the type

of random process appropriate to characterize the time series data. Further, given a

qualitative range of noise, from pink to brown noise, it is possible to characterize different

clinical subtypes and distinguish them in relation to ranges of neurotypical controls. These

results may be of relevance to the pre-processing stages of the pipeline of analyses of

resting state fMRI data, whereby head motion enters the criteria to clean imaging data

from motion artifacts.
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INTRODUCTION

The advent of open-access data repositories across various
scientific fields has initiated new avenues with the potential
for transformative discoveries. While poised for a rapid change
in pace across many medical fields, particularly those related
to the health and brain sciences, these new initiatives have
also started to encourage novel exchange and reproducibility
of results across labs worldwide. The field of autism research
is among those beginning to greatly benefit from these new
databanks. Scientists now have at their disposal the opportunity
of uncovering new mechanisms and reporting new correlations
in multi-modal data with high statistical power, owing this new
possibility to the large number of available participants’ data.
Indeed, it is now possible to aggregate data from different sites
and attain a very large number of subjects to build normative
data sets from typical controls, as well as to examine pathologies
of the nervous systems in relation to new standardized
normative scales. Such new characterizations of mental illnesses
respond to a recent paradigm shift in psychiatry neuroscience
whereby neurodevelopmental disorders are now conceptualized
as precursors of mental disorders (e.g., schizophrenia and related
mental illnesses) emerging later in life (Paus et al., 2008; Insel,
2009, 2010; Casey et al., 2014)

One such repository is the Autism Brain Imaging Data
Exchange (ABIDE) encompassing (in 2017) imaging and
demographics data, including 17 sites in ABIDE I (http://fcon_
1000.projects.nitrc.org/indi/abide/abide_I.html) and 19 sites
in ABIDE II (http://fcon_1000.projects.nitrc.org/indi/abide/
abide_II.html) (Di Martino et al., 2014). Indeed, data from
ABIDE has been used to examine several new and important
questions in autism. Recent studies have examined specific
sex-based differences (Alaerts et al., 2016), differentiations in
structural organization of the motor systems in light of repetitive
behaviors (Supekar and Menon, 2015), cortical volume and
gyrification (Schaer et al., 2015), among other analyses and
characterizations of morphological parameters. Because of
the large sample size, the new results have unprecedented
statistical power (Torres and Denisova, 2016). Further,
open access to these data has opened new avenues for
replication and critical assessment regarding the reliability
of clinical tests reported in the demographic data. Among
such tests are the ADOS-2 and ADOS-G scores, IQ and
medication status (Torres and Denisova, 2016; Torres et al.,
2017).

One concern about image analyses has been the presence of
motion artifacts distorting the images (Appendix Figure A1).
Despite instructions to the participants to remain as still as
possible, the human body is in constant motion (heartbeat,
respiration, involuntary movements, etc.) Some excess motion
may distort the image frame. For this reason, the head motion
is tracked throughout the scanning session. Head motion can
be extracted from the images time course using conventional
methods (Friston et al., 1995; Worsley and Friston, 1995) and
open-access software available to researchers (Cox, 1996). The
head motion parameters are commonly used to determine the
magnitude of the motion and set the threshold to eliminate

frames contaminated by motion artifacts, a process coined in
some circles “scrubbing.”

Scrubbing can create irregular gaps in the original time
series of imaging data. Given individual differences in the
amount of involuntary motions such as those of the head
at rest, such gaps can vary by participant. As such, given a
study with different demographics (e.g., autism and age-matched
neurotypical controls in Appendix Figure A1) and owing to the
excess motion in autism (Torres and Denisova, 2016; Torres
et al., 2017), we would be comparing very disparate sizes of
overall number of the clean image frames selected to be included
in further analyses. In this way, one would be (unknowingly)
skewing the statistical inference and further interpretation of the
results. Moreover, because statistical inference may be affected by
the non-uniform scrubbing across different sites, reproducibility
of research may be compromised. Irregular gaps in the clean data
could introduce different biases and give rise to very different
outcomes even in cases when the two sitesmay have implemented
an identical study, asked identical questions and recruited
participants under identical inclusion/exclusion criteria.

Each person’s cumulative involuntary head motion expends
energy and in extreme cases (such as those in Appendix Figure
A1) energy expenditure may incur in fatigue. We do not know
if such energy expenditure would affect blood oxygenation
and hemodynamic responses. Thus, we do not know what the
cumulative consequences of such excess involuntary motions
may be for energy expenditure, fatigue and the BOLD signal in
general. At the very least, early in the pipeline of analyses, we
can examine the stochastic properties of the original headmotion
time series data, before scrubbing takes place, and gain insights
into the nature of the stochastic processes likely underlying the
original time series.

The ABIDE data sets have not been scrubbed, so we have
access to the original time series of the head motion data and can
study the fluctuations in amplitude of the linear displacement and
angular rotations of the head; i.e. as they were originally captured
during the resting state of the fMRI sessions. These time series
depend on the sampling resolution (SR) of the scanner, i.e. of the
number of frames per unit time that the scanner captures, which
are different in different sites of ABIDE. Since these differences in
SR impact the variability of the speed-dependent data that is used
to set thresholds for scrubbing, it is possible that different noise
quality, denoting different types of underlying random processes
(Stanley et al., 1999; Seely and Macklem, 2004; Perkiömäki et al.,
2005) may be inherently present in the data (Appendix Figure
A2). Characterizing the stochastic properties of the raw data is
then important because the removal of motion artifacts depends
on the threshold criteria derived from the head motion being
tracked (Friston et al., 1996). In turn, as illustrated in Appendix
Figure A2, different random processes underlying time series
data may lead to diverse cumulative effects and give rise to
inherent biases in thresholding the data to be eliminated from
a given set.

One way to characterize the stochastic features inherent to the
raw data is by empirically estimating the probability distributions
underlying a parameter commonly used in the literature of
motor control to investigate the nature of the variability in
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biophysical data. Such data include motion biorhythms extracted
from signals harnessed from heart rate (Peng et al., 1995b)
including local-scale of shorter time series (Castiglioni et al.,
2007), gait (Hausdorff et al., 1997; Kaipust et al., 2013) including
short time series (Qiu et al., 2016; Terrier, 2016), finger tapping
(Botcharova et al., 2015), among others. The parameter of interest
is the alpha exponent (explained in the methods) derived from
Detrended Fluctuation Analyses (DFA) (Peng et al., 1995b), a
popular method to examine stochastic processes and gaining
insights on the self-affinity / stationarity (or lack thereof) of
biophysical time series data (Stanley et al., 1999).

It is possible that the noise quality emerging from these
analyses point to different types of random processes
characterizing events captured by these time series under
disparate sampling rates. For example, by capturing (or
omitting) small rotations or displacements of the head with
different frequencies per unit time (Appendix Figure A3), we
may introduce different biases in the early scrubbing stage
of the data processing pipeline. This stage cleans the images
from motor artifacts. As such, to further proceed with data
cleansing and statistical inference, one would need to take into
consideration the different sampling resolutions of scanners in
different ABIDE sites. ABIDE I and II comprise 26 sites with
sampling resolution above 1Hz; in contrast to 2 sites below
1Hz. It suffices for us to examine two extreme cases to learn if
variations in sampling resolution give rise to different ranges
of noise. Having this knowledge could help researchers further
design appropriate analyses for statistical inference, better
standardize their methods and more generally increase the rates
of research outcome reproducibility across labs.

The variable degree of skewness we have previously found
in the empirical distributions of linear and angular speed
peaks derived from these ABIDE data (Torres et al., 2017) sets
motivated us to further explore the possibility that different
random processes may underlie the time series data collected
under different SR. As such, here we try to elucidate the quality
of the noise inherently present in the variability of the speed-
dependent raw data comprising all the original frames of the
studies of ABIDE (i.e., without scrubbing the images).

Given prior results from other fields concerning differences
in signals representing different kinds of random processes
(Hausdorff et al., 1995; Havlin et al., 1995; Peng et al., 1995b),
we here hypothesize that the differences in sampling rates of
the scanners will affect the nature of the noise in the data. By
noise, we specifically mean the noise to signal ratio, whereby to
obtain the ratio, we empirically estimate the Probability Density
Function (PDF), the mean and the variance characterizing the
parameter of interest (the alpha index). This contrasts with
assuming a given theoretical distribution (e.g., the Gaussian) or
a given feature of the random process (e.g., stationarity). As
a possible corollary of this proposition, we posit that within
sites of similar SR, we may be able to use the noise range
(empirically obtained from the raw data) to further characterize
and differentiate neurodevelopmental disorders in the broad
spectrum of autism relative to normative ranges. We report
our results on combining and analyzing 2,154 participants from
28 sites of ABIDE I and II. Further, we provide evidence that

different disorders can be well characterized by different noise
qualities relative to age-matched typical controls.

METHODS

Demographics of ABIDE I and II
All datasets included in this study are from the Autism Brain
Imaging Data Exchange (ABIDE) databases: ABIDE I (http://
fcon_1000.projects.nitrc.org/indi/abide/abide_I.html) and
ABIDE II (http://fcon_1000.projects.nitrc.org/indi/abide/abide_
II.html). The work obeys Frontiers guideline on the use of human
subject’s data. To that end, citing from ABIDE “In accordance
with HIPAA guidelines and 1000 Functional Connectomes
Project / INDI protocols, all datasets have been anonymized,
with no protected health information included.”

The main breakdown of demographics used in this study
is summarized in Figure 1. The study includes four main
comparisons:

1. Sampling rate (SR) lower than 1Hz vs. SR higher than
1Hz. are shown in the Table S1 which provides information
regarding the reported scanner SR for each site.

2. Autism Spectrum Disorder (ASD), Asperger’s Syndrome
(AS), Typical Development (TD), using estimation of noise
signatures extracted from head excursion of individuals with
a formal DSM-ASD, a DSM-IV-TR (American Psychiatric
Association, 1994) diagnosis of AS and TD controls.

3. Medication vs. no Medication, including individuals with
any diagnosis who reported medication use vs. those who
reported no-medication use (we question if the noise of
their involuntary head motion is affected by the medication
status.) Table S2 lists the sites that contain medication-intake
information.

4. Females vs. Males, using the above-mentioned metrics and
selected across ABIDE based on the inclusion/exclusion
criteria defined below.

Inclusion/Exclusion Criteria
This study includes all sites publicly available through ABIDE
I and ABIDE II (as of November 2017). Because datasets were
independently collected at each side, varying types of phenotypic
information was provided. For example, DSM-IV-TR diagnosis
and medication intake were reported at some sites, but not at
others. For this reason, the number of participants within each
comparison group may be different from the reported amount
(see Table S3 for reported quantities). We denote SR<1Hz (SR0)
and SR>1Hz (SR1).

Bootstrapping Method
Given the inconsistent group sizes extracted from the ABIDE
datasets (see Appendix Figure A5) we used bootstrapping
to ensure uniform group numbers for pairwise statistical
comparisons across diagnoses and demographics.

Data Processing
Motion Extraction
Head motion patterns were extracted from imaging data during
resting state (rs) fMRI experiments. Motion extraction was
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FIGURE 1 | Inclusion / Exclusion criteria for the ABIDE I and II data sets used in this study. Inclusion / Exclusion criteria for the ABIDE I and II data sets used in this

study. (A) Participants from the sites from ABIDE I and ABIDE II which collected the fMRI data using a sample resolution lower than 1Hz. TD refers to typically

developing participants (SR0 n = 1074; SR1 n = 55); ASD refers to Autism Spectrum Disorders according to the column 1 DSM of demographic records across

ABIDE I and II (SR0 n = 982; SR1 n = 44). ASDDSM indicates those participants from the column 2 of demographic records with a DSM-IV-TR ASD diagnosis (SR0

n = 456); AS refers to the individuals from DSM-IV-TR with Asperger’s diagnosis of column 2 of demographics records (SR0 n = 189); ASMIX includes all AS,

(Pervasive Developmental Disorder Not Otherwise Specified (PDDNOS), Pervasive Developmental Disorder (PDD) from column 2 DSM-IV (no ASD from DSM IV) (SR0

n = 298). FEM refers to all the female participants of demographic records across ABIDE I and II, despite the diagnosis they have (SR0 n = 384; SR1 n = 28); MALES

are all male participants of demographics records, despite the diagnosis they have (SR0 n = 1673; SR1 n = 71); NoMEDS refers to all with a diagnosis of ASD

(column 1 and 2 of the demographics records), all with a diagnosis of AS or PDDNOS or PDD who were not on medication (i.e., from all sites that reported

medications) (SR0 n = 1414; SR1 n = 52). MEDS refers to all participants with any diagnosis but not on medication (SR0 n = 285; SR1 n = 7). (B) The same as (A)

for participants from the sites which collected the fMRI data using a sample resolution higher than 1Hz.

performed using the Analysis of Functional NeuroImages (AFNI)
software packages (Cox, 1996). Single-subject processing scripts
were generated using the afni_proc.py interface1. Skull stripping
was performed on anatomical data and functional EPI data were
co-registered to anatomical images. The median was used as the
EPI base in alignment. Motion parameters, 3 translational (x, y,
and z) and 3 rotational (pitch-about the x axis, roll-about the y
axis, and yaw- about the z axis), from EPI time-series registration
was saved (step 1 of the Figure S1).

Head Excursion Analyses
To ensure uniformity across all data sets, we resampled and
truncated the time series data thus creating data sets of equal
numbers of points and equal spacing between points (Figure
S1). Appendix Figure A3 shows visible differences in speed data
sampled from SR0 and SR1 groups, thus suggesting the need to
assess noise quality in the data gathered with different frequency.

To obtain the head excursions we sum over the speed profiles
thus yielding the path length of the linear displacements as well as
the full excursion of angular displacements. This gives us a sense
for the net amount of physical motion a person had. In both cases
we used the same number of points for each participant.

Speed profile
We computed the rate of change of linear displacement and
angular rotation using the Euclidean norm to compute the
magnitude of each 3-dimensional velocity vector displacement
(

1x,1y,1z
)

at each positional point of application (x, y, z) from

1https://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html

frame to frame, for 370 frames (the same was done with the
orientation trajectory). The scalar magnitude of the linear speed
s was defined as for a common unit time:

s =

√

(1x)2 +
(

1y
)2

+ (1z)2 (1)

In order to preserve the original temporal dynamics of the first
rate of change data while smoothing the sharp transitions from
frame to frame, we adopt the method from (Wu et al., 2014). This
method filters the position data using a triangular window:

v′(i) =

d
∑

k=−d

(v(k+ i) · (d + 1−
∣

∣k
∣

∣))

d
∑

k=−d

(d + 1−
∣

∣k
∣

∣)

(2)

for velocity v of frame i, k summation index from –d to d and
testing various values of d e.g., up to 6, to build a symmetrically
weighted sum around the center point, frame by frame (sample
outcome is shown in step 2 of the Figure S1).

Uniformly resampled data sets
We resample all data to ensure equally spaced points for
comparison across subjects and groups (outcome is shown in
step 3 of the Figure S1. To that end, we use MATLAB (version
R2014a, The MathWorks, Inc., Natick, MA) function resample
which applies an antialiasing FIR low-pass filter to the time series
and compensates for the delay introduced by the filter. This
function resamples the input sequence, the raw head motion in
our case, at P/Q times the original sample rate (see Table S1 of
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the SM for more information about the resampling factors used
[P and Q]).

Uniform data length
We truncated the uniformly resampled data to ensure the same
length for all the time series. The shortest time series had 370
data point, thus all the data samples were shortened by this length
(sample outcome shown in step 4 of the Figure S1).

Noise Signature Estimation
We used Detrended Fluctuation Analysis (DFA) (Peng et al.,
1995b) to quantify the possible presence of long-range power-
law correlations in the time series signals, estimating the
scaling index, α, describing the quality of noise that has been
physiological characterized in the literature (see Appendix Figure
A2). The steps of DFA are listed and illustrated in Figure 2.
These graphs are implemented in MATLAB (version R2014a,
The MathWorks, Inc., Natick, MA). In addition to MATLAB,
we reproduced the outcomes using Python. Python code to
compute DFA is provided in the following link: https://gist.
github.com/JVero/9bb4921eeaefba8f0edff41cb584b460. Further,
the SupplementaryMaterial Figures from Python Code shows the
graphs we generated in Python.

Statistical analyses
In the present work, we assess alpha scaling index derived
from the scan-by-scan speed-dependent variations in the linear
displacement and in angular rotations of the head during rs-fMRI
sessions. We estimate their long-range power-law correlations
in signals (noise characteristics, computed as explained above
using DFA) and infer statistical features using empirical statistical
estimation (see below).

To ascertain the net physical head motions across all
participants, we obtain the path length of the linear and angular
displacements (as explained above). The empirically estimated
mean was obtained using the continuous Gamma family of
probability distributions for every group (as in Torres et al., 2016;
see Table 1 for information about the mean head excursion for
the main groups).

The raw linear and angular speed profiles (i.e., the time series)
of each subject resampled to the same rate for all participants
and truncated to the same number of points for all are input
to the DFA to obtain distributions of α-values per individual.
These were pooled across each of the subgroups generated by the
Bootstrapping method explained above keeping in mind the SR0
and SR1 types. Thus, we obtained a distribution of α values for
each group compared for each SR.

We first compare the SR0 and SR1 groups (see Supplementary
Material for the statistical results of each group and comparisons,
Tables S4, S5 for the linear and angular speed respectively). Then
we compare the different groups according to diagnosis, sex or
medication (see Supplementary Material for the statistical results
of each group and comparisons, Tables S6–S9 for sites with SR0,
and Table S10 for the sites with SR1).

We examine the frequency histograms of the α-values and
use maximum likelihood estimation (MLE) to approximate the
best fitting distribution encompassing all cases. To that end, we

compare different families of probability distributions (e.g., the
Gaussian, Normal, Lognormal, Exponential and Gamma) and
choose the best fit in an MLE sense. Owing to our prior works
using the ABIDE sets (Torres and Denisova, 2016; Torres et al.,
2017) we determined that the Gamma had the best fit in an MLE
sense. As such, we settled on the continuous Gamma family of
probability distributions (Ross, 1983). We estimate the shape and
the scale parameters and plot them on the Gamma parameter
plane. The estimated parameters with their CI were plotted on a
Gamma parameter plane, where the x-axis represents the shape
parameter value and the y-axis represents the scale parameter
value. The Gamma scale value conveys the noise to signal ratio
(NSR) since the Gamma mean µŴ = a · b and the Gamma
variance is σŴ = a · b2, thus the scale is:

b =
σŴ

µŴ

= �a · b
/2

�a · �b
(3)

In this sense, the Gamma parameter plane allows us to infer
speed-dependent processes leading to higher noise levels vs.
lower noise levels. Further, since higher shape values tend toward
symmetric distributions and lower values tend to be skewed
distributions, with the extreme Exponential distributions at
a = 1, we can also track processes that tend to the Exponential
(most random) vs. processes that tend toward the Gaussian
distribution (more predictable).

Using the empirically estimated Gamma moments (mean,
variance, skewness and kurtosis) which we then plot, for each
pairwise-group comparison, as a four-dimensional parameter
space using the x-axis as the mean, the y-axis as the variance, the
z-axis as the skewness and the size of the marker as the kurtosis.
We also plot the Gamma PDFs using the empirically estimated
parameters.

RESULTS

Different Sampling Rates Give Rise
to Different Noise Types Representing
Different Random Processes
The comparison between data from the SR0 and SR1 sites yielded
significantly different results when matching the ASD and the
TD groups of each of the sites. The results can be appreciated
in Figure 3A(1–4) for the ASD groups and in Figure 3B(1–4)

for the TD groups. In each group, we compared the smaller age-
matched SR1 group with each of the 500 SR0 age-matched sub-
groups drawn at random with replacement from the larger SR0
group. The distribution of alpha values separated between the
two ASD and the two TD groups, as did all estimated Gamma
parameters, PDF’s and moments. Along the Gamma parameter
plane, the SR0 ASD participants had much lower noise and
higher symmetry than those in the SR1 set of ASD participants.
This was the case too for the TD controls. This higher dispersion
could be explained by the excess variance that accompanied lower
mean values in both the ASD and TD comparisons. This can be
appreciated in Figure 3A(2) for the ASD cases and Figure 3B(2)

for the TD cases. Differences in kurtosis (the size of the marker)
are appreciable in the ASD group comparison whereby the
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FIGURE 2 | Schematic steps to perform the Detrended Fluctuation Analysis (DFA) using the linear and angular speed profiles of the involuntary hear excursions. (Step

1) Sample raw linear speed data extracted from linear positional displacements of the head along the x-, y-, and z-axis. The magnitude of the rate of displacements

frame by frame (the linear speed temporal profile) is obtained and the profile resampled at 2Hz. The data is truncated to 370 points for all participants to ensure equal

number of points (see Figure S1); (Step 2) Given the time series of length N = 370, (the minimum number of points across the data set) we obtain the integration or

summation within 100-point window for each Xt =
t

∑

i=1

(

xi − 〈x〉
)

where t denotes the size of the window, xi is each point in the series within the window and 〈x〉 is the

overall mean across the entire time series with linear speed (empirical range bounded between 4.28e-05 and 10.14 mm/s over the entire data set.) The Xt is the

cumulative sum or profile and the summation converts from a bounded time series to unbounded process. (Step 3) The cumulative profile Xt is divided into

non-overlapping time windows of equal length n (range 4 ≤ n ≤ N/10) where N is the total number of points in the signal, which in our case is N = 370 (Chen et al.,

2002). In each interval, a local least-squares straight-line fit (which is the local trend) is obtained using minimization of the least squares errors in each window. The

resulting piecewise sequence of straight line fits is denoted Yt, then we calculate the root-mean-square deviation from the trend, i.e., the fluctuation:

F (n) =

√

1
N

N
∑

t=1
(Xt − Yt)

2. (Step 4) The above process of detrending and obtaining the fluctuation metric is repeated over a range of different window sizes and a

log-log map of n vs. F(n) obtained. This map provides a relationship between F(n), the average fluctuation as a function of box size, and the box size n. As explained in

(Peng et al., 1995a), the straight line of this log-log relation indicates statistical self-affinity expressed by the scaling exponent alpha, F (n) ∝ nα . The exponent alpha (a

generalization of the Hurst exponent Hurst, 1951, is a measure of long time memory in a time series) is the slope of the straight line fit to the log(n) vs. log(F(n)) relation

using least squares. (Step 5) To obtain a series of alpha values for each participant, we windowed the data starting with 3 points, then 4 points, then 5 points, etc. to

the maximum number of points (370) we had.
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SR1 yielded peakier distribution than the SR0, while in the TD
comparison both SR1 and SR0 had comparable kurtosis.

Please refer to Figures S2, S3 and Tables S4, S5 and for
additional comparisons between SR0 and SR1 groups.

TABLE 1 | Physical values of linear and angular excursions of involuntary head

motion detected during the resting state fMRI sessions for each group of all the

sites in ABIDE I and II.

Groups Linear (mm/s) Angular (deg/s)

ALL SITES

TD 0.0124 0.0118

ASD 0.0199 0.0177

ASDDSM 0.0221 0.0187

AS 0.0186 0.0159

ASMIX 0.0177 0.0147

MEDS 0.0242 0.0199

NoMEDS 0.0151 0.0140

FEMALES 0.0138 0.0128

MALES 0.0165 0.0150

MEDS FEM 0.0209 0.0192

MEDS MALES 0.0247 0.0200

NoMEDS FEM 0.0137 0.0125

NoMEDS MALES 0.0154 0.0144

TD, Typical development; ASD, Autism spectrum; AS, Asperger Syndrome; ASMIX,

combination of participants with a diagnosis of Asperger Syndrome or Pervasive

Developmental Disorder not otherwise Specified; FEM, Females; MEDS, On Meds;

NoMeds, Off Meds; DSM, Diagnostic and Statistical Manual of Mental Disorders.

Noise Values Differ Between TD and
ASDDSM
The comparisons of different diagnoses within the data sets
from the SR0 sites yielded differences in the alpha parameters
that were also quantifiable in the empirically estimated statistical
signatures. Figure 4 focuses on the differences between the TD
and ASDDSM groups. Here the TD group is the larger of the
two. As such, 500 points (blue dots in the Figures 4(2,3) are
derived from the TD group and each case is compared with
the point (red) generated by the age-match ASDDSM group
of 456 participants. The results shown in Figure 4 capture
the statistically significant differences for the angular speed
parameter (see the linear speed results in the Figure S4 and Table
S6). Figure 4(1) shows the distribution of alpha values spanning
from 1.61 to 1.65 for the TD groups vs. 1.66 for the ASD-DSM
participants. Table S3 reports the number of participants included
in each comparison.

The Figure 4(2) shows the estimated Gamma moments for
the alpha parameter showing the cluster of TD participants
in contrast to the ASDDSM values. The ASDDSM distribution
(red dot) had comparable mean to the TD centroid but on
average lower variance and skewness than the centroid. The
overlapping of the ASDDSM with a subset of the TD controls
can be appreciated in Figure 4(3) where the estimated Gamma
shape and scale parameters overlap between ASDDSM and a
subset of the TD controls. The estimated PDFs displayed in
Figure 4(4) also confirm the overlapping in variability. The
statistically significant differences in the ranges of alpha values
between the ASDDSM and the TD subgroups can be appreciated

FIGURE 3 | Comparison between the distributions of α values of the linear speed for the groups with different original SR. (A1) Frequency histogram of the mean α

values from the 500-sub-groups extracted from ASDDSM participants from SR0 group (large group) using bootstrapping, compared with the mean of 44 ASDDSM

participant from SR1 group (small group, represented by the red vertical line). (A2) Empirically estimated Gamma moments (marker size is the kurtosis). Red dot is

estimated from the ASDDSM-SR1smaller group. Blue cluster is the ASDDSM-SR0 large group with 500 sub-groups built using bootstrapping method described in

Figure 3 while preserving the age binning composition of each sub-group to match that of the small group. (A3) Estimated points on the Gamma parameter plane

with 95% confidence intervals. Red point is the ASDDSM-SR1 small group while blue dots are from the ASDDSM-SR0 500 subgroups from the large group. Cyan is

the median value. (A4) PDFs obtained from the estimated shape and scale Gamma parameters. (B) TD group participants with similar format as (A).
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FIGURE 4 | Comparison of the α values between TD and ASDDSM groups for the Angular Speed (SR0 groups). (1) Distribution of the mean of the alpha values for the

500 sub-groups extracted from original TD group with similar size and age composition as the ASDDSM group. The red vertical line represents the mean of the alpha

values of the ASDDSM group. (2) Estimated Gamma moments (red dot for the small group, blue cluster of 500 dots from the bootstrapping with 456 age-matched

participants in each sub-group and the cyan dot for the median of those sub-groups). (3) Estimated shape and scale Gamma values with confidence intervals on the

Gamma parameter plane. (4) Estimated PDFs. (5) Distribution of p-values (log2 scale for better visualization) with the red line as the reference 0.05 significance-level

value. The mean and mode of the p-value distribution is also provided.

in the distribution of p-values displayed in Figure 4(5). The
red line indicates 0.05 significance level. The subsets of TD
overlapping with the ASDDSM can be seen at the rightmost tail
of the distribution. These are the TD subgroups for which the
two-sample Kolmogorov-Smirnov test using the empirical data
yielded p ≥ 0.05 when comparing the alpha values to those of the
age-matched ASDDSM set.

Noise Values Differ Between TD, AS, and
ASD Groups
The comparison between the AS and TD participants in the
SR0 sites also yielded significant statistical differences. These
are captured in Figure 5 for the linear speed using the same
format as in Figure 4. (Please see Figure S5 and Table S6 to
examine the angular speed results). Notably the range of alpha
values is different than those of the age-matched TD group built
to accommodate the age composition of the AS group. Here
the AS alpha is at 1.73 in contrast to the ASD participants of
Figure 4 with lower alpha of 1.66. In all estimated parameters,
the AS values showed a separation from the TD and it was
significant at the 0.05 level for most TD-subgroups according to
the Figure 5(5) distribution of p-values.

Comparison between the ASD and AS groups whereby the
ASD is the larger group confirmed the significance in statistical

differences for the alpha range and the inherent variability of the
underlying linear speed parameter across these sets from the SR0
sites. These differences can be appreciated in Figure 6 using the
same format as in the previous comparisons. The distribution
of p-values in Figure 6(5) shows the separation of the AS group
from the ASD cohort for each one of the 500 ASD-subgroups
the bootstrapping yielded. (Please see Figure S6 and Table S6 to
examine the angular speed results).

Some Noise Values Overlap Between
Males and Females
Examination of the smaller group of females in relation to the
lager group of males for the angular speed case yielded some
degree of overlapping whereby the alpha values of the females
fell within the range of the ASD alpha values in Figure 7(1). The
overlapping in p-values can be appreciated in Figure 7(5) for a
subset of the comparisons (90/500). Please refer to Figure S7 and
Table S6 for comparison of linear speed.

Some Noise Values Overlap Between
Reported Medication and No-Medication
The comparison of participants who reported medication intake
(MEDS-smaller group) vs. those who did not report medication
intake (NoMEDS-larger group) also yielded some overlap in the
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FIGURE 5 | Comparison between TD and AS groups for the Linear Speed (SR0 groups). Figure format similar to Figure 4.

FIGURE 6 | Comparison between ASDDSM and AS groups for the Linear Speed (SR0 groups). Figure format is similar to Figures 4, 5.
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FIGURE 7 | Comparison between Female and Male groups for the Angular Speed (SR0 groups). Figure format similar to Figures 4–6.

comparison of alpha values derived from the time series of the
linear speed parameter. This can be appreciated in Figure 8(1)
where most NoMEDS subgroups had lower alpha values but a
small subset of 50/500 had larger or equal alpha values than the
MEDS group. Further in Figure 8(5) the p-values for the 50/100
groups show values over the 0.05 level of significance. Other
comparisons from alpha values derived from the linear speed
time series can be found in the Figure S8 shows the results for
linear speed. Tables S6–S10, provide exhaustive and systematic
examinations of the Gamma moments obtained from the data
sets reported here. Table S11 discloses the Gamma moments
obtained from the data sets before applying the Bootstrapping
method.

For more information about the comparisons between the
different analyzed groups, refer Figures S9–S16 for Distribution
of the α values; Figures S17–S24 for Distribution of the p-values;
Figures S25–S32 for estimated Shape and Scale Gamma values;
Figures S33–S40 for PDFs; and Figures S41–S48 for estimated
Gamma moments (mean, variance and skewness).

A summary of alpha ranges and noise types referring the
reader to the classes of random processes cited in Appendix
Figure A2 can be appreciated in Figure 9. Here we show the full
range of comparisons and the localization of each group along the
alpha scale for each of the SR0 and SR1 sites in ABIDE I and II.

DISCUSSION

This paper addressed the question of whether the disparity in
sampling resolution across different sites in the ABIDE repository

would affect the quality of the noise-to-signal ratios empirically
derived from the fluctuations in the amplitude of head motion
speed. The main motivation for this question is the common
use of speed amplitude as criterion to threshold the scrubbing
of the imaging slides early in the pipeline of fMRI analyses. The
disparate SR resulting in statistically different alphas strongly
suggests adhering to SR that are comparable when pooling
data and thresholding motor artifacts before further statistical
inferential analyses.

To address this question, we used DFA to estimate the
scaling (alpha) exponent values for the time series of linear
and angular speed peaks defining the envelope (amplitude)
of this signal. These were obtained from the head motions
extractable from the rs-fMRI data using traditional methods from
the imaging community. More specifically, such methods are
commonly employed to detect excess in headmotion and remove
motion artifacts from the set of images acquired in the imaging
session. This pre-processing stage eliminates “contaminated”
frames and selects the remaining frames for statistical inference
in subsequent image analyses (e.g., functional connectivity,
structure and morphology, among others). The methods
presented in the paper also address the disparity in clinical
group sizes within diagnoses of the ABIDE demographics, thus
providing a way to enable appropriate statistical comparison of
groups while using similar size and age composition according
to the various DSM and phenotypical criteria listed in the
demographics data of ABIDE.

Given the wealth of information of the ABIDE repository,
many more comparisons and other parameters could have been
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FIGURE 8 | Comparison between Meds and NoMeds for the Linear Speed (SR0 groups). Figure format similar to Figures 4–7.

FIGURE 9 | Summary of the mean of alpha values from each group from all sites from ABIDE I and ABIDE II and their relationship with the different types of noise in

Appendix Figure A2.

explored. Here we focused primarily on ASD (DSM-IV and non-
DSM-IV), AS, TD, FEMALES, MALES and MEDS, No MEDS
reports. These groups served to illustrate that:

1. The sampling resolution of the scanner does affect the type
of random process underlying the time series of imaging data
and the parameters one can derive from it (in this example
we used head motion in the form of displacements and
rotations).

2. Given comparable sampling resolution, the noise quality
inherent in the time series of the head motion parameters
and their overall stochastic signatures may serve to further
characterize different diagnoses and sex- or medication-
related data.

The statistical estimation procedures using comparable group
size and age composition uncovered a gradient of alpha values
toward the ranges of fractional Brownian motion (fBm) for
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the sites with sampling resolution below 1Hz (denoted SR0)
(Figure 9). Most values fell above 1.5 alpha-ranges indicating
persistent fBm (Appendix Figure A2). This contrasted with lower
ranges of alpha values tending instead in the opposite direction,
toward the pink noise range for sites with sampling resolution
above 1Hz (denoted SR1) including 0.5 < α ≤ 1 in the
range of persistent fractional Gaussian noise (fGn) (Appendix
Figure A2). Within each range, the alpha values were distinct
for each of the groups of interest with systematically large
separation between TD and ASD; but also, separation between
the ASD and AS groups (whenever data for comparison were
available). Comparisons between MEDS and No MEDS groups
also yielded differences in both types of sampling resolution,
thus suggesting that future studies using repositories that report
medication intake may benefit from such analyses to determine
possible effects of medication on the person’s biorhythms (see
prior results here, Torres and Denisova, 2016). Further, males
and females yielded differences and some degree of overlapping
that may be refined using other methods for each of the diagnosis
under consideration. Indeed, recent work using these ABIDE sets
provided evidence to that end between the females with ASD
and females with AS (Torres et al., 2017) that emerged using the
micro-movements (fluctuations in peak speed amplitude) data
type instead of the raw speed data used here. That work provides
scaling and standardization methods that further address the
problem of different anatomical sizes in the participants of these
databases and the effects such allometric issues have on speed-
dependent waveforms. However, discussion of such issues is
beyond the scope of this paper. Here, our goal is far more modest
than providing a standardized waveform addressing such age-
dependent allometric effects. We merely aimed at questioning
if different SR could lead to differences in variability with
statistically significant distinctions in noise quality.

It is important to note that the biorhythms we extracted from
head motion data obtainable from the rs-fMRI time series are
merely one out of many possible read-outs from the nervous
systems across the body (i.e., the peripheral output that includes
motion as a form of kinesthetic reafference, such as breathing
and heart rhythms, bodily kinematics and electromyography,
among others). Other biorhythms are also reported in various
data repositories. As such, the methods presented here may be
of use when pooling data harnessed under different sampling
resolutions. They include for example electroencephalography
(EEG) and other morphological and structural parameters in
cross-sectional and longitudinal data, expressible as time series
of fluctuations. For a summary on various open access data
repositories see (Eickhoff et al., 2016).

Given that analyses involving imaging undergoes a pre-
processing stage whereby frames are eliminated based on a
threshold derived from head motions, and head motion artifacts
are characterized using fluctuations in the amplitude of the linear
displacement and/or angular rotations of the head, frame by
frame, it may be important for researchers of that community
to not assume a theoretical type of random process or follow a

“one size fits all” approach. Instead, the results from our analyses
suggest that empirical estimation of different random processes
likely underlying the time series under consideration may be
more appropriate (as we underscore in Appendix Figure A4). In
turn, such empirical estimation (rather than a priori assumption
of a theoretical distribution family and/or random process type)
particularly when done in a personalized manner, may help other
steps preceding the selection of frames to eliminate before other
analyses for statistical inference.

In summary, we present evidence that when using large data
repositories and pooling data from different fMRI sites, we
should be mindful of the underlying instrumentation used to
gather the data in the first place. We should also consider the
sample sizes and age-compositions of the various groups, and
build methods amenable to design standardized scales that we
can then map to physical phenomena. In this way, we can initiate
the path toward the design of new phenotypic characterizations
of the human spectrum to properly associate phenotypic data
gathered with subjective and objective means with existing
genotypic data, now shared in multiple open-access repositories
(Eickhoff et al., 2016).

Acquiring more rigorous scientific practices in the fields that
study disorders of the nervous systems may help us reproduce
results in open access settings. In turn, this may stimulate the
exchange of information worldwide across labs and accelerate the
design of target treatments in the future. This work is merely an
example (out of many possible methods) of beginning the steps
to design research programs within the fields of Psychiatric and
Psychology that follow empirical estimation procedures of the
scientific method.
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