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Aside from its clinical symptoms of inattention, impulsivity and hyperactivity, patients
with Attention/Deficit-Hyperactivity Disorder (ADHD) display reward and motivational
impairments. These impairments may reflect a deficit in action control, that is, an
inability to flexibly adapt behavior to changing consequences. We previously showed
that spontaneously hypertensive rats (SHR), an inbred rodent model of ADHD, show
impairments in goal-directed action control, and instead are predominated by habits.
In this study, we examined the effects of specific dopamine receptor sub-type (D1 and
D2) agonists and antagonists on goal-directed behavior in SHR and the normotensive
inbred control strain Wistar-Kyoto (WKY) rats. Rats acquired an instrumental response
for different-flavored food rewards. A selective-satiety outcome devaluation procedure
followed by a choice test in extinction revealed outcome-insensitive habitual behavior in
SHR rats. Outcome-sensitive goal-directed behavior was restored in SHR rats following
injection prior to the choice test of the dopamine D2 receptor agonist Quinpirole or
dopamine D1 receptor antagonist SCH23390, whereas WKY rats showed habitual
responding following exposure to these drugs. This novel finding indicates that the core
behavioral deficit in ADHD might not be a consequence of dopamine hypofunction, but
rather is due to a misbalance between activation of dopamine D1 and D2 receptor
pathways that govern action control.

Keywords: attention deficit hyperactivity disorder, spontaneous hypertensive rats, Wistar-Kyoto rats,
goal-directed behavior, habitual behavior, action control, dopamine

INTRODUCTION

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most prevalent psychiatric
disorders, characterized by developmentally inappropriate symptoms of inattention,
hyperactivity and impulsivity (Castellanos and Tannock, 2002; Barkley, 2005). Along with
these symptoms, individuals with ADHD show motivational impairments (Carlson and
Tamm, 2000; Konrad et al., 2000; Slusarek et al., 2001; Castellanos and Tannock, 2002;
McInerney and Kerns, 2003; Tripp and Wickens, 2008; Luman et al., 2010). For example,
children with ADHD show reduced sensitivity to positive reinforcement compared to healthy
children, they fail to adapt appropriately to changing rates of reinforcement, and they require
larger incentives to adjust their actions (Tripp and Wickens, 2008; Volkow et al., 2011).
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Despite this evidence, the nature of reward processing deficits
in ADHD has not been fully characterized. For example,
reduced task motivation in ADHD could reflect blunted reward
sensitivity, a failure to encode action-reward contingencies, or
impaired action control. The latter process, action control,
refers to the way in which voluntary actions are selected and
executed based on prior reinforcement learning. Behavioral,
computational and neural evidence identifies two parallel,
interactive systems that underlie action control: a goal-directed
system for deliberative actions, and a habitual system for
reflexive actions (Tolman and Gleitman, 1949; Dickinson, 1985;
Balleine and Dickinson, 1998; Dayan and Balleine, 2002; Balleine
and O’Doherty, 2010). Importantly, goal-directed and habitual
systems place different demands on attentional resources
(Hitchcott et al., 2007; Le Pelley et al., 2013; Savalia et al., 2016;
Luque et al., 2017), and as a consequence individuals with ADHD
may be biased toward habitual action control.

Brain regions responsible for action control (e.g., cortico-
basal ganglia circuitry), as well as dopamine signaling within
these regions, show abnormalities in ADHD (Castellanos et al.,
2006; Volkow et al., 2011; Furukawa et al., 2014; Hauser
et al., 2014; von Rhein et al., 2015). Dopamine plays a critical
role in action selection and initiation; therefore, a deficit in
action control in ADHD may arise, in part, from misbalanced
dopamine signaling within the basal ganglia (Yin et al., 2008;
Tripp and Wickens, 2009). In our previous study (Natsheh
and Shiflett, 2015), we found that spontaneously hypertensive
rats (SHR), a rat model of ADHD, show a deficiency in
goal-directed behavior that is restored by methylphenidate,
which increases dopamine signaling. Studies in healthy rats have
shown that exposure to amphetamine (Nelson and Killcross,
2006; Nordquist et al., 2007), alcohol (Corbit et al., 2012),
stress (Dias-Ferreira et al., 2009) or binge-like consumption of
a palatable food (Furlong et al., 2014) can accelerate habitual
control. Interestingly, systemic or intra-striatal administration
of D1 receptor antagonists (SCH23390) restored goal-directed
behavior in these animals, whereas D2 receptor antagonists
(Eticlopride) enhanced habitual behavior (Nelson and Killcross,
2013; Furlong et al., 2014). Taken together, these findings
suggest normal patterns of goal-directed behavior rely on
optimal activity levels of D1 and D2 dopamine receptors (D1R,
D2R). Over-activation of D1R or under-activation of D2R
could disrupt goal-directed behavior and/or promote habitual
behavior.

Here, we hypothesize that impaired goal-directed behavior
in SHR rats results from a misbalance in D1R and D2R
activation. We assessed the effects of the D1R agonist SKF38393,
and antagonist SCH23390, and D2R agonist Quinpirole and
antagonist Raclopride on goal-directed behavior in SHR rats
and their control strain, Wistar Kyoto (WKY) rats. To assess
action control, we used instrumental procedures in which rats
made responses to gain access to rewarding food pellets. We
then used a selective-satiety procedure to examine whether
rats used outcome value to guide behavior, i.e., whether
their behavior was goal-directed. We predict that the D1R
antagonist SCH23390 and the D2R agonist Quinpirole will
restore goal-directed behavior in SHR rats and impair this

FIGURE 1 | Theoretical framework for D1R/D2R balance in Spontaneously
Hypertensive Rats (SHR) and Wistar-Kyoto (WKY) rats following normal saline,
SCH23390 (SCH), Quinpirole (Quin), SKF38393 (SKF) and Raclopride (Rac)
injections. If D1R and D2R are in balance we expect that rats will show
goal-directed behavior. If D1R and D2R are not in balance, we expect that rats
will show habitual response.

behavior in control rats. We expect the opposite set of
agonist/antagonist pairings (SKF38393/Raclopride) will further
impair performance in SHR rats as well as in control rats
(Figure 1).

MATERIALS AND METHODS

Subjects and Apparatus
Seventy-two male adult (P49–P80) rats were used in this study;
36 of which were SHR (ADHD rat model) from Charles River
Laboratories (Wilmington, MA, USA), and 36 were WKY rats,
the normotensive control strain, from Envigo (Indianapolis, IN,
USA). The choice of strains from different vendors is based
on previous studies showing that the WKY strain from Envigo
(formerly, Harlan) is most similar genetically to Charles River
SHR rats (Sagvolden and Johansen, 2012). The choice of age is
based on the notion that SHR rats can start to develop symptoms
of hypertension between the ages of 4–10 weeks which can
result in neurological and behavioral deficits (Marcil et al., 1997;
Christiansen et al., 2002; Ueno et al., 2002). Therefore, the age
that has been widely used across SHR studies and that offers the
fewest complications with hypertension is younger adult rats to
serve as a model for ADHD (Sagvolden et al., 1992, 1993, 1998;
Sagvolden, 2000). Rats weighed approximately 110–175 g at the
time of testing.

Rats were housed in pairs in 47.6 × 20.3 × 26 cm (w × h × d)
polycarbonate containers with Alpha Chip bedding material
(Northeastern Products Corp., Warrensburg, NY, USA) and
had free access to water. One week after arrival, all rats were
placed on a restricted food diet of approximately 15 g of
standard rat pellets (Purina, St. Louis, MO, USA) per day.
Rats were fed after their daily behavioral training session. Food
restriction continued for the duration of the experiment. All
procedures were approved and carried out in accordance with the
recommendations of the Rutgers University Institutional Animal
Care and Use Committee.
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Behavioral training and testing took place in 12 identical
rat operant conditioning chambers (Med Associates, St. Albans,
VT, USA). Each operant conditioning chamber measured
30.5× 24.1× 21 cm (w× h× d) and was constructed of stainless
steel and clear plastic walls and a stainless-steel grid floor. A
food cup with infrared detectors was centered on one wall of the
operant conditioning chamber. Retractable levers were situated
to the left and right of the food cup. Responses on these levers
delivered one food pellet from a pellet dispensermounted outside
the operant conditioning chamber. Two types of pellets were
used in the experimental procedures: 45-mg grain-based pellets
and chocolate-flavored purified pellets (Bio-serv, Frenchtown,
NJ, USA). Each operant conditioning chamber was housed in
a sound attenuating shell and equipped with a ventilation fan
that was activated during behavioral procedures. Control over
the operant conditioning chambers was enabled by a personal
computer operating through an interface. Operant conditioning
chamber operation and data collection were carried out withMed
Associates proprietary software (Med-PC).

Behavioral Procedures
General Procedures
A description/timeline of behavioral procedures is depicted in
Figure 2. Behavioral procedures commenced after 1 week of food
restriction. After instrumental training, rats were divided into
two groups. One group received injections of saline, SCH23390
and Quinpirole. The second group received injections of saline,
SKF38393 and Raclopride.

Instrumental Conditioning
Rats underwent two training sessions per day. For each training
session, one lever was inserted into the chamber and responses
the rats made on the lever delivered a single 45-mg food
pellet (Bio-serv, Flemington, NJ, USA). Responses on one
lever delivered chocolate-flavored pellets, and the opposite lever
delivered grain-based pellets. Rats were trained daily on each
lever in separate sessions with a 30-min interval between sessions.
The session terminated when rats earned 20 pellets or 25 min
had elapsed. Training lasted for 10 days (see Figure 2); on
days 1–3, each response on the lever resulted in pellet delivery
(continuous reinforcement). On days 4–5, pellets were delivered
according to a variable-ratio (VR) 5 schedule, which required,
on average, five responses to earn a pellet reward. On days
6–8, pellets were delivered according to a VR-15 schedule.
On days 9–10, pellets were delivered according to a VR-20
schedule.

Outcome Devaluation Test and Drug Injection
Rats were placed in individual cages identical to their home cage
and provided with 25 g of one of the instrumental outcomes
(either grain or chocolate-flavored pellets). After 40 min, rats
were given an intraperitoneal injection of normal saline or one
of the experimental drug treatments. Rats were returned to the
cages containing food pellets for an additional 15 min. They were
then placed in the operant conditioning chamber and both levers
were inserted. Rats had the opportunity to respond on either
lever for 5 min. No outcomes were presented in this session.
The following day, rats underwent selective satiety devaluation
of the opposite outcome from the previous day, followed by
injection of the same drug as was used the previous day, and a
choice test. Overall, the devaluation test was repeated six times.
Under each drug treatment condition, rats underwent chocolate
and grain pellet devaluation to control for pellet preference.
Rats received reminder instrumental training sessions between
consecutive devaluation sessions.

Locomotor Activity Assay
Rats were individually placed in an activity-monitoring arena
equipped with an automated locomotor activity detection system
(Accuscan, Columbus OH, USA). Rats were placed in the arena
for a 30-min habituation session. Immediately after habituation,
rats were injected with normal saline and returned to the arena
for 30 min. This was followed by an injection of one of the
experimental drugs, after which the rats were returned for a final
30-min session. Locomotor activity was estimated based on the
number of photobeam breaks that occurred as animals moved
through the arena.

Drug Treatment
All drugs were purchased from Sigma Aldrich (St. Louis, MO,
USA) and dissolved in 0.8% normal saline. For the outcome
devaluation tests we used a dose of 0.0025 mg/kg for SCH23390,
0.001 mg/kg for Quinpirole, 3.0 mg/kg for SKF38393 and
0.1 mg/kg for Raclopride (D2R-antagonist).

Statistics and Data Analysis
For instrumental conditioning tests, the rate of response was
calculated as the number of lever presses per min during
each session. Reinforcer type (chocolate or grain pellet) was
collapsed across instrumental training sessions, as no effect of
reinforcer type was observed on measures of response rate. For
the devaluation test, responses were categorized as ‘‘devalued’’ if
the rat made a response on the lever associated with the sated

FIGURE 2 | A timeline for behavioral experiments.
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outcome, and ‘‘valued’’ if the rat made a response on the lever
associated with the non-sated outcome. Data were normalized
by dividing responses on the valued or devalued lever by total
(valued plus devalued) responses. Normalization was carried out
because of strain differences in overall response rates during
the tests. Drug and saline injections were intermixed for all
experiments; therefore, there was no injection-order effect to
influence outcome devaluation responding. Similarly, chocolate
and grain devaluation was counterbalanced across devaluation
sessions to control for devaluation flavor-order effects.

Data analysis was conducted using SPSS v20. The normality
of data distribution was checked using Kolmogorov–Smirnov
tests. All data were normally distributed (p > 0.1). To analyze
instrumental performance, we used a 2-factor analyses of
variance (ANOVA) and planned comparisons using two-tailed
t-tests. The level of significance was set at α = 0.05 throughout
our analyses.

To analyze outcome devaluation data, we used mixed-model
ANOVAs and planned comparisons using two-tailed t-tests.
For rats that received SCH 23390 and Quinpirole injections,
eight SHR and nine WKY rats received only one devaluation
session under each drug condition. The results were compared
to animals that received two devaluation sessions (10 SHR
and 10 WKY), and the same pattern of results were observed;
therefore, we combined the two datasets.

RESULTS

Instrumental Training Data
All rats acquired an instrumental response; however, SHR
rats exhibited greater response rates across training sessions

compared to WKY rats. Figure 3A represents the lever-pressing
rate in SHR and WKY rats. A mixed-model ANOVA confirmed:
(1) a significant effect of training block (F(1,69) = 788.85,
p < 0.001); (2) a significant effect of strain (F(1,69) = 30.137,
p < 0.001); and (3) a significant block ∗ strain interaction
(F(1,69) = 25.87, p < 0.001). Independent-samples t-test showed
that SHR’s response rate was significantly higher than WKY’s
response rate over the first (p = 0.003) and the last (p < 0.001)
training blocks.

Outcome Devaluation Results
Effects of SCH23390 and Quinpirole on Choice
Following Outcome Devaluation (Figures 3B–D)
We injected rats prior to the choice tests with either saline,
Quinpirole (0.01 mg/kg) or SCH23390 (0.0025 mg/kg).
Responses on the valued and devalued levers were normalized as
a percentage of total responses during the test. We carried
out separate 3-factor ANOVAs on responses following
SCH23390 and Quinpirole treatment using outcome value
as the within-subjects factor and strain and type of injection
(saline vs. drug) as between-subject factors. These analyses
showed significant effects of outcome value for both
drugs (SCH23390: F(1,45) = 16.63, p < 0.001, Quinpirole:
F(1,48) = 31.67, p < 0.001). We also found a significant outcome
value ∗ strain ∗ injection interaction for both SCH23390
(F(1,45) = 6.1, p = 0.017) and Quinpirole (F(1,48) = 6.63,
p = 0.013). These data indicate that the drug effects on
responding during devaluation differed depending on the rat
strain.

Follow up t-tests revealed that following saline injections,
WKY rats showed goal-directed behavior by responding at a

FIGURE 3 | Effects of dopamine receptor agonists and antagonists on extinction test responding following outcome devaluation in SHR and WKY rats. (A) SHR
displayed a significantly greater response rate during training. Block-1 represents the average of the first three training sessions, and Block-2 represents the average
of the last three training sessions showed as the mean number of presses per min on each block of training in SHR (N = 35) and WKY (N = 36) rats. (B–G) Dopamine
receptor subtype agonists and antagonists modulate goal-directed behavior in a strain-dependent manner. The percentage of responses on the valued and devalued
levers in SHR and WKY under (B) Saline; (C) SCH23390; (D) Quinpirole; (E) Saline; (F) SKF38393; (G) Raclopride (n = 5–9 per group; error bars = ±SEM;
∗significant at p < 0.05, paired t-tests).
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significantly higher rate on the valued vs. the devalued lever.
In contrast, SCH23390 and Quinpirole disrupted goal-directed
behavior in these rats as their responses were not significantly
different between valued and devalued levers following drug
injections. We observed a different pattern in SHR rats.
Following saline injections, SHR rats showed an impairment
in goal-directed behavior, responding equally on the valued
and devalued levers. Both SCH23390 and Quinpirole restored
goal-directed behavior in these rats, as shown by significantly
greater responding on the valued lever compared to the devalued
lever (paired samples t-tests, see Figure 3 for significance
levels).

Effects of SKF38393 and Raclopride on Choice
Following Outcome Devaluation (Figures 3E–G)
We injected rats prior to the choice tests with either saline,
SKF38393 (3.0 mg/kg) or Raclopride (0.1 mg/kg). We carried
out separate 3-factor ANOVAs for SKF38393 and Raclopride
using outcome value as the within-subjects factor and strain and
type of injection (saline vs. drug) as between-subject factors.
These analyses showed significant effects of outcome value for
both drugs: SKF38393: F(1,30) = 4.28, p = 0.047, β = 0.52,
η2 = 0.13, Raclopride: F(1,28) = 5.45, p = 0.027, β = 0.62,
η2 = 0.16; however, we observed no significant interactions.
Follow up t-tests revealed that following saline injections,

WKY rats showed goal-directed behavior by responding at a
significantly higher rate on the valued vs. the devalued lever.
In contrast, following SKF38393 and Raclopride injections we
observed responses that were not significantly different between
valued and devalued levers in WKY rats. SHR rats showed
no significant difference on valued vs. devalued responding
following saline, SKF38393 or Raclopride. These data suggest,
unlike the effects of Quinpirole and SCH23390, SKF38393 and
Raclopride do not improve goal-directed behavior in SHR
rats.

The effects of the various drugs on responding during the test
following devaluation are not due to effects on food consumption
or response rates more generally. We found no effect of drug
type on the amount of food consumed during the satiety test
(see ‘‘Food Consumption’’ section). Likewise, the effects on
goal-directed behavior cannot be explained by an inability to
produce a motor response, as all animals included in the test
responded on the lever (see ‘‘Locomotor Activity Test’’ section).

Goal-Directed Score
For this analysis, we calculated a Goal-directed Score (GDS)
for each animal using the following formula: [(% of valued
responses −% of devalued responses)/(% of valued responses
+% of devalued responses)]. Figure 4 shows the average
GDS in SHR and WKY rats under Figure 4A SCH23390,

FIGURE 4 | Effects of dopamine receptor agonists and antagonists on Goal-directed Score (GDS) following outcome devaluation in SHR and WKY rats. GDS was
calculated using the formula: [% of valued responses − % of devalued responses)/(% of valued responses + % of devalued responses)]. Dopamine receptor subtype
agonists and antagonists modulate GDS in a strain-dependent manner. The GDS under injections with normal saline or: (A) SCH23390; (B) Quinpirole;
(C) SKF38393; (D) Raclopride; (n = 4–9 per group; error bars = ±SEM; significant drug × strain interactions were observed under SCH23390 (1) and Quinpirole (B),
paired t-tests).
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FIGURE 5 | Total responses per minute during devaluation test under injections with (A) normal saline, Quinpirole, or SCH23390 in SHR (Quinpirole N = 8, saline
N = 16, SCH N = 9) and WKY (Quinpirole N = 10, Saline N = 18, SCH N = 6) rats and (B): normal saline, Raclopride, or SKF38393 in SHR (Raclopride N = 9, saline
N = 9, SKF N = 8) and WKY (Raclopride N = 5, Saline N = 9, SKF N = 5) rats (error bars = ±SEM; ∗significant at p < 0.05).

Figure 4B Quinpirole, Figure 4C SKF38393 and Figure 4D
Raclopride, as compared to normal saline. Mixed-model
ANOVAs were conducted for each drug using type of injection
(drug vs. normal saline) as within-subject factor and strain
as between-subject factor. These analyses revealed significant
drug ∗ strain interaction for SCH23390 (F(1,12) = 4.93,
p = 0.046) and Quinpirole (F(1,14) = 8.04, p = 0.013) and
significant drug effect for SKF38393 (F(1,10) = 7.7, p = 0.02).
Overall, these data indicate that the effects of SCH23390 and
Quinpirole on goal-directed responding differ by strain: in
SHR rats these drugs tend to increase goal-directed responding,
whereas in WKY rats they tend to decrease goal-directed
responding.

Total Response Rate Under Different Drug Status
During the Devaluation Test
Effects of SCH23390 and Quinpirole on Response Rate
Following Outcome Devaluation
Figure 5A shows the effect of Quinpirole and
SCH23390 compared to normal saline injections on total
responses per minute (the average of responses on both levers
per minute) for both rat strains during the devaluation test. A
2 × 3 multifactorial ANOVA with total responses per minute
as dependent variable and strain and medication status as fixed
factors showed no significant effects of drug (F(2,61) = 1.76,
p = 0.18) or strain ∗ drug interaction (F(2,61) = 0.65, p = 0.52).
However, there was a significant effect of strain (F(1,61) = 34,
p< 0.001). Overall, these results indicate that drug injections did
not affect total response rate during the devaluation test.

Effects of SKF38393 and Raclopride on Response Rate
Following Outcome Devaluation
Figure 5B shows the effect of SKF38393 and Raclopride
compared to normal saline injections on the total responses
per minute during the devaluation test. A 2 × 3 multifactorial
ANOVA with total responses per minute as dependent variable
and strain and medication status as fixed factors showed
significant effects of drug (F(2,42) = 25.65, p < 0.001) and strain∗

drug interaction (F(2,42) = 4.08, p = 0.024) with an effect of strain
approaching significance (F(1,42) = 4.04, p = 0.051). SHR rats
showed a significantly greater response rate compared to WKY
rats under normal saline (t(16) = 2.4, p = 0.029), and SKF38393
(t(14) = 2.85, p = 0.013). Compared to saline, SKF38393 and
Raclopride significantly reduced response rates in SHR rats
(SKF38393: t(10.93) = 5.07, p < 0.001; Raclopride: t(9.82) = 6.41,
p < 0.001). In WKY rats, SKF38393 significantly reduced
response rates compared to saline (t(8.4) = 3.41, p = 0.009).
Overall, these results indicate that drug injections affected total
response rate during the devaluation test in the two strains as
compared to responses under normal saline injections. However,
in this experiment the first two devaluation sessions were carried
out under normal saline, while drug injections were carried out
during the last four devaluation sessions. Therefore, since the
decrease in response rate was observed under injections of both
drugs (SKF38393 [D1-agonist] and Raclopride [D2-antagonist]),
lower sensitivity to the devaluation test, which can ensue with
repetitive devaluation sessions, could account for these results.
In line with this, locomotor activity test results showed that both
drug injections did not affect locomotion at doses of 3.0 mg/kg
SKF38393 or 0.1 mg/kg Raclopride (see ‘‘Locomotor Activity
Test Results’’ section).

Exclusion Criteria
Exclusion criteria for analysis included: (1) Outcome preference:
we excluded rats that had a preference to chocolate or grain
pellets during the last block of instrumental training with a
response rate of >1.5× responses per minute on the lever that is
associated with the preferred outcome. Out of 72 rats, 8 SHR rats
and 5 WKY rats were excluded from the outcome devaluation
test. (2) Lever preference: we excluded rats that had a preference
to the right or left lever during the extinction test with >2 SD
from the mean percentage valued or devalued. We excluded two
devaluation sessions of SHR and four devaluation sessions of
WKY rats. (3) Low response rate: we excluded rats that had a low
response rate during extinction with a total response of <1 per
minute on both levers. We excluded 13 devaluation sessions of
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TABLE 1 | Number of rats included across strain and medication status.

Drug Strain Exclusion Final N

Normal saline SHR 8 pellet preference; 2 lever preference; 1 no training 25
WKY 5 pellet preference; 3 low response rate; 1 no training 27

Quinpirole SHR 4 pellet preference 8
WKY 2 pellet preference 10

SCH23390 SHR 3 pellet preference 9

WKY 3 pellet preference; 2 low response rate; 1 no training 6
Raclopride SHR 2 pellet preference; 1 no training 9

WKY 1 pellet preference; 2 lever preference; 4 low response rate 5
SKF38393 SHR 2 pellet preference; 1 low response rate; 1 no training 8

WKY 1 pellet preference; 2 lever preference; 1 low response rate 8

WKY rats and one devaluation session of SHR rats. See Table 1
for reference.

Food Consumption
To determine whether drug or rat strain influenced food
consumption during the devaluation procedure, we examined
the amount of food rats consumed during the first 40 min
of the satiety procedure prior to injections as well as in the
20 min after injections. The majority of food consumption
(∼90%) occurred during the first 40 min prior to injections
(Table 2). In this interval we observed no strain differences in
the amount of food consumed. Food consumption following
drug injection did not differ from saline except for SKF38393 in
SHR rats (t(33.3) = 2.64, p = 0.012). Since the majority of
food consumption occurred during the first 40 min prior to
injections (92%), only 8% of food consumption (average of
1.1 g) occurred under the effect of drugs, which implicates
that even though there was a significant effect of drugs on
food consumption, it was minimal, with a low effect size
(η = 0.047).

Locomotor Activity Test
We recorded locomotor activity during 30-min sessions
of habituation, following saline injection, and following
drug injection. The following doses were used: SCH23390
(0.0025 mg/kg); Quinpirole (0.001 mg/kg or 0.01 mg/kg);
SKF38393 (1.0 mg/kg or 3.0 mg/kg); Raclopride (0.05 mg/kg or
0.1 mg/kg). Horizontal activity was averaged across 5-min blocks
for each session (blocks 1–6).

Effects of SCH23390 and Quinpirole on Locomotor
Activity (Figures 6A–D)
SHR rats traveled a greater distance as measured by horizontal
activity during habituation and under saline and drug injections.
We analyzed locomotion under each drug separately using
two-factor ANOVA’s, with strain and phase (habituation,

saline, or drug) as factors. Under both SCH23390 and
Quinpirole, we observed a significant effect of strain (SCH23390:
F(1,10) = 82.31, p = 0.025; Quinpirole: (F(1,10) = 21.72,
p = 0.001), indicating SHR rats were traveling a greater
distance. Under virtually every condition tested SHR rats
made significantly greater movement compared to WKY
rats (independent-samples t-test: habituation (t(22) = 3.36,
p = 0.003); saline (t(15.72) = 4.81, p < 0.001), SCH23390
0.0025 mg/kg (t(10) = 4.31, p = 0.002), Quinpirole 0.001 mg/kg
(t(10) = 2.33, p = 0.042); Quinpirole 0.01 mg/kg (t(6.2) = 7.92,
p< 0.001).

We observed a significant effect of phase for both drugs
(SCH23390 F(2,20) = 21.22, p< 0.001; Quinpirole (F(3,30) = 56.76,
p < 0.001). Comparisons to saline revealed marginally reduced
locomotion in rats exposed to 0.0025 mg/kg SCH23390 in both
WKY (paired-samples t-test: t(5) = 2.24, p = 0.076) and SHR
(t(5) = 2.24, p = 0.075). Under 0.001 mg/kg Quinpirole, we
observed no overall effect on locomotion in WKY (t(5) = 0.17,
p = 0.83), and a marginally decreased locomotion in SHR rats
(t(5) = 2.18, p = 0.08). However, a dose of 0.01 mg/kg did
significantly decrease locomotion in both strains as compared to
saline injections (WKY: t(5) = 5.99, p = 0.002, SHR: t(5) = 2.61,
p = 0.047).

Effects of SKF38393 and Raclopride on Locomotor Activity
(Figures 6E–H)
We again observed greater distance traveled in SHR rats. Under
SKF38393 and Raclopride we observed a significant effect of
strain (ANOVA: SKF38393 (F(1,10) = 11.33, p = 0.007; Raclopride
(F(1,10) = 5.79, p = 0.037). Locomotion was significantly greater
in SHR rats as compared to WKY rats during virtually every
condition (independent-samples t-tests: habituation (t(10) = 2.28,
p = 0.046); saline (t(10) = 2.94, p = 0.015), SKF38393 3.0 mg/kg
(t(10) = 3.89, p = 0.003); Raclopride 0.1 mg/kg (t(10) = 2.3,
p< 0.045) injections.

TABLE 2 | Amount of food pellets consumed during satiety-induced devaluation after 40 min, and in the 20 min following injections with normal saline, SCH23390,
Quinpirole, Raclopride and SKF38393.

Consumption Strain All injections Normal saline Quinpirole SCH23390 Raclopride SKF38393

After 40 min SHR 14 g ± 5.8 13.7 g ± 6 10.1 g ± 2 10.7 g ± 2.6 15.9 g ± 5.6 15.1 g ± 6.5
WKY 13 g ± 6.4 12.8 g ± 6.4 9.2 g ± 1.6 8.6 g ± 1.6 15.5 g ± 6.5 13 g ± 7.1

During the 20 min SHR 1.6 g ± 2 1.2 g ± 1.3 2.0 g ± 2.7 2.3 g ± 1 3 g ± 2.5 0.3 g ± 0.6
after injection WKY 1.2 g ± 1.7 1.3 g ± 1.7 2.7 g ± 2.3 1.4 g ± 2.6 1.3 g ± 1.3 0.3 g ± 0.6
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FIGURE 6 | Effects of dopamine receptor agonists and antagonists on locomotor activity. Locomotor activity in WKY (left column) and SHR (right column) is shown in
5-min blocks during habituation, saline injections and drug injections (A–B) SCH23390, 0.0025 mg/kg; (C–D) Quinpirole, 0.001 mg/kg and 0.01 mg/kg;
(E–F) SKF38393, 1.0 mg/kg, 3.0 mg/kg (G–H) Raclopride, 0.05 mg/kg, 0.1 mg/kg (error bars = ±SEM; n = 6–12 per group; paired t-tests; HACTV = average
horizontal activity).

We observed a significant effect of phase for both drugs
(SKF38393 F(3,30) = 10.18, p < 0.001; Raclopride F(3,30) = 10.84,
p < 0.001). Within-subjects comparisons revealed no significant
differences from saline in animals treated with SKF38393 (all
t-tests n.s.). Among rats treated with raclopride, no significant
differences from saline in locomotor activity were observed
except in SHR rats at a dose of 0.05 mg/kg, which significantly
decreased locomotion in these animals (t(5) = 2.66, p = 0.045).

DISCUSSION

Our results reveal novel roles for dopamine receptor
sub-types on goal-directed behavior in rats, and suggest
how dysregulation of activity across these sub-types may
give rise to behavioral impairments in SHR rats. SHR
rats exhibit impaired goal-directed behavior when tested
using an outcome devaluation paradigm, replicating our
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previous findings (Natsheh and Shiflett, 2015). Here, we
report that stimulation of D2 receptors or inhibition of
D1 receptors restored goal-directed behavior in SHR rats.
Conversely, we found that stimulation of D1 receptors or
inhibition of D2 receptors did not improve goal-directed
behavior in SHR rats. In WKY rats (the normotensive strain
most often used as a control group for SHR) we observed
goal-directed behavior under control conditions. However,
in contrast to SHR rats, treatment with quinpirole and
SCH23390 impaired goal-directed behavior. The divergence
in response to these drugs on measures of goal-directed
behavior between strains suggests fundamental differences in
how dopamine signaling is engaged during learning in SHR
rats.

Our findings support the notion that balanced activation
of D1 and D2 receptors is essential to display goal-directed
behavior. Our results are in agreement with models of
striatal dopamine function in action selection and initiation
(Keeler et al., 2014). Viewed through the lens of dopamine
function, some features of ADHD, such as impaired motivation,
may be attributed to misbalanced activity between these
receptor sub-types. That is, over-activation of D1 receptors
at the expense of D2 receptors might account for SHR’s
tendency towards reward proximal behavior that is under
greater control of the habitual system (Figure 1). Using
selective D2 receptor agonists and D1 antagonists restored
the balance of activation between dopamine receptor
sub-types and hence remediated the deficit in goal-directed
behavior in SHR rats, whereas these same drugs caused a
misbalance of activation in WKY rats and impaired action
control.

We hypothesize that dopamine receptor agonists and
antagonists restore goal-directed behavior in SHR rats through
their stimulation of ‘‘direct’’ striato-nigral and ‘‘indirect’’ striato-
pallidal pathways. Dopamine D1 and D2 receptors are almost
exclusively expressed in the direct and indirect pathways,
respectively (Albin et al., 1989; Gerfen et al., 1990; Wichmann
and DeLong, 1996; Burke et al., 2017). Although these
pathways are traditionally associated with motor activity, there is
increasing evidence that they are also essential for many aspects
of learning (Seger and Cincotta, 2006; Pennartz et al., 2009;
Keeler et al., 2014). Phasic and tonic dopamine neuron activity
differentially activates the direct and indirect pathway based on
the unique binding properties of dopamine receptor subtypes:
D1 receptors are stimulated during phasic DA release and exhibit
low-affinity binding of DA, while tonic release is responsible
for modulating high-affinity D2 receptors. Phasic firing is
functionally involved in reward-based behavior (Mirenowicz and
Schultz, 1994, 1996; Grace et al., 2007; Hikida et al., 2010; Kravitz
et al., 2010, 2012; Yawata et al., 2012; Morita and Hikida, 2015).
The indirect pathway has been involved in behavioral flexibility
through inhibiting actions in reward learning paradigms, leading
to flexibly switching between behaviors (Hikida et al., 2010;
Kravitz et al., 2012; Yawata et al., 2012). Reduced inhibition
of the indirect pathway, through low stimulation of D2R, can
lead to loss of inhibitory control, resulting in behavioral deficits
such as compulsivity, impulsivity, or excessive habit formation

(Yin et al., 2004; Johnson and Kenny, 2010; Seger and Spiering,
2011; Bock et al., 2013). SHR rats have a high density of striatal
D1 dopamine receptors and atypical D2 dopamine receptor
activity (Lim et al., 1990a,b; Yu et al., 1990; Linthorst et al.,
1993; Russell et al., 1995; Carey et al., 1998). Although it remains
to be tested, our findings suggest that misbalanced activation
exists between the direct and indirect pathway in SHR rats
as a consequence of this differential distribution of D1 and
D2 receptors.

The acquisition and deployment of goal-directed behavior
has been shown to depend on a balanced activity in direct and
indirect pathway neurons that may be weighted toward the
indirect pathway and the inhibition of its functional output
(Macpherson et al., 2014; Shan et al., 2014). Accordingly,
normal corticostriatal function should represent a balanced
activation/inactivation in the direct and the indirect pathways.
Dopamine depletion in the striatum, such as in Parkinson’s
disease, results in hypo-activation/hypo-inhibition of the
direct/indirect pathways, respectively that account for motor
dysfunction (Galvan and Wichmann, 2008; Magrinelli
et al., 2016), as well as cognitive deficits (Frank et al., 2004;
Redgrave et al., 2010; de Wit et al., 2011). Some studies
have proposed that the motor hyperactivity in ADHD may
reflect a ‘‘reverse Parkinsonism’’ that is characterized by
either overstimulation of dopaminergic activity in the direct
pathway, or excessive dopaminergic inhibition of the indirect
pathway (Castellanos, 1997). Here, we argue that specific
dopamine receptor modulation of the direct and indirect
pathways might explain motivational impairments in ADHD, in
addition to motor symptoms. Evidence suggests that naturally
occurring polymorphisms of the D1R and D2R genes are
implicated in patients with ADHD; however, data on the
functional significance of specific polymorphisms of these
two genes are still inconclusive (Rowe et al., 1999; Bobb
et al., 2005; Serý et al., 2006; Luca et al., 2007; Ribasés et al.,
2012).

The effects of dopamine modulation on rats’ performance
in the devaluation paradigm are not likely a consequence
of memory modulation. It has been previously shown that
instrumental incentive learning is not dopamine dependent
(Dickinson et al., 2000; Wassum et al., 2011). Thus, animals
should have intact memory of the incentive properties of the
instrumental outcomes during the choice test. It could be argued
that the lack of sensitivity to outcome value in SHR rats
may reflect either a performance deficit or a learning/memory
deficit. However, SHR rats that received D2R agonist or D1R
antagonist injections following outcome devaluation prior to
the choice test show value-sensitive responding. Therefore,
these animals did encode action-outcome associations during
instrumental learning; however, they were only able to use these
associations to guide behavior when tested under the effects
of D2R stimulation or D1R inhibition. Thus, the deficits we
observed in tests of goal-directed behavior in non-medicated
SHR rats likely reflect a deficit in performance and not learning
of goal-directed actions. Similarly, we previously found that
methylphenidate was effective in remediating goal-directed
behavior in SHR (Natsheh and Shiflett, 2015). Our current
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results suggest that increased activation of D2R in response
to methylphenidate may have been responsible for this effect.
Methylphenidate is known to increase dopamine availability in
the striatum (Volkow et al., 2002; Wilens, 2008). Given D2R’s
higher affinity to dopamine (Marcellino et al., 2012), we expect
that methylphenidate exerts its behavioral effects by increasing
D2R activation (inhibiting the indirect pathway), rather than
D1R activation (activating the direct pathway). D2 receptor
expression in the striatum of ADHD patients is correlated with
trait motivation, further supporting the relationship between
D2 activity and motivational impairments in ADHD (Volkow
et al., 2011).

Although the striatum is clearly involved in action control,
many studies have shown that other brain regions might also
be implicated in this behavior. Lesions in the prefrontal cortex
significantly decreased sensitivity to outcome devaluation in
healthy animals (Hitchcott et al., 2007). Dopamine D1 and
D2 signaling was shown to influence prefrontal circuits
that guide goal-directed behavior. Specifically, a balanced
activation of prefrontal D1R and D2R seems to be essential
for optimal temporal expectations and cognitive flexibility
during action control processes (St. Onge et al., 2011; Parker
et al., 2013, 2015). Further, altering neural excitation of the
thalamostriatal pathway produced a deficit in goal-directed
behavior (Bradfield et al., 2013; Okada et al., 2014; Aoki et al.,
2015). Another study revealed that altering the connection
between the basolateral amygdala and the nucleus accumbens
impairs sensitivity to outcome value during instrumental
responding (Shiflett and Balleine, 2010). Thus, future studies
are essential to characterize region-specific influence of
D1R and D2R activation in SHR rats during instrumental
performance.

Although SHR is the most commonly used and most widely
accepted rat model of ADHD (Sagvolden et al., 1992, 1993),
utilizing an animal model to study neurobehavioral aspects of
diseases has many limitations. It is impossible for an animal
model to completely portray all characteristics of a disorder.
Further, given that the pathophysiological mechanisms of ADHD
are still unclear, it is especially difficult to find an animal model
that will fully match its neurobehavioral correlates. Another
limitation of our study was examining medication modulation in
SHR andWKY rats under acute administration (one dose). Many

studies have reported significant variations in the therapeutic
effects of acute vs. chronic treatment with dopaminergic
medications. For example, the effects of quinpirole at low doses
may primarily activate pre-synaptic D2 autoreceptors, causing
an increase in DA release, whereas at higher doses quinpirole
may primarily affect post-synaptic D2 receptors. Future studies
with different treatment time points are required to address this
issue.

In conclusion, we show for the first time that the dominant
habitual response in SHR rats might be due to an over-activation
of D1R (over-activation of the direct pathway) and/or under-
activation of D2R (hypo-inhibition of the indirect pathway).
Modulating dopamine receptor activity has a clear effect on
mediating action control behavior in SHR and WKY rats.
Thus, unraveling action control mechanisms in ADHD can
broaden our understanding of the neural circuits underlying
cognitive symptoms of this disorder. Further studies using
pharmacological and neural imaging techniques in patients with
ADHD are imperative to delineate behavioral and neural action
control mechanisms as well as novel treatment options for this
disorder.
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