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Bone marrow stromal cells (BMSCs) produce long-lasting attenuation of pain
hypersensitivity. This effect involves BMSC’s ability to interact with the immune system
and activation of the endogenous opioid receptors in the pain modulatory circuitry.
The nuclear factor kappa B (NF-κB) protein complex is a key transcription factor that
regulates gene expression involved in immunity. We tested the hypothesis that the
NF-κB signaling plays a role in BMSC-induced pain relief. We focused on the rostral
ventromedial medulla (RVM), a key structure in the descending pain modulatory pathway,
that has been shown to play an important role in BMSC-produced antihyperalgesia.
In Sprague-Dawley rats with a ligation injury of the masseter muscle tendon (TL),
BMSCs (1.5 M/rat) from donor rats were infused i.v. at 1 week post-TL. P65 exhibited
predominant neuronal localization in the RVM with scattered distribution in glial cells.
At 1 week, but not 8 weeks after BMSC infusion, western blot and immunostaining
showed that p65 of NF-κB was significantly increased in the RVM. Given that chemokine
signaling is critical to BMSCs’ pain-relieving effect, we further evaluated a role of
chemokine signaling in p65 upregulation. Prior to infusion of BMSCs, we transduced
BMSCs with Ccl4 shRNA, incubated BMSCs with RS 102895, a CCR2b antagonist,
or maraviroc, a CCR5 antagonist. The antagonism of chemokines significantly reduced
BMSC-induced upregulation of p65, suggesting that upregulation of p65 was related to
BMSCs’ pain-relieving effect. We then tested the effect of a selective NF-κB activation
inhibitor, BAY 11-7082. The mechanical hyperalgesia of the rat was assessed with the
von Frey method. In the pre-treatment experiment, BAY 11-7082 (2.5 and 25 pmol) was
injected into the RVM at 2 h prior to BMSC infusion. Pretreatment with BAY 11-7082
attenuated BMSCs’ antihyperalgesia, but post-treatment at 5 weeks post-BMSC was
not effective. On the contrary, in TL rats receiving BAY 11-7082 without BMSCs,
TL-induced hyperalgesia was attenuated, consistent with dual roles of NF-κB in pain
hypersensitivity and BMSC-produced pain relief. These results indicate that the NF-κB
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signaling pathway in the descending circuitry is involved in initiation of BMSC-produced
behavioral antihyperalgesia.

Keywords: orofacial pain, tendon ligation, mesenchymal stromal cells, BAY 11-7082, chemokine, rostral
ventromedial medulla

INTRODUCTION

Chronic orofacial pain affects approximately 20 percent of
the population and is a major health problem (Isong et al.,
2008; Hargreaves, 2011). The most common persistent orofacial
pain condition, temporomandibular joint disorders, affects the
musculoskeletal and joint tissues, is heterogeneous in origin,
and often not successfully treated. Bone marrow stromal cells
(BMSCs) are a major type of mesenchymal stem (stromal) cells
that can differentiate into lineages of the mesenchyme such as
osteoblasts, chondrocytes and adipocytes in vitro (Pittenger et al.,
1999). One important property of BMSCs is their potential for
immune regulation (Davies et al., 2017), which have attracted
great interest in exploring their therapeutic use in a variety of
disease conditions including chronic pain. Both preclinical and
clinical studies have shown pain-relieving or antihyperalgesic
effect of BMSCs (Black et al., 2007; Abrams et al., 2009; Guo
et al., 2011, 2017; Siniscalco et al., 2011; Roh et al., 2013;
Sacerdote et al., 2013; Franchi et al., 2014; Vickers et al., 2014;
Chen et al., 2015; Pettine et al., 2015, 2016; Watanabe et al.,
2015; Evangelista et al., 2018). In a rat model of myogenic
orofacial pain involving the ligation injury of one tendon of the
masseter muscle (Guo et al., 2010), we have shown that systemic
infusion of BMSCs produced long-term attenuation of persistent
pain in both male and female rats, indicated by inhibition of
thermal and mechanical nociception and pain aversion (Guo
et al., 2011, 2016). We further showed that BMSC-produced
antihyperalgesia required their interactions with host immune
cells and activation of mu opioid receptors (MOR) in the
pain-modulatory circuitry (Guo et al., 2014, 2017). Our findings
call attention on immune regulation as a mechanism of BMSCs’
therapeutic effects.

The nuclear factor kappa B (NF-κB) protein complex is
a transcription factor that is found in almost all cell types
and controls the transcription of multiple genes involved in
immunity (Bonizzi and Karin, 2004). NF-κB is a dynamic nuclear
transcription factor that can be activated by a variety of stimuli.
Mesenchymal stromal cells promote neuroprotection via NF-κB-
mediated gene transcription (Walker et al., 2010). Interestingly,
tumor necrosis factor (TNF) produces neuroprotection and
stimulates MOR expression in neurons involving the NF-κB
pathway (Tamatani et al., 1999; Kraus et al., 2003; Fang
et al., 2018). The activation of NF-κB correlates with increased
anti-inflammatory cytokine interleukin (IL)-10 in human whole
blood cell culture (Al-Hanbali et al., 2009) and induces IL-10
expression in human monocytes (Pilette et al., 2010). We
reason that the NF-κB-involved signaling may play a role in
BMSC-induced pain relief. This hypothesis was tested in the
present study. We focused on the central mechanisms involving
rostral ventromedial medulla (RVM), a key structure in the
descending pain modulatory pathway, that has been shown to

play an important role in BMSC-produced antihyperalgesia (Guo
et al., 2011, 2017). We showed that there was an upregulation of
p65 of NF-κB in the RVM after BMSC treatment, and injection
of the NF-κB activation inhibitor into the RVM attenuated
BMSC-produced antihyperalgesia.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats, ≈8-week old at the time of
surgery, were used (Envigo-Harlan). Animals were housed
on the 9th floor of the University of Maryland School of
Dentistry. The facility is an approved, registered research site
(USDA #MD-R-118) and accredited by AAALAC. Animals
were kept under controlled environment conditions (≈22◦C),
relative humidity 40%–60%, 12 h/12 h light-dark cycles, and
food and water ad libitum. The animals’ conditions were
monitored continuously throughout the course of studies, which
include body weight, grooming, locomotion, ambulant activity
and condition of the wound. The behavioral studies involve
stimulation that produces only momentary additional pain/or
discomfort and the rats can escape from the stimuli at any time.

All surgical procedures were performed under pentobarbital
sodium (20–50 mg/kg i.p.) anesthesia. Ligation of the tendon
(TL) of the anterior superficial part of the rat masseter
muscle was achieved via an intraoral approach as described
elsewhere (Guo et al., 2010). Briefly, on the left intraoral site,
a 5-mm long incision was made posterior-anteriorly lateral
to the gingivobuccal margin in the buccal mucosa, beginning
immediately next to the first molar. The tendon of the anterior
superficial part of the rat masseter muscle was gently freed
and tied with two chromic gut (4.0) ligatures, 2-mm apart.
Animals were randomly assigned to experimental groups. The
number of animals per group was determined by our previous
studies and a power analysis. All experiments were carried out
in accordance with the National Institutes of Health (NIH)
Guide for the Care and Use of Laboratory Animals (NIH
Publications No. 80-23) and approved by the Institutional
Animal Care andUse Committee, University ofMaryland School
of Dentistry/Medicine.

BMSC Procedures
BMSCs were obtained from donor rats as described (Shen et al.,
2006; Guo et al., 2011). The rats were euthanized with CO2 and
both ends of the tibiae, femurs and humerus were cut off by
scissors. A syringe fitted with an 18-gauge needle was inserted
into the shaft of the bone and bone marrow was flushed out
with culture medium (alpha-modified Eagle medium, Gibco,
Carlsbad, CA, USA; 10% fetal bovine serum, Hyclone, Logan,
UT, USA). The bone marrow was then mechanically dissociated
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FIGURE 1 | Localization of p65 of nuclear factor kappa B (NF-κB) in rostral ventromedial medulla (RVM). Numerous neurons (top row) exhibited
p65 immunoreactivity shown by double immunofluorescence with NeuN. Few double-labeling profiles of p65 were shown with glial fibrillary acidic protein (GFAP;
middle row; astrocytes) and CD11b (bottom row; microglia). Examples of double labeled profiles are indicated by arrows. Scale = 40 µm.

and the suspension passed through a 100-µm cell strainer to
remove debris. The cells were incubated at 37◦C in 5% CO2
in tissue-culture flasks (100 × 200 mm; Sarstedt, Nümbrecht,
Germany), and non-adherent cells removed by replacing the
medium. At day 7, when the cultures reached 80% confluence,
the cells were washed with PBS and harvested. The cell numbers
were calculated by the Hemocytometer. For intravenous

administration, 1.5 × 106 cells (1.5 M) in 0.2 ml PBS were
slowly injected into one tail vein of the anesthetized rat over a
2-min period using a 22-gauge needle. The property of expanded
cells was assessed by flow cytometry with conventional markers
(Guo et al., 2011). Flow cytometry analyses were performed at
the University of Maryland GreenBaum Cancer Center Shared
Flow Cytometry Facility.

Frontiers in Integrative Neuroscience | www.frontiersin.org 3 October 2018 | Volume 12 | Article 49

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Guo et al. NF-kappaB and Orofacial Pain Relief

FIGURE 2 | Upregulation of NF-κB by bone marrow stromal cells (BMSCs). (A) Flowchart of the experiment. (B) A drawing of brainstem transverse section
illustrating RVM (Paxinos and Watson, 2014). Dashed circle indicates the area punched for analysis. 4v, fourth ventricle; 7n, facial nucleus; Py, pyramidal tract; RVM,
rostral ventromedial medulla; Sp5, spinal trigeminal tract. Scale = 1 mm. (C) Effect of BMSCs on p65 of nuclear factor kappa B (NF-κB) in RVM. RVM tissues were
collected at 1 week and 8 weeks after the BMSC injection. Total proteins isolated and separated. An example of the blot is shown on top and the relative protein
levels are shown in the bottom histogram. β-actin was a loading control. p65 of NF-κB was upregulated at 1 week after injection of primary (PRI) BMSC. ∗p<0.05 vs.
Naïve; #p < 0.05 vs. 20P (20-passage) BMSCs. (D–H) Immunostaining of p65 in RVM. Note an apparent increase in immunoreactivity in TL + PRI 1 week.
(E) Scale = 0.1 mm.

Behavioral Testing
All behavioral tests were conducted under blind conditions.
Mechanical sensitivity of the orofacial region was assessed as
described (Ren, 1999; Guo et al., 2010). A series of calibrated von
Frey filaments were applied to the skin above the injured tendon
or the corresponding contralateral side. An active withdrawal of
the head from the probing filament was defined as a response.
Each von Frey filament was applied five times at intervals of
5–10 s. The response frequencies [(number of responses/number
of stimuli) × 100%] to a range of von Frey filament forces
were determined and a stimulus-response frequency (S-R) curve
plotted. After a non-linear regression analysis, an EF50 value,
defined as the effective von Frey filament force (g) that produces
a 50% response frequency, was derived from the S-R curve
(Prism, GraphPad; Guo et al., 2004). A leftward shift of the
S-R curve, resulting in a reduction of EF50, occurred after TL,
which suggests the development of mechanical hypersensitivity,
including allodynia and hyperalgesia.

Western Blot
Rats were anesthetized with isoflurane (3%) and quickly
decapitated. The brainstem tissue block that included the RVM
was harvested by taking punches with a 15-gauge needle. The
tissues were homogenized in solubilization buffer (50 mM
Tris.HCl, pH 8.0; 150 mM NaCl, 1 mM EDTA, 1% NP40, 0.5%
deoxycholic acid, 0.1% SDS, 1 mM Na3VO4, 1 U/ml aprotinin,
20µg/ml leupeptin, 20µg/ml pepstatin A). The homogenate was
centrifuged at 20,200× g for 10 min at 4◦C. The supernatant
was removed. The protein concentration was determined using
a detergent-compatible protein assay with a bovine serum
albumin standard. For detecting the immunoreactivity with
near-infrared fluorescence using the Odyssey Infrared Imaging
System (OdysseyrCLx, LI-COR, Lincoln, NE, USA), 50-µg
protein samples were denatured by boiling for 5 min and loaded
onto 4%–20% Bis-Tris gels (Invitrogen). After electrophoresis,
proteins were transferred to nitrocellulose membranes. The
membranes were blocked for 1 h with Odyssey Blocking Buffer
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and then incubated with primary antibodies (Anti-NF-κB,
p65 subunit (Cell Signaling) diluted in Odyssey Blocking Buffer
at 4◦C overnight, followed by washing with PBS containing
0.1% Tween 20 (PBST) three times. The membranes were
then incubated for 1 h with IRDye800CW-conjugated goat
anti-rabbit IgG and IRDye680-conjugated goat anti-mouse IgG
secondary antibodies (LI-COR) diluted in Odyssey Blocking
Buffer. The blots were further washed three times with PBST
and rinsed with PBS. Proteins were visualized by scanning the
membrane with 700 and 800-nm channels. The loading and
blotting of the amount of protein was verified by reprobing
the membrane with anti-β-actin and with Coomassie blue
staining.

Immunohistochemistry
Rats were deeply anesthetized with pentobarbital sodium
(100 mg/kg, i.p.) and perfused transcardially with 4%
paraformaldehyde in 0.1 M phosphate buffer at pH 7.4.
The brain stem was removed, post-fixed, and transferred to
25% sucrose (w/v) for cryoprotection. Transverse sections
(20-µm) were cut with a cryostat. The free-floating sections
were incubated with relevant antibodies with 1% normal
goat sera and 0.3% Triton X-100 overnight at 4◦C. After
washes in PBS, the sections were incubated with relevant IgGs
conjugated to Cy3 or Cy2 (1:500; Jackson ImmunoResearch,
West Grove, PA, USA) for 4 h at room temperature or
overnight at 4◦C. Double immunofluorescent staining was
performed for p65 with NeuN (Chemicon), glial fibrillary
acidic protein (GFAP; Chemicon) or CD11b (AbD Serotec,
Novus). Following washes, the stained sections were mounted
on gelatin-coated slides and coverslipped with Vectashield
(Vector Laboratories). Slides were examined with a Nikon
fluorescence microscope and images were captured with
a CCD Spot camera. Control sections were processed
with the same method except that the primary antisera are
omitted.

Brainstem Microinjections
Rats were anesthetized with 2%–3% isoflurane in a gas
mixture of 30% O2 balanced with 70% nitrogen and placed
in a Kopf stereotaxic instrument (Kopf Instruments, Tujunga,
CA, USA). A midline incision was made after infiltration
of lidocaine (2%) into the skin. A midline opening was
made in the skull with a dental drill for inserting an
injection needle into the target site. The coordinates for the
RVM were: 10.5–11.5 mm caudal to the Bregma, midline
and 9.0 mm ventral to the surface of the cerebellum
(Paxinos and Watson, 2014). Microinjections were performed
by delivering drug solutions slowly over a 10-min period
using a 500 nl Hamilton syringe with a 32-gauge needle.
The injection needle was left in place for at least 15 min
before being slowly withdrawn. The wound was closed and
animals were returned to their cages after recovering from
anesthesia. For histology verification of the injection site, 30-µM
coronal brainstem sections were stained with NeurotraceTM

500/525 Green fluorescent Nissl Stain (Invitrogen; 1:500 for
20 min).

RNAi
Ccl4 shRNA (Accession Number NM_053858.1 CDS, target
sequence: 90: TCCCACTTCCTGCTGCTTCTCTTACACCT)
was transduced into cultured BMSCs [Ccl4 RNAi lentivirus
(piLenti-siRNA-GFP, abmr Richmond, BC, Canada)]. BMSCs
were plated onto 10-cm plate before transduction. When they
reached 80% confluence 5 ml medium (without serum) was
added with 4 µl polybrene (8 µg/ml) and 50 µl of ViralPlus
Transduction Enhancer G698 (abm). Eighty-microliter Ccl4
shRNA lentivirus or control shRNA lentivirus was then added
to the plate. Cells were incubated at 37◦C with 5% CO2 and
collected at 72 h following transduction. Successful transduction
and knockdown of Ccl4 were verified (Guo et al., 2017).

Drugs
All drugs were purchased: NF-κB activation inhibitor BAY 11-
7082 [(E)-3-(4-Methylphenylsulfonyl)-2-propenenitrile] MW
207.25, CAS Number 19542-67-7 (Calbiochem), CCR2
receptor antagonist RS-102895 hydrochloride {1′-[2-[4-
(Trifluoromethyl)phenyl]ethyl]-spiro[4H-3,1-benzoxazine-4,4′-
peperidin]-2(1H)-one} MW 426.86, CAS number 300815-41-2
(Sigma-Aldrich), and CCR5 antagonist maraviroc {4,4-
Difluoro-N-[(1S)-3-[(3-exo)-3-[3-methyl-5-(1-methylethyl)-4H
-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]oct-8-yl]-1-phenylpropyl]
cyclohexanecarboxamide} MW 513.68, CAS Number 376348-
65-1 (R&D). Drugs were dissolved in 5% dimethyl sulfoxide and
saline.

Data Analysis
Data are presented as means ± SEM. Analysis of variance
(ANOVA) and the post hoc Tukey test was performed for protein
data. One- or two-way ANOVA with repeated measures was
used for comparison of EF50s, followed by post hoc test with
corrections for multiple comparisons. P < 0.05 was considered
significant for all cases.

FIGURE 3 | Attenuation of BMSC-induced upregulation of p65 by antagonism
of chemokine signaling associated with BMSCs’ pain-relieving effect. Prior to
infusion of BMSCs, Ccl4 was knocked down from primary BMSCs by
transduction with Ccl4 shRNA, CCR2 was blocked by pretreatment of BMSCs
with RS 102895 (10 µM for 24 h), a CCR2b antagonist, and CCR5 was
blocked by pretreatment of BMSCs with maraviroc (200 nM for 24 h), a
CCR5 antagonist. Culture medium (Med) was a control for BMSCs.
##p < 0.01 vs. Naïve; ∗∗p<0.01 vs. Veh. N = 4.
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FIGURE 4 | Effect of NF-κB activation inhibitor on BMSC-produced antihyperalgesia. (A) Image shows the injection site in RVM. Coronal brainstem sections were
stained with green fluorescent Nissl stain. Arrows indicate the injection needle track and circle shows the site of injection. Scale = 1 mm. (B) Pre-treatment
experiment, BAY 11-7082 (BAY) was injected at 2 h prior to BMSC infusion. (C) Post-treatment experiment, BAY was injected at 11 days and 5 weeks after BMSC
infusion. (D) Inhibitor only experiment, BAY was injected at 7 days post-TL (TL-7d) and BMSCs were not infused. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs. veh;
#p< 0.05, ### p < 0.001 vs. TL-7d.

RESULTS

NF-κB functions as dimers formed from five-member
proteins (p50, p52, p65, RelB and c-Rel; Bonizzi and
Karin, 2004). The p50/p65 dimer is the most abundant and
considered canonical. P50 contains a nuclear localization
sequence, provides DNA binding, and interacts with the IκB

(NF-κB inhibitory proteins), while p65 has a transcription
activation domain and is a transcriptional activator.
Immunostaining of p65 showed wide-spread distribution
in RVM tissues (Figure 1). Double immunofluorescence
labeling indicated p65 expression in neurons, as shown by
extensive co-localization with NeuN, a neuronal marker
(Figure 1, Top row). In contrast, fewer scattered double-labeling
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profiles were seen with GFAP, an astrocyte marker (Figure 1,
Middle row), and CD11b, a microglia marker (Figure 1,
Bottom row).

Ligation injury of the masseter muscle tendon was produced
to assess BMSC-produced effects as described previously
(Guo et al., 2010, 2011). Masseter TL induces nociceptive
hypersensitivity lasting for months. At 1 week after TL,
1.5 × 106 BMSCs were infused into one tail vein and at 1
and 8 weeks after BMSC infusion, RVM tissues were collected
for western blot and immunohistochemistry (Figures 2A,B).
We have shown that primary, but not 20-passage (20P)
BMSCs, attenuate persistent pain hypersensitivity (Guo et al.,
2011). Thus, 20P BMSCs were used as a control. Western
blot showed that p65 of NF-κB was significantly upregulated
at 1 week after injection of primary BMSCs, compared to
naïve and 20P BMSC-treated TL rats (Figure 2C). There
was no change in p65 at 8 weeks after BMSC infusion.
Similar changes in p65 immunostaining were observed in RVM
(Figures 2D–H).

We have shown previously that chemokine signaling is critical
to BMSCs’ pain-relieving effect (Guo et al., 2017). Compared
to primary BMSCs, a number of chemokines/receptors were
significantly down-regulated in 20P BMSCs including CCL4,
CCR2 and CCR5, which underlies their inability to produce
antihyperalgesia. Knock-down of CCL4 from BMSCs or blockage
of CCR2 or CCR5 reverse BMSC-produced upregulation of
MOR and antihyperalgesia (Guo et al., 2017, 2018). To
evaluate a role of chemokine signaling in p65 upregulation,
we performed the same manipulations prior to infusion of
BMSCs, including transduction of primary BMSCs with Ccl4
shRNA, incubation of primary BMSCs with RS 102895 (10 µM
for 24 h), a CCR2b antagonist, or maraviroc (200 nM for
24 h), a CCR5 antagonist. The antagonism of chemokines
significantly reduced BMSC-induced upregulation of p65
(Figure 3), suggesting that upregulation p65 was related to
BMSCs’ pain-relieving effect.

We then tested the effect of a selective NF-κB activation
inhibitor, BAY 11-7082. In rats receiving TL, mechanical
sensitivity was assessed as described (Ren, 1999; Guo et al.,
2010). In the pre-treatment experiment, BAY 11-7082 (2.5 and
25 pmol/0.5 µl) or drug vehicle (0.5 µl) was injected at 2 h
prior to BMSC infusion (Figures 4A,B). In vehicle-treated rats,
EF50 was significantly increased following infusion of BMSCs,
compared to 7 days post-TL (TL-7d) rats (Figure 4B; p < 0.05),
indicating antihyperalgesia. Pretreatment with BAY 11-7082
significantly attenuated this antihyperalgesia (p < 0.05–0.001),
examined at 1–2 days after BMSC infusion (Figure 4B).
Post-treatment with BAY 11-7082 (25 pmol/0.5 µl) at 11 days
after BMSC infusion led to a smaller reduction of EF50, compared
to the pretreatment (Figures 4B,C). Injection of BAY 11-7082
at 5 weeks post-BMSC did not have an effect on BMSC-induced
antihyperalgesia (Figure 4C).

Although NF-κB is seemingly involved in BMSC-induced
protection as shown above, it is well known that activation of
NF-κB pathway contributes to pro-inflammatory responses,
characterized by induction of pro-inflammatory cytokines
such as IL-1β (Ghosh et al., 1998; Bonizzi and Karin,

FIGURE 5 | Schematic illustration of BMSC-induced activation of NF-kB
pathway. EV, extracellular vesicles. See text for details.

2004). Accordingly, NF-κB-involved signaling plays a
role in enhanced pain sensitivity (Ross-Huot et al., 2013;
Zhou et al., 2018). In our inhibitor only experiment, BAY
11-7082 (25 pmol/0.5 µl) was injected into the RVM at
7 days after TL and BMSCs were not infused. BAY 11-7082
significantly raised EF50s at 1 day (Figure 4D) and 2 days
(not shown) after injection, indicating attenuation of
TL-induced pain. This result is consistent with dual roles
of NF-κB in pain hypersensitivity and BMSC-produced pain
relief.

DISCUSSION

Our recent results indicate that interactions between
infused BMSCs and the host immune system underlie
their antihyperalgesic effect (Guo et al., 2017). Through the
monocyte/macrophage population and associated chemokines
and their receptors, BMSCs upregulate MOR in the RVM and
produce potent antihyperalgesia. To extend these findings, we
show here that the NF-κB pathway, a pivot of immune responses,
is involved in BMSC’s pain-relieving effect. In the context of
TL-induced orofacial hyperalgesia and transplantation of
BMSCs, p65 of NF-κB was upregulated in the RVM and
inhibition of NF-κB rekindled hyperalgesia.

The significance of upregulation of p65 in BMSCs’
antihyperalgesia is supported by its dependance on related
chemokine signaling. Down regulation of CCL4 from BMSCs
or blocking CCR2 and CCR5 of BMSCs prevented BMSCs
from producing antihyperalgesia (Guo et al., 2017, 2018).
Consistently, we show that p65 upregulation was significantly
reduced under those conditions. However, the NF-κB pathway
did not seem to be important for the late maintenance of
pain-relieving effect of BMSCs. P65 was only upregulated at
the first week after the BMSC treatment and pretreatment
with NF-κB inhibitor was able to reverse antihyperalgesia.
Contrastingly, post-treatment with BAY 11-7082 at the late
5-week time point was ineffective. These observations suggest
that NF-κB activation is mainly involved in initialization of
BMSCs’ therapeutic effect.

The present findings represent an apparent paradox with
regard to function of NF-κB signaling. It is well known that
NFκB activation is pro-inflammatory, characterized by induction
of pro-inflammatory cytokines (Ghosh et al., 1998; Bonizzi and
Karin, 2004). Studies have shown contribution of NF-κB to
persistent pain (de Mos et al., 2009; Ross-Huot et al., 2013;
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Borghi et al., 2017). Thus, under persistent pain conditions
without BMSC treatment, suppressing NF-κB should attenuate
hyperalgesia (Ledeboer et al., 2005; Zhou et al., 2018). Without
BMSCs, our results are consistent with pronociceptive role of
NF-κB, as BAY 11-7082 attenuated mechanical hypersensitivity
in TL rats.

It is appreciated that the function of NF-κB is diverse
and dual roles of NF-κB signaling have been noticed. In
fact, genes encoding proteins with opposite functions can
be responsive to NF-κB (see Massa et al., 2006). NF-κB
activity is also involved in the resolution of inflammation
(Lawrence et al., 2001). Both pro- and anti-inflammatory
cytokines can be induced by NF-kB activation (see Chang and
Vancurova, 2013). We have observed upregulation of IL-10
and CD206, a marker of anti-inflammatory microglia, in the
RVM after BMSC injection in TL rats (Ren, in press), which
correlates with the increase of p65. NF-κB has been shown
to positively regulate Foxp3 expression in Tregs (T regulatory
cells; Long et al., 2009), which is in line with its role in
the resolution of inflammation. RelB of NF-κB can induce
and suppress gene expression (Madge and May, 2011). In
the multiple sclerosis model, the activation of NF-κB protects
oligodendroctyes against inflammation (Stone et al., 2017).
The antihyperalgesic effects of NF-κB could be explained
by phenotype switching action of BMSCs on immune cells.
BMSCs can reprogram monocyte/macrophage and promote an
anti-inflammatory phenotype (Al-Hanbali et al., 2009; Németh
et al., 2009; Dayan et al., 2011; Guo et al., 2017), likely involving
NF-κB activation (Pilette et al., 2010). Together with endogenous
opioids, BMSC-produced antihyperalgesia should offset the pain
facilitatory effect of NF-κB.

We noted that p65 of NF-κB widely distributed in RVM
neurons, which provides an integrated platform for interactions
between the neuron and immune system. We have shown that
RVM MOR-containing neurons contribute to BMSC-produced
antihyperalgesia (Guo et al., 2011, 2017). MOR activates NF-κB
signaling (Hou et al., 1996; Wang et al., 2004; Liu and Wong,
2005). Upregulation of MOR expression in neurons may also be
downstream to NF-κB activation (Kraus et al., 2003; Wei and
Loh, 2011; Wagley et al., 2013). In cell cultures, TNF stimulates
MOR expression in immune cells as well as neurons involving
the NF-κB pathway (Kraus et al., 2003). Additionally, through the
NF-κB pathway, TNF promoted IL-1receptor antagonist release
from mesenchymal stromal cells to facilitate wound healing
(Kou et al., 2018). Interestingly, compared to primary BMSCs,
TNF is dramatically down-regulated in 20P BMSCs that are
ineffective in producing antihyperalgesia (Guo et al., 2017) and
TNF activate NF-κB pathway through phosphorylation of p65 in
HeLa cell cultures (Wang and Baldwin, 1998). On the other hand,
IL-6 induces MOR transcription in the human neuroblastoma
cell line that involves transcription factors signal transducers
and activators of transcription 1 (STAT1) and STAT3, but not
NF-κB (Börner et al., 2004). It would be interesting to know
cytokine-specific NF-κB-mediated regulation of MOR in vivo
after transplantation of BMSCs.

Studies have shown that CXCL1-CXCR2 chemokine
signaling produces biological effects involving downstreamNF-κ

activation (Cai et al., 2010; Dong et al., 2013). We speculate that
CXCL1-CXCR2 signaling induces NF-κB upregulation in our
model (Figure 5). Systemic BMSCs interact directly, or via their
secreted extracellular vesicles, with monocytes in the circulation.
Removing monocytes/macrophages largely attenuates BMSCs’
antihyperalgesia (Guo et al., 2017) and monocytes have been
shown as major recipient of BMSC-derived extracellular vesicles
(Di Trapani et al., 2016). In TL rats receiving BMSC treatment,
CXCL1 is specifically upregulated in peripheral monocytes
and cerebrospinal fluid, and CXCR2 is upregulated in RVM
neurons containing MOR (Guo et al., 2017). Further, the
CXCL1-CXCR2 signaling in RVM neurons is required for
BMSC-produced antihyperalgesia (Guo et al., 2017). It remains
to be shown that BMSC-induced upregulation ofMOR is causally
related to NF-κB activation involving the CXCL1-CXCR2 axis.

The present results extend our previous findings that
in vivo immune interactions underlie mechanisms of
BMSC-produced pain relief. We provide first evidence that
the NF-κB signaling pathway in the descending circuitry is
involved in BMSC-produced behavioral antihyperalgesia. The
activation of NF-κB following BMSCs leads to a protective
outcome that opposes to a conventional proinflammatory
role. The results suggest that activation of NF-κB may have
diverse functional consequences, depending upon the type
of stimuli and cellular environment. Future studies should
explore cell-specific involvement of different NF-κB dimers,
canonical and non-canonical (Massa et al., 2006), under different
pathological and therapeutic conditions.
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