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Background: Individuals with autism spectrum disorder (ASD) show elevated levels

of motor variability that are associated with clinical outcomes. Cortical–cerebellar

networks involved in visuomotor control have been implicated in postmortem and

anatomical imaging studies of ASD. However, the extent to which these networks show

intrinsic functional alterations in patients, and the relationship between intrinsic functional

properties of cortical–cerebellar networks and visuomotor impairments in ASD have not

yet been clarified.

Methods: We examined the amplitude of low-frequency fluctuation (ALFF) of cortical

and cerebellar brain regions during resting-state functional MRI (rs-fMRI) in 23 individuals

with ASD and 16 typically developing (TD) controls. Regions of interest (ROIs) with ALFF

values significantly associated with motor variability were identified for for patients and

controls respectively, and their functional connectivity (FC) to each other and to the rest

of the brain was examined.

Results: For TD controls, greater ALFF in bilateral cerebellar crus I, left superior temporal

gyrus, left inferior frontal gyrus, right supramarginal gyrus, and left angular gyrus each

were associated with greater visuomotor variability. Greater ALFF in cerebellar lobule

VIII was associated with less visuomotor variability. For individuals with ASD, greater

ALFF in right calcarine cortex, right middle temporal gyrus (including MT/V5), left Heschl’s

gyrus, left post-central gyrus, right pre-central gyrus, and left precuneus was related to

greater visuomotor variability. Greater ALFF in cerebellar vermis VI was associated with

less visuomotor variability. Individuals with ASD and TD controls did not show differences

in ALFF for any of these ROIs. Individuals with ASD showed greater posterior cerebellar

connectivity with occipital and parietal cortices relative to TD controls, and reduced FC

within cerebellum and between lateral cerebellum and pre-frontal and other regions of

association cortex.
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Conclusion: Together, these findings suggest that increased resting oscillations within

visuomotor networks in ASD are associated with more severe deficits in controlling

variability during precision visuomotor behavior. Differences between individuals with ASD

and TD controls in the topography of networks showing relationships to visuomotor

behavior suggest atypical patterns of cerebellar–cortical specialization and connectivity

in ASD that underlies previously documented visuomotor deficits.

Keywords: autism spectrum disorder, resting-state functional MRI, visuomotor control, precision grip, cortical–

cerebellar connectivity, amplitude of low-frequency fluctuations, functional connectivity

INTRODUCTION

Autism spectrum disorder (ASD) is characterized by difficulties
in social interaction and communication, a restricted repertoire
of interests and stereotypic behaviors (American Psychiatric
Association, 2013). Sensorimotor deficits are common in ASD
including reduced accuracy of ballistic and smooth pursuit
eye movements (Takarae et al., 2007; Schmitt et al., 2014),
gait abnormalities (Esposito and Ventola, 2008; Calhoun et al.,
2011), macrographia (Fuentes et al., 2009), and atypical finger
mannerisms (Anzulewicz et al., 2016). Reduced sensorimotor
control interferes with multiple adaptive skills (Travers et al.,
2016), and more severe motor deficits appear to be related to
more severe social (Haswell et al., 2009; Landa et al., 2016),
cognitive (Estes et al., 2015), and language impairments in ASD
(Iverson, 2010).

Our group has documented that individuals with ASD show
increased force variability relative to typically developing (TD)
controls during visually guided precision gripping (Mosconi
et al., 2015; Wang et al., 2015) and isometric index finger
abduction (Wang et al., 2017). Precision force control is essential
for manual dexterity, and increased grip force variability is
associated with diminished capacity to execute manual motor
tasks such as writing, buttoning clothes, and manipulating small
or delicate items (Potter et al., 2009). Non-human primate and
task-based functional magnetic resonance imaging (tb-fMRI)
studies have delineated distinct cortical–cerebellar networks
involved in reactively adjusting sustained precision motor
behavior in response to visual information (Kelly and Strick,
2003; Vaillancourt et al., 2006; Coombes et al., 2010). Specifically,

Abbreviations: ASD, autism spectrum disorder; tb-fMRI, task-based functional
MRI; rs-fMRI, resting-state functional MRI; BOLD, blood-oxygen-level
dependent; FC, functional connectivity; ROI, region of interest; ALFF, amplitude
of low-frequency fluctuations; FSIQ, full scale IQ; PIQ, performance IQ; VIQ,
verbal IQ; RBS-R, repetitive behaviors scale-revised; SFG.R, right superior frontal
gyrus; MFG.L, left middle frontal gyrus; IFG.L, left inferior frontal gyrus; Pre-
CG.R, right pre-central gyrus; PoCG.L, left post-central gyrus; SPG.L, left superior
parietal gyrus; SPG.R, right superior parietal gyrus; SMG.R, right supramarginal
gyrus; ANG.L, left angular gyrus; PCUN.L, left precuneus; HES.L, left Heschl’s
gyrus; STG.L, left superior temporal gyrus; MT/V5. R, right middle temporal
gyrus including visual area 5; SOG.R, right superior occipital gyrus; SOG.L,
left superior occipital gyrus; MOG.L, left middle occipital gyrus; CAL.R, right
calcarine cortex; DCG.L, left median cingulate gyrus; CBL.Vermis VI, cerebellar
vermis VI; CBL.Crus I.L, left cerebellar crus I; CBL.Crus I.R, right cerebellar crus
I; CBL.Crus II.L, left cerebellar crus II; CBL.Crus II.R, right cerebellar crus II;
CBL.VIII.L, left cerebellar lobule VIII.

visual–spatial information is processed in calcarine cortex and
relayed to posterior parietal cortex (Glickstein, 2000). Visual
feedback information is translated directly to ventral and dorsal
premotor cortex, and then to primary motor cortex in order to
adjust outgoing motor commands. Additionally, parietal–ponto–
cerebellar–thalamo–motor cortical pathways (Glickstein, 2000;
D’Mello and Stoodley, 2015) integrate sensory feedback error
information to refine motor outputs at the periphery. Within
the cerebellum, anterior (I–V) and inferior (VIII–X) lobules are
densely connected with somatomotor and brainstem circuits and
are involved in basic sensorimotor behaviors (Nitschke et al.,
2005; Stoodley and Schmahmann, 2009, 2010). In contrast, the
more phylogenetically advanced lateral hemispheres (crus I–
II) innervate pre-frontal and association cortices via dentate
nuclei and thalamus (Ramnani, 2006). The extent to which
these distinct cortical–cerebellar circuits are functionally affected
and associated with visuomotor impairments in ASD is not
yet known.

Consistent and growing evidence from neuroimaging studies
suggests that ASD is characterized by abnormalities of distributed
functional networks, rather than focal impairment. Task-based
fMRI (tb-fMRI) studies have documented reduced activation
of cortical–cerebellar networks accompanied by increased
recruitment of supplementary motor area during simple
sequential finger tapping (Mostofsky et al., 2009). Using diffusion
tensor imaging, several studies have demonstrated reduced white
matter microstructural integrity within fronto–parietal networks
(Fitzgerald et al., 2018), cortical–basal ganglia networks (Barnea-
Goraly et al., 2004; Shukla et al., 2010; Nair et al., 2015), brainstem
(Hanaie et al., 2016), and both middle and superior peduncles
of the cerebellum in ASD (Catani et al., 2008; Brito et al.,
2009; Hanaie et al., 2013). These studies suggest that aberrant
functional and structural connectivity of cortical and subcortical
networks supporting sensorimotor control may contribute to
sensorimotor impairments in ASD.

The examination of brain activity during resting-state
fMRI (rs-fMRI) is a well-validated approach that allows
characterization of intrinsic properties of regional- and network-
level functional activation and connectivity (Biswal et al.,
1995; Fox and Raichle, 2007). During rest, the brain displays
spontaneous low-frequency (0.01–0.08Hz) blood oxygen level-
dependent (BOLD) fluctuations reflecting neural activity when
goal-directed cognitive behavioral actions and external sensory
inputs are minimized relative to active task conditions (Biswal
et al., 1995; Zuo et al., 2010). Importantly, these low-frequency

Frontiers in Integrative Neuroscience | www.frontiersin.org 2 May 2019 | Volume 13 | Article 17

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Wang et al. Visuomotor Brain Function in Autism

fluctuations during rest show high levels of temporal correlation
with discrete proximal and distal brain regions that comprise
specialized brain networks involved in cognition and behavior
as determined by tract-tracing, histopathological, and tb-
fMRI studies (Fox and Raichle, 2007; Fox et al., 2007; Ma
et al., 2011). Moreover, coherent intrinsic BOLD fluctuations
account for a majority of the BOLD–behavior relationship
observed during tb-fMRI (Fox et al., 2006, 2007). For example,
the resting amplitude of low-frequency fluctuations (ALFFs)
and functional connectivity (FC) of frontal–parietal motor
networks are strongly associated with the rates at which
individuals are able to learn novel manual motor skills
(Ma et al., 2011).

Few studies have characterized regional ALFF during rest
in ASD, although several rs-fMRI studies have documented
atypical FC in patients relative to controls (Just et al., 2004;
Jones et al., 2010; Tyszka et al., 2014; Cerliani et al., 2015;
Hull et al., 2017). A consistent observation of these studies
includes reduced long-distance cortical FC in individuals with
ASD, with effects most pronounced within sensorimotor, default
mode, and visual perceptual networks (Assaf et al., 2010; Di
Martino et al., 2014; Hahamy et al., 2015). Recent studies showed
decreased cerebellar connectivity to somatomotor and visual
cortices in ASD relative to controls that was related to more
severe ASD symptoms (Khan et al., 2015; Cardon et al., 2017).
These findings suggest that intrinsic functional communication
between discrete regions of visual–motor brain networks may be
selectively impaired in ASD and related to key clinical features of
the disorder. It remains unclear whether intrinsic ALFF and FC
of these networks are associated with visuomotor impairments
in ASD.

The present study aimed to characterize intrinsic functional
properties of distinct brain regions and networks associated
with visually guided precision motor control in individuals
with ASD and matched TD controls. ALFF and FC were
quantified during rs-fMRI and compared with precision grip
force variability during a visuomotor task previously studied in
ASD (Mosconi et al., 2015; Wang et al., 2015). Based on prior
findings showing increased involvement of “non-visuomotor”
networks in ASD during simple motor tasks (Takarae et al.,
2007; Mostofsky et al., 2009), we used a data-driven rather than
a pre-defined region of interest (ROI) approach to identify
cortical and subcortical brain regions associated with force
variability. This approach has the advantage of identifying
relevant ROIs that are outside primary sensorimotor networks
but still associated with visuomotor behavior. FC between brain
regions identified as significant in our ALFF–force variability
analysis was then compared between groups and examined
in relation to visuomotor behavior. Given prior findings that
more severe motor abnormalities (Haswell et al., 2009; Estes
et al., 2015; Landa et al., 2016) and FC alterations (Khan
et al., 2015; Cardon et al., 2017) of visuomotor networks are
associated with more severe ASD symptoms, we also examined
the relationship between visuomotor network ALFF and FC
with clinical ratings of social–communication abnormalities
and restricted and repetitive behaviors in individuals
with ASD.

METHODS

Participants
Twenty-three participants with ASD and 16 healthy controls
completed a rs-fMRI scan. Of these participants, 10 individuals
with ASD and 11 age-, gender-, and IQ-matched controls also
completed a task of visually guided precision gripping during
a separate tb-fMRI run (Table 1). Among the participants who
completed the rs-fMRI run, 12 (ASD = 10, controls = 2)
were not administered the tb-fMRI procedure, as the protocol
was developed subsequent to the rs-fMRI study initiation. Six
participants (ASD = 3, controls = 3) completed the rs- and tb-
fMRI studies, but their data were not included due to technical
or task compliance issues (e.g., intermittent relaxation of force
during the task).

Individuals with ASD were recruited through community
advertisements and local clinical programs. All participants
with ASD met classification criteria for autism on the Autism
Diagnostic Inventory-Revised (ADI-R) (Lord et al., 1994) and
for autism or autism spectrum on the Autism Diagnostic
Observation Schedule (ADOS) and were diagnosed with ASD
according to DSM-5 criteria based on expert clinical opinion
(American Psychiatric Association, 2013). IQ was assessed using
theWechsler Abbreviated Scales of Intelligence (Wechsler, 2011).
No individuals with ASD had any known genetic syndrome
associated with ASD (e.g., fragile X syndrome).

Control participants were recruited from the community
and had a score of eight or lower on the Social Communication
Questionnaire (SCQ) (Rutter et al., 2003). Control participants
were excluded for current or past psychiatric or neurological
disorders, family history of ASD in first- or second-degree
relatives, or a history in first-degree relatives of a developmental
or learning disorder, psychosis, or obsessive–compulsive
disorder. No participants were taking medications known
to affect motor performance at the time of testing, including
antipsychotics, stimulants, or anticonvulsants (Reilly et al., 2008).
No participant had a history of head injury, birth asphyxia, or
non-febrile seizure. Study procedures were approved by the local
Institutional Review Board. Adult participants provided both
informed and written consent, and minors provided assent in
addition to written consent from their legal guardian.

Visuomotor Data Acquisition
MRI scanning was completed on an Achieva 3-Tesla Philips
system (Philips Medical Systems, Andover, MA). Each scanning
session included a T1-weighted high-resolution structural scan
(repetition time= 8.1ms; echo time= 3.373ms; flip angle= 12◦;
field of view= 256× 204× 160mm3; matrix= 256× 204× 160;
160 sagittal slices; voxel size = 1 mm3; no gap). The T1 scan was
performed prior to functional scans to facilitate functional data
registration to standardized space.

Experimental procedures for the fMRI visuomotor test were
similar to laboratory tests reported previously from our group
(Mosconi et al., 2015; Wang et al., 2015). Prior to MR imaging,
each participant’s maximum voluntary contraction (MVC) was
measured using a custom Bragg grating fiber optic force
transducer (Model sm130; Neuroimaging Solutions, Gainesville,
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TABLE 1 | Demographic and diagnostic characteristics [mean (SD)] for TD controls and individuals with ASD.

Individuals who completed both tb-fMRI and rs-fMRI Individuals who completed rs-fMRI

Controls (n = 11) ASD (n = 10) p Controls (n = 16) ASD (n = 23) p

Age in years 22.82 (4.38) 21 (5.58) 0.414 23.31 (4.11) 19.09 (5.90) 0.018†

Range 17–33 years 14–32 years 17–33 years 10–32 years

% Malea 90.9% 100% 1.000 93.8% 91.3% 1.000

FSIQ 120.70 (11.19) 109.90 (16.05) 0.098 121.07 (11.25) 101.78 (16.43) 0.000***

Range 94–133 79–129 94–138 78–129

PIQ 118.80 (11.60) 108.80 (15.85) 0.125 118.40 (10.44) 104.00 (14.87) 0.002**

Range 94–133 83–129 94–133 79–129

VIQ 118.00 (12.03) 109.10 (16.27) 0.181 118.87 (12.55) 99.39 (18.50) 0.001**

Range 95–135 80–133 95–140 64–133

ADOS social 9.70 (3.89) 9.68 (3.68)

Range 4–16 4–16

ADOS RRB 2.70 (2.00) 2.68 (1.55)

Range 0–7 0–7

RBS-R total 23.14 (13.68) 26.85 (19.74)

Range 9–47 0–78

FSIQ, full scale IQ; PIQ, performance IQ; VIQ, verbal IQ; ADOS Social, ADOS social affect algorithm score; ADOS RRB, ADOS restricted and repetitive behaviors algorithm score; RBS-R

total, repetitive behaviors scale-revised total score.
aChi-square (χ2 ) statistics using Fisher’s exact test.
†
p < 0.05, *p < 0.01, **p < 0.005, ***p < 0.001.

FL). The transducer was housed in a precision grip apparatus.
Participants were instructed to hold the apparatus using the right
thumb, middle, and index fingers (Figure 1; e.g., Neely et al.,
2016). Participants then were instructed to press as hard as they
could for three 5-s trials, and the average of their maximum force
during these trials was used as their MVC.

During the scan, participants rested their hands at their sides
and used their right hand to grip the force transducer without
moving their arm while viewing visual feedback regarding their
performance. A stationary TARGET bar (red/green) located in
the middle of the screen was set to 60% of each individual’s MVC.
The TARGET bar turned from red to green at the beginning
of each trial to cue participants to begin pressing the gripping
device. Participants’ motor performance was represented as a
white FORCE bar that moved upward with increases in force
output. Participants were instructed to press on the transducer
so that the white FORCE bar reached and stayed at the same level
as the stationary TARGET bar.

The visual angle of the FORCE bar was set to 0.623 as we have
done previously (Mosconi et al., 2015). Participants completed
five 24-s blocks in which they pressed on the transducer while
receiving visual feedback. Each run began and ended with 24-s
rest blocks, and each force block was separated by 24-s rest blocks
(total scan time: 4:50). Only participants successfully completing
at least three force trials were included in final analyses.

Resting-State fMRI Data Acquisition
During a 5-min rs-fMRI scan (240 brain volumes; 33 interleaved
axial slices per volume; TR = 1,500ms; echo time = 25ms;
flip angle = 60◦; field of view = 220 × 114.2 × 220 mm3;
voxel size = 3.438 × 3.438 × 3.4 mm3; 1-mm gap), participants

were instructed to keep their eyes closed and refrain from any
cognitive, language, or motor behavior as much as possible.
Participants were queried regarding their ability to stay awake
following each run; only runs in which participants reported
staying awake were included in analyses.

Seed ROIs associated with visuomotor behavior were
identified using the subset of participants who completed tb-
fMRI (10 individuals with ASD and 11 matched controls).
Clusters with significant correlations between ALFF and
sustained force variability were defined separately for the ASD
and TD groups. FC analysis was performed using the significant
ROIs identified in these ALFF–force variability analyses as seed
regions, but then analyzed across all participants who completed
the rs-fMRI study as described below.

Visuomotor Data Processing and Analysis
Each force trace was low-pass filtered via a double-pass fourth-
order Butterworth filter at a cutoff of 15Hz in Matlab 2017a
(MathWorks, Inc., Natick, MA). The first and last 3 s of each trial
were excluded from the analyses to reduce variability related to
the rates at which individuals initially increased their force level
or relaxed their force at the end of trials. Thus, the middle 18 s of
each sustained force trial was analyzed. To quantify individuals’
motor variability, we examined the standard deviation of force
during each trial for each individual. Mean force of each trial
was also analyzed to ensure that participants understood and
completed the task.

Rs-fMRI Data Processing
The rs-fMRI pre-processing was performed using the Data
Processing Assistant for Resting-State fMRI 3.0 toolbox
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FIGURE 1 | (A) Individuals pressed against the Bragg grating fiber optic force transducer during a test of precision grip. (B) Visual information individuals received

during task-based fMRI (tb-fMRI). Participants viewed two horizontal bars presented against a black background (Rest/Release). The TARGET bar (red/green) was

stationary during each trial. The TARGET bar turned from red to green at the beginning of each trial to cue participants to begin pressing the force transducer. The

white FORCE bar moved upward with increased force. The discrepancy between the TARGET and FORCE bars provided online visual feedback to the participants

about their motor performance.

(DPARSF 3.0; http://rfmri.org/DPARSF) in MATLAB. The
first 10 volumes of each run were discarded to reduce
artifacts caused by magnetic instability (Zhang et al., 2012).
Volumes were slice-time corrected and realigned to the middle
slice. Rigid body realignment parameters were estimated
for each individual, and data were excluded if individuals
showed head motion ≥3mm in the horizontal plane or
over 3◦ in rotation. The rs-fMRI data of one individual
with ASD were removed from the original dataset due to
excessive head motion. There were no significant differences
between individuals with ASD and controls for any of the six
motion parameters (three translational and three rotational)
(Supplementary Table 1).

Each individual’s rs-fMRI data were registered to their
own T1-weighted anatomical scan and spatially normalized to
Montreal Neurological Institute (MNI) space using the unified
segmentation–normalization algorithm in SPM8 (http://www.
fil.ion.ucl.ac.uk/spm/software/spm8/). Specifically, individuals’
structural images were coregistered to the functional image after
motion correction, and the transformed structural images were
segmented into gray matter, white matter, and cerebrospinal fluid
by using a unified segmentation algorithm. Themotion corrected
functional images were spatially normalized to MNI space and
resampled to 3 × 3 × 3mm voxels using the normalization
parameters estimated during unified segmentation. We regressed
out nuisance covariates including linear trends, friston 24 head
motion parameters, white matter, and cerebrospinal fluid signal.
Data were spatially smoothed using a 4-mm full width at
half maximum (FWHM) Gaussian filter and bandpass-filtered
at the range from 0.01 to 0.08Hz to remove slow drift and
high-frequency components (Biswal et al., 1995; Lowe et al.,
1998). No global signal regression was performed to avoid
introduction of spurious correlations of the rs-fMRI data
(Gotts et al., 2013).

Amplitude of Low-Frequency Fluctuations
and Functional Connectivity Analysis
ALFF analysis was conducted using the rs-fMRI data analysis
toolkit v1.1 (http://www.restfmri.net/forum/rest_v11) in
MATLAB. For each individual’s rs-fMRI data, the filtered time
series of each voxel was transformed to the frequency domain to
obtain the power spectrum using a fast Fourier transformation
(taper percent = 0, FFT length = shortest). The ALFF was
derived from the averaged square root of the power spectrum
across frequencies from 0.01 to 0.08Hz (Zang et al., 2007). The
ALFF of each voxel was then normalized by the averaged ALFF
value of the whole brain.

Seed ROIs for FC analysis were identified using data from
the subset of participants (10 individuals with ASD and 11
controls) who completed both rs-fMRI and tb-fMRI runs by
determining clusters with significant correlations between ALFF
and sustained force variability separately for each group. Monte
Carlo simulation was used to correct for multiple comparisons
(Ledberg et al., 1998). Based on AlphaSim calculations, clusters
including≥90 contiguous voxels showing significant correlations
with p < 0.05 at voxel level were identified and are reported to
maintain family-wise p < 0.05.

FC analysis was performed based on rs-fMRI of all
participants using a seed-based voxel correlation approach (Hull
et al., 2017). Three dimensional 6-mm-radius seeds were created
based on selected ROIs using the PickAtlas toolbox in SPM8
(http://fmri.wfubmc.edu/software/PickAtlas). The center of the
sphere for each identified voxel cluster was the coordinate with
the greatest correlation between motor variability and ALFF
value. To quantify whole-brain connectivity of identified seeds,
individual time series for each ROI were extracted and correlated
with each voxel in the brain to create a whole brain connectivity
map. Each participant’s correlation map was then converted to
z-statistic maps using Fisher r-to-z transformations.
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Statistical Analyses
One-way ANOVAs were conducted to compare groups on force
variability. For imaging data, statistical analyses were conducted
using rs-fMRI data analysis toolkit V1.8 (http://www.restfmri.
net/forum/REST_V1.8) in MATLAB (Zang et al., 2007). ROIs
identified as significantly associated with force variability in the
ASD or control group were merged. Then, the maximal ALFF
value within each ROI was extracted from each individual and
compared between patients and controls using two-sample t-
tests with the SPSS 22 software (Armonk, NY, USA). For voxel-
based comparisons of FC correlation maps between groups, two-
sample t-tests was used with REST_V1.8 software in Matlab. Age
and sex were included as covariates for both statistical analyses.
A default mask (dimension = 61 × 73 × 61) was applied for
all statistical analyses. Additionally, for individuals with ASD, we
examined the relationship between strength of FC for networks
that showed significant between-group differences and IQ scores
and clinical ratings of social–communication deficits (i.e., ADOS
social communication algorithm score). Statistical thresholds for
correlation analyses were set at p < 0.05 (two-tailed) after false
discovery rate (FDR) correction. To inform hypotheses of future
studies, uncorrected correlation r and p-values are also presented
in Supplementary Tables 3–7.

RESULTS

Visuomotor Behavioral Measure
Individuals with ASD and TD controls showed similar MVCs
(t11.43 = 0.41, p = 0.69; ASD: mean = 55.70N, SD = 20.68N;
TD: mean = 52.82N, SD = 8.01N) and mean force (t12.12
= 0.18, p = 0.86; ASD: mean = 31.46N, SD = 10.58N; TD:
mean= 30.81N, SD= 4.67N). The difference in sustained force
variability for individuals with ASD and TD controls was not
statistically significant (t9.59 = 1.68, p = 0.13; ASD: mean =

3.38N, SD = 4.07N; TD: mean = 1.19N, SD = 0.77N). While
this group comparison was not significant as we have seen in our
prior studies (Mosconi et al., 2015; Wang et al., 2015), the effect
size was large (Cohen’s d = 0.75).

Relationships Between ALFF and
Sustained Force Variability
Seven ROIs in each group showed significant correlations
between whole brain voxel-wise ALFF measures and sustained
force variability (Table 2 and Figure 2). ROIs that were positively
correlated with force variability for TD controls after corrections
for multiple comparisons included left inferior frontal gyrus,
right supramarginal gyrus, left angular gyrus, left superior
temporal gyrus, and bilateral cerebellar crus I. Left cerebellar
lobule VIII ALFF was negatively correlated with force variability
for controls.

For individuals with ASD, ALFF levels of the right precentral
gyrus, left post-central gyrus, left precuneus, left Heschl’s gyrus,
right middle temporal gyrus (including MT/V5), and right
calcarine cortex were positively correlated with force variability.
ALFF levels in the cerebellar vermis VI were negatively correlated
with increased force variability in ASD. After FDR correction,

TABLE 2 | Montreal neurological institute (MNI) coordinates of selected seed

regions of interest (ROIs) which showed significant correlations between amplitude

of low frequency fluctuations (ALFF) and sustained force standard deviation during

precision grip in TD controls and individuals with ASD.

ROIs MNI coordinates Number

of voxels

Mean (SE) Correlation

coefficient Z
X Y Z

ROIs identified from controls

Left inferior frontal

gyrus

42 15 24 110 −0.13 (0.10) 0.94*

Right

supramarginal

gyrus

66 −27 39 103 −0.03 (0.06) 0.93*

Left angular gyrus −54 −60 30 180 0.06 (0.07) 0.90*

Left superior

temporal gyrus

−57 −18 3 31 −0.13 (0.10) 0.95*

Left cerebellar

crus I

−45 −48 −33 190 0.04(0.13) 0.94*

Right cerebellar

crus I

24 −78 −27 612 0.17 (0.17) 0.97*

Left cerebellar

lobule VIII

21 −57 48 147 −0.08 (0.04) −0.90*

ROIs identified from individuals with ASD

Right precentral

gyrus

42 −18 42 391 −0.08 (0.05) 0.94*

Left postcentral

gyrus

−33 −24 45 113 0.01 (0.05) 0.93*

Left precuneus −6 −36 57 241 −0.07 (0.06) 0.94*

Left Heschl’s gyrus −45 −15 9 369 −0.00 (0.08) 0.98*

Right middle

temporal gyrus

60 −15 −9 250 −0.11 (0.11) 0.94*

Right calcarine

cortex

15 −57 15 342 −0.25 (0.13) 0.94*

Cerebellar

vermis VI

6 −69 −15 306 −0.05 (0.11) −0.96*

Negative X values indicate locations in the left hemisphere.

All results are AlphaSim error corrected,
†
p < 0.05, *p < 0.01, **p < 0.005, ***p < 0.001.

none of these 14 ROIs showed between group differences in ALFF
(all corrected p’s < 0.05; Supplementary Table 2).

Functional Connectivity in Individuals With
ASD and TD Controls
Intra-cerebellar FC was reduced across multiple lobules in ASD
(Table 3 and Figure 3). Compared to TD controls, individuals
with ASD showed decreased FC between right cerebellar crus II
and seeds within left cerebellar lobule VIII, bilateral cerebellar
crus I, and cerebellar vermis VI. Individuals with ASD also
showed reduced FC between left cerebellar crus I and right
cerebellar lobule IX, left cerebellar crus II, and cerebellar
vermis VI.

Cerebellar FC with pre-frontal and temporal cortical targets
was reduced in ASD relative to TD controls. Individuals with
ASD showed decreased FC between right cerebellar crus II and
both left Heschl’s gyrus and left superior temporal gyrus. For left
cerebellar crus I and cerebellar vermis VI, individuals with ASD
showed lower FC than controls with left middle frontal gyrus and
right superior frontal gyrus.
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FIGURE 2 | Significant correlations between the whole brain amplitude of low-frequency fluctuations (ALFFs) and sustained force standard deviation in individuals with

ASD and TD controls. The red areas depict voxels presenting positive correlations, whereas the blue areas depict voxels showing negative correlations with sustained

force standard deviation. IFG.L, left inferior frontal gyrus; PreCG.R, right precentral gyrus; PoCG.L, left postcentral gyrus; SMG.R, right supramarginal gyrus; ANG.L,

left angular gyrus; PCUN.L, left precuneus; HES.L, left Heschl’s gyrus; STG.L, left superior temporal gyrus; MT/V5. R, right middle temporal gyrus including visual area

5; CAL.R, right calcarine cortex; CBL.Vermis VI, cerebellar vermis VI; CBL.Crus I. L, left cerebellar crus I; CBL.Crus I. R, right cerebellar crus I; CBL. VIII. L, left

cerebellar lobule VIII.

Cerebellar FC with occipital and parietal cortical targets was
primarily elevated in ASD relative to controls. Individuals with
ASD showed increased FC between left cerebellar lobule VIII and
bilateral superior occipital gyrus and left superior parietal gyrus.
FC between right cerebellar crus I and left superior occipital gyrus
was also increased in ASD relative to controls. Right cerebellar
crus II FC with left precuneus was reduced in ASD compared
to controls.

Demographic and Clinical Correlations
After FDR correction, no significant correlations were
found between ALFF values of our 14 selected ROIs and
IQ scores for healthy controls (Supplementary Table 3)
or individuals with ASD (Supplementary Table 4). No
ROI ALFF values were related to ASD clinical ratings for
patients (Supplementary Table 4). No significant correlations
were identified between each cortical–cerebellar FC and
IQ scores (Supplementary Table 5) or ADOS social
communication algorithm scores for individuals with ASD
(Supplementary Table 6). Increased FC between left precuneus
and right superior parietal gyrus was associated with less
severe RBS-R rated repetitive behaviors in ASD. No significant
correlations were identified between FC of cortical–cerebellar

networks and sustained force variability for TD controls
(Supplementary Table 7). Greater FC between left cerebellar
crus I and right cerebellar lobule IX was associated with
reduced sustained force variability in individuals with ASD
(Supplementary Table 7).

DISCUSSION

In the present study, we identify multiple discrete cortical and
cerebellar brain regions showing intrinsic functional oscillations
that covary with precision visuomotor ability. The pattern of
ROIs showing intrinsic functional properties associated with
visuomotor variability were distinct for individuals with ASD and
TD controls. Specifically, greater ALFF values of sensorimotor
cortical and cerebellar brain regions were associated with
greater force variability (i.e., less force precision) in ASD,
whereas greater ALFF values in cortical and cerebellar brain
regions that comprise higher-order association networks were
related to greater force variability in TD controls. Further,
we find that FC in patients was greater in cerebellar–occipital
and cerebellar–parietal circuits associated with fundamental
sensory and sensorimotor processes, whereas it was reduced
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TABLE 3 | Between group comparison of functional connectivity (FC) between ROIs identified in ALFF analyses and whole-brain data (positive T-values represent greater

FC in ASD vs. TD controls).

ROIs Brain regions MNI coordinates Number of voxels T-value

X Y Z

ROIs identified from TD controls

Right supramarginal gyrus Left middle cingulate gyrus −9 −21 48 93 4.00***

Left angular gyrus Right superior frontal gyrus 18 51 39 123 −5.05***

Right superior occipital gyrus 27 −72 18 184 5.04***

Left superior temporal gyrus Right cerebellar crus II 42 −78 −42 168 −4.20***

Left cerebellar crus I Right superior frontal gyrus 27 48 42 92 −4.58***

Left middle frontal gyrus −27 42 33 110 −3.95***

Left cerebellar crus II −39 −66 −48 198 −4.92***

Right cerebellar crus II 51 −63 −45 288 −4.96***

Right cerebellar lobule IX 12 −48 −48 120 −3.79***

Right cerebellar crus I Left superior occipital gyrus −12 −84 18 175 4.65***

Right cerebellar crus II 42 −81 −42 160 −4.08***

Left cerebellar lobule VIII Left superior parietal gyrus −21 −57 45 159 4.62***

Left superior occipital gyrus −21 69 30 141 4.47***

Right superior occipital gyrus 27 −69 33 209 4.97***

Right cerebellar crus II 42 −78 −42 137 −3.70**

ROIs identified from individuals with ASD

Left precuneus Right superior parietal gyrus 18 −63 48 143 4.36***

Right cerebellar crus II 6 −84 −39 92 −3.67**

Left Heschl’s gyrus Left superior parietal gyrus −24 −39 48 101 3.96***

Right cerebellar crus II 21 −81 −57 105 −3.75**

Cerebellar vermis VI Right superior frontal gyrus 24 57 15 187 −5.20***

Left middle frontal gyrus −27 45 36 138 −3.94***

Left middle occipital gyrus −24 −84 24 102 4.49***

Left cerebellar crus I −45 −57 −39 277 −4.93***

Right cerebellar crus II 42 −81 −42 241 −4.42***

Negative X-values indicate locations in the left hemisphere.

All results are AlphaSim corrected,
†
p < 0.05, *p < 0.01, **p < 0.005, ***p < 0.001.

in cerebellar–frontal and cerebellar–temporal cortical circuits
involved in more complex multisensory and cognitive processes.
Overall, these findings suggest atypical specialization of brain
networks associated with visuomotor behavior in ASD.

Intrinsic Cortical–Cerebellar Activity and
Visuomotor Precision
ALFF power during rest reflects intrinsic oscillations of local
circuits including changes in synaptic activity (Fox et al., 1988),
neurotransmitter recycling (Magistretti and Pellerin, 1999), and
synchronous neuronal firing (Logothetis, 2002; Scholvinck et al.,
2010). Long-duration rs-fMRI studies of non-human primates
have identified strong correlations between local field potentials
and fluctuations in BOLD time series from nearby ROIs at both
gamma and lower-frequency bands with consistent time lags of
6–8 s (Shmuel and Leopold, 2008), implying a causal relationship
between spontaneous neuronal activity and local hemodynamics.
Neuroimaging studies in humans have further demonstrated that
intrinsic brain activity accounts for a significant proportion of
variance (up to 74%; Fox et al., 2007) of tb-BOLD responses

and motor behavioral outcomes (Fox et al., 2006, 2007). Intrinsic
BOLD oscillations thus represent important signals interacting
with task-related neuronal functions to support adaptation to
task demands (Lv et al., 2018). Based on these observations, it has
been postulated that the relative balance of intrinsic oscillations
and task-specific regional activation is critical for guiding precise
sensorimotor behaviors.

Our finding that force variability was significantly correlated
with distinct cortical and cerebellar brain regions supports
this hypothesis. Positive associations between intrinsic cortical
activity and force variability suggest that resting activity of
sensorimotor networks in ASD serves as “interference” during
visuomotor behavior by either reducing signal-to-noise ratios
of task-dependent cortical functions or attenuating the extent
to which cortical circuits can dynamically adjust to support
the onset and maintenance of behavior. Findings that ALFF
levels of cerebellar regions (Table 2; i.e., left cerebellar lobule
VIII in controls and cerebellar vermis VI in ASD) dedicated to
sensorimotor processes were anti-correlated with force variability
suggest that reduced intrinsic cerebellar activations are associated
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FIGURE 3 | Between-group functional connectivity (FC) maps (ASD vs. TD). Green lines depict FC reductions in individuals with ASD relative to TD controls, while

yellow lines represent FC elevations in ASD relative to TD controls. SFG.R, right superior frontal gyrus; MFG.L, left middle frontal gyrus; SPG.L, left superior parietal

gyrus; SPG.R, right superior parietal gyrus; SMG.R, right supramarginal gyrus; ANG.L, left angular gyrus; PCUN.L, left precuneus; HES.L, left Heschl’s gyrus; STG.L,

left superior temporal gyrus; SOG.L, left superior occipital gyrus; SOG.R, right superior occipital gyrus; MOG.L, left middle occipital gyrus; DCG.L, left median

cingulate gyrus; CBL.Vermis VI, cerebellar vermis VI; CBL.Crus I.L, left cerebellar crus I; CBL.Crus I.R, right cerebellar crus I; CBL.Crus II.L, left cerebellar crus II;

CBL.Crus II.R, right cerebellar crus II; CBL.VIII.L, left cerebellar lobule VIII. All clusters were AlphaSim corrected and statistically significant at p < 0.05.

with attenuation of inhibitory output that serves to adjust cortical
output during continuous sensorimotor behaviors. Cerebellar
cortical output via Purkinje cells provides an inhibitory drive
on cortical targets that supports refinement of motor behavior
in response to sensory feedback (Stein and Glickstein, 1992).
Cerebellar lobule VIII and vermis VI each innervate sensory
and motor cortices, including frontal eye fields, parietal eye
fields, inferior and superior parietal lobules, primary sensory
cortex (S1), and primary motor cortex (M1) to support control
of precision visuomotor activities (Glickstein, 2000; Ramnani,
2006). Our findings suggesting that reduced inhibitory drive
on sensory and motor cortices at rest relates to greater motor
variability may reflect amplified task-related modulation of
sensory and motor cortices during action contributing to greater
output variability over time.

Our brain–behavior results implicate independent cortical
and cerebellar regions in the control of visuomotor behavior
among individuals with ASD and TD controls. Analyses of
individuals with ASD showed positive associations between force
variability and ALFF of right M1, left S1, left precuneus, right
middle temporal gyrus including MT/V5, and striate cortex
(V1). V1 and precuneus are primarily involved in processing

initial visual inputs, whereas MT/V5 is dedicated to supporting
processing of visual motion. Left S1 and right M1 both are
actively involved in prehensile movements including finger
tapping (Muller et al., 2001; Mostofsky et al., 2009), grasping
(Cavina-Pratesi et al., 2010), and precision gripping (Ehrsson
et al., 2000; Coombes et al., 2010). While S1 involvement in
visuomotor tasks is typically right dominant, M1 activity is
typically lateralized to the contralateral (left) hemisphere. Greater
left S1 and ipsilateral (right) M1 activation are seen when
visuomotor tasks are more difficult (Post et al., 2009), as in
our test of precision force at 60% of individuals’ maximum
output. Additionally, individuals with ASD showed an inverse
relationship between motor variability and intrinsic activity of
cerebellar vermis VI, a region implicated in the guidance of
precision visuomotor behaviors including saccadic and smooth
pursuit eye movements (Takarae et al., 2007).

In contrast to individuals with ASD, brain–behavior
associations for TD controls implicate regions outside of primary
sensorimotor networks and include cortical and cerebellar
association circuits. Specifically, left inferior frontal gyrus
is involved in visuomotor gripping (Ehrsson et al., 2000) and
learning of complex finger tapping sequences (Muller et al., 2002)
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due to its reciprocal projections with principal sensorimotor
areas of premotor cortex, frontal eye fields, and striatum
(Husain, 1991). Right supramarginal gyrus supports motor
programming through its connections to the paracentral lobule,
supplementary motor area, premotor cortex, and insula (Hesse
et al., 2006). Angular gyrus is dedicated to attentional processes
supporting individuals’ engagement during goal-directed
behaviors (Arsalidou and Taylor, 2011). Cerebellar crus I activity
during basic visuomotor tasks scales with the frequency of
visual feedback, suggesting that it is critical to adapting ongoing
motor behavior to complex sensory information (Vaillancourt
et al., 2006). Important regional variations thus suggest that TD
controls’ visuomotor behavior may be disrupted by intrinsic
cortical–cerebellar activities in association networks involved
in more complex processes. In contrast, individuals with ASD
appear more susceptible to intrinsic variations affecting primary
sensorimotor networks, suggesting a greater reliance on more
fundamental neural networks to support the refinement of basic
visuomotor behavior.

ALFF frequencies reported here are within the range of delta
oscillations (0–4Hz) associated with force variability during
slow isometric force production and neocortical “common
drive” modulation of the skeletal motor neuron pool (De Luca
et al., 1982a; Lodha and Christou, 2017). Our finding that
greater ALFF power in sensorimotor networks is associated with
elevated force variability in ASD but not in TD individuals
suggests that patients show atypical common drive modulation
of neuromuscular systems during rest. In the context of our
previous EMG findings documenting reduced delta modulation
and reduced linkage between modulation of the motor neuron
pool at multiple frequency bands (i.e., delta, beta, and gamma)
and force variability in ASD (Wang et al., 2017), our rs-fMRI
findings implicate alterations in corticomuscular coherence that
contribute to a reduced ability to precisely control force output in
patients. Other studies also identified the effect of motor learning
on beta and gamma band modulation within the context of
individualized differences (Witte et al., 2007; Mendez-Balbuena
et al., 2012). As precision visuomotor control is repetitively
implicated in individuals with ASD at multiple target force levels
(Mosconi et al., 2015; Wang et al., 2015), studies examining
corticomuscular coherence at multiple frequency bands using
EEG and EMG (Mendez-Balbuena et al., 2012) are warranted.

Intra-Cerebellar and Cortical–Cerebellar
Functional Connectivity in ASD
Relative to TD controls, individuals with ASD showed reduced
intrinsic FC between medial cerebellar lobules dedicated to
sensorimotor processes (vermis VI, posterior VIII and IX)
and lateral lobules involved in higher-order processes (crus
I/II), suggesting reduced interactions of distinct functional
circuits within the cerebellum (Table 3 and Figure 3). These
distinct cerebellar circuits are anatomically and functionally
linked to separate cortical targets. Medial lobules innervate
dorsomedial thalamic nuclei and motor and parietal cortices,
whereas crus I/II are more ontogenetically and phylogenetically
advanced and are most densely connected with pre-frontal

and association cortices (Ramnani, 2006). During goal-directed
activities, cerebellar crus I/II circuits are involved in integrating
complex and multi-sensory information (Nitschke et al., 2005;
Stoodley and Schmahmann, 2009; D’Mello and Stoodley, 2015).
Reduced FC between crus I/II andmoremedial cerebellar circuits
in ASD suggest deficits integrating multisensory information and
utilizing higher-level inputs to guide sensorimotor behaviors.
Our FC results are consistent with prior DTI studies that
show decreased white matter microstructural integrity within
the cerebellum and within fiber tracts connecting cerebellar
cortex and dentate nucleus in ASD (Sivaswamy et al., 2010;
Jeong et al., 2014; Crippa et al., 2016). The cerebellum has also
been consistently implicated in histological and MRI studies
of ASD that identified reductions in the number and size of
Purkinje cells (Bauman, 1991; Courchesne, 1997; Whitney et al.,
2008) and hypoplasia of lobules V–VII (Courchesne et al.,
1988). Our findings indicate that cerebellar pathology and white
matter microstructural variation may be associated with reduced
communication between functionally distinct circuits in ASD.

We also documented that cerebellar FC with pre-frontal
cortical targets, including right superior and left middle frontal
gyri are reduced in ASD, while cerebellar FC with posterior
parietal and occipital cortices is elevated (Figure 3). These
findings are consistent with prior studies documenting reduced
rs-FC between right cerebellar crus I/II and contralateral pre-
frontal cortex and inferior/middle temporal gyrus (Khan et al.,
2015), and between right crus I and contralateral superior
frontal gyrus, middle frontal gyrus, thalamus, anterior cingulate
gyrus, and parietal cortex in adolescents with ASD (Verly et al.,
2014). Reduced tb-FC of the cerebellum and M1, supplementary
motor area, and thalamus was also reported during sequential
finger tapping in ASD (Mostofsky et al., 2009). Consistent
with findings of reduced FC between cerebellum and cortex,
DTI studies of individuals with ASD have documented atypical
white matter microstructural integrity of the primary cortical
input and output pathways of the cerebellum—the middle
and superior peduncles (Catani et al., 2008; Brito et al.,
2009; Hanaie et al., 2013). As cerebellar circuits integrate
and relay error information to frontal, parietal, and temporal
cortices (Glickstein, 2000; D’Mello and Stoodley, 2015), reduced
cerebellar FC with the left middle frontal gyrus, right superior
frontal gyrus, and contralateral superior temporal gyrus suggests
that cerebellar disconnectivity may play a key role in a broad
range of neurodevelopmental dysfunctions in ASD, including
executive, language, and multisensory processes. Further, greater
FC between the cerebellum and occipital and posterior parietal
circuits suggests increased reliance on more basic sensory
information for guiding behavior, as suggested previously in
studies of motor learning (Haswell et al., 2009; Izawa et al., 2012).

Limitations and Future Directions
One limitation of the present study is the small sample of
individuals who completed both tb- and rs-fMRI runs. However,
given the large magnitudes of correlations between selected
ROIs and sustained force variability (Table 2), our results
appear to be robust. Additional analyses across larger samples
will be important for determining how these brain–behavior
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relationships vary across the broader ASD population. Future
studies may also examine separate measures of intrinsic brain
activity in relation to behavioral issues in ASD. For example,
recent studies have quantified the dynamics of intrinsic brain
activity using the variance of ALFF over time (Li et al., 2018;
Liao et al., 2019). While we focused on mean ALFF across
the time series based on the strong relationships previously
demonstrated between mean ALFF and sensorimotor behavior
(Ma et al., 2011), examination of temporal variability may
provide key insights into neural mechanisms. Future studies
should also examine the relationships between intrinsic activity
of sensorimotor networks and behavior across both hands, as
lateralized deficits of sensorimotor behavior and brain function
have been identified in ASD (Kleinhans et al., 2008). As we
have previously found that the severity of visuomotor deficits
in ASD varies as a function of visual feedback gain and force
level (Mosconi et al., 2015), determining the extent to which
brain–behavior linkages vary across different levels of visual
feedback and force load will also be important for future studies.
Finally, analysis of FC of cerebellar–cortical systems in relation
to DTI data quantifying white matter microstructural integrity
alterations in these networks in ASDmay provide important new
insights into mechanisms associated with sensorimotor network
dysfunctions and elevations in motor variability.

CONCLUSIONS

The current work demonstrates that intrinsic neural oscillations
in sensorimotor cortical and cerebellar circuits are strongly
associated with visuomotor precision in both individuals with
ASD and TD controls. We also show important regional and
network dissociations of the intrinsic functional anatomy of
visuomotor control in ASD and TD. Our findings of reduced
intracerebellar, cerebellar–frontal, and cerebellar–temporal FC
in ASD suggest that previously documented pathologies of
the cerebellum may interfere with multiple developmental
functions involving both basic sensorimotor and higher-order
association networks. As disruptions of basic sensorimotor
processes involving cortical–cerebellar circuits are seen in ASD
across the lifespan, focus on intrinsic functional properties
of these networks may provide important insights into
neurodevelopmental processes that interfere with both early
emerging and more complex behaviors.
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