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Biological treatment development for syndromal neuropsychiatric conditions such as
autism has seen slow progress for decades. Speeding drug discovery may result
from the judicious development and application of biomarker measures of brain
function to select patients for clinical trials, to confirm target engagement and to
optimize drug dose. For neurodevelopmental disorders, electrophysiology (EEG) offers
considerable promise because of its ability to monitor brain activity with high temporal
resolution and its more ready application for pediatric populations relative to MRI. Here,
we discuss conceptual/definitional issues related to biomarker development, discuss
practical implementation issues, and suggest preliminary guidelines for validating EEG
approaches as biomarkers with a context of use in neurodevelopmental disorder
drug development.
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INTRODUCTION

Pressing needs in clinical care and concerns about low-yield clinical trials in neurodevelopmental
disabilities (NDD) have increased enthusiasm for brain-based biomarkers, with particular
additional challenges in neurodevelopmental disorders (NDD) (Sahin et al., 2018). The current
push for biomarker development in the realm of brain disorders follows on the heels of several well-
known failures in clinical trials in genetically more homogeneous disorders (Berry-Kravis et al.,
2012; Hagerman et al., 2018). While there is high enthusiasm for biomarkers for NDDs, the field
is just at the beginning of establishing utility of biomarkers for guiding selection of therapies and
the patients most likely to benefit in clinical trials. Therefore, the aims of this paper are to help
guide early-phase efforts in this area by providing a conceptual framework for planning biomarker
validation research, suggestions for early phase investigation strategy and an early framework of
thresholds for determining successful reliability/validation, and to explore issues specific to the use
of EEG.
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These trial failures have been difficult to interpret and seem to
have lower-than-expected statistical power due to unpredictable
responses to interventions (including placebo), which are in turn
due to patient heterogeneity that has not yet been differentiated.
The last few decades have made clear that there is poor
correspondence across levels of analyses in behaviorally defined
NDD (“degeneracy”): patients with a particular genotype may
have a range of behavioral phenotypes as in Fragile X syndrome
(FXS), and a single behaviorally defined diagnosis [e.g., autism
spectrum disorder (ASD)] may be caused by a range of genetic
alterations (e.g., Angelman, tuberous sclerosis, FXS, multiple
risk loci). Situated between genotype and clinical phenotype
are molecular pathways and cellular processes most relevant to
the mechanism of action of pharmacological interventions—so
called intermediate phenotypes. In behaviorally defined disorders
and behavioral/cognitive therapies, the most relevant level of
intermediate phenotype may be at the cognitive level (Morton,
2005). Because interventions assessed in clinical trials may be
effective (or, alternatively, dangerous) for a latent sub-group
within a behavioral or genetic diagnosis, there is substantial risk
that a true benefit for such a sub-group could be statistically
overshadowed by a null effect in most subjects (Type II error).
The hope placed in biomarkers is that they can better report on
the level of this treatment-linked intermediate phenotype, and
thus refine inclusion/exclusion criteria or generate a stratification
approach. A solid example comes from epilepsy: the clinical
(behavioral) description of a seizure can be misleading in terms
of choice of treatment. A generalized tonic-clonic seizure (GTC)
may result either from seizure activity arising in the brain all
at once, or seizure activity arising from one spot in the brain
and spreading quickly across the brain; different medications are
effective for each type. These two mechanism are better separated
by EEG results than by clinical (behavioral) descriptions of
the seizure. The EEG findings therefore, represent a treatment
mechanism-relevant intermediate phenotype useful for guiding
optimal clinical therapy and testing of novel agents.

Consider clinical trials in FXS, for which a seemingly
promising treatment was brought forward unsuccessfully based
on compelling data from a genetic animal model (Berry-Kravis
et al., 2012) to appreciate how the absence of a biomarker limits
the interpretation of results. In the FMR1 knock-out (KO) mouse
model of FXS, metabotropic glutamate receptor type 5 (mGluR5)
antagonists produce beneficial neurobiological and behavioral
effects. No translational biomarker of functional brain data, such
as EEG, were collected in the mice, or in the decisive clinical
trial. Without a translational biomarker establishing that some
desired brain effect was achieved or a clinical biomarker for
stratifying individuals based on pre-treatment functional brain
alterations related to mGluR5 alterations, it was impossible to
conclude whether mGluR5 antagonism did anything to brain
function and relate any such effect to clinical outcome. If EEG
biomarker data from both the KO mice and the enrolled patients
had been available, the extent to which they would have shown
similar EEG alterations would have been informative (Ethridge
et al., 2017; Wang et al., 2017; Lovelace et al., 2018). While is not
yet clear if a pattern of EEG biomarkers reflects a mediator of
the effect between mGluR5 antagonism and behavioral change,

variable treatment response might be accounted for by those with
a better clinical response in those who had abnormal biomarker
values before treatment. This pattern may suggest a pathway for
using an EEG biomarker for patient stratification or inclusion
in future trials.

Further, if in humans, we were confident that the mGluR5
antagonist modified the biomarker in the same way that it
did within the mouse model, industry leaders might be more
willing to invest in finding out whether a meaningful clinical
benefit requires longer treatment, inclusion of a specifiable
subgroup of patients with the target syndrome and/or adjunctive
behavioral treatment in future trials. Alternatively, no or very
limited change in the EEG-based biomarker would argue against
pursuing mGluR5 antagonism as a means of altering brain
function, especially if there were additional data establishing
that the full range of receptor occupancy of the antagonist
had been explored using an appropriate positron emission
tomography (PET) ligand.

These possibilities illustrate the multiple ways in which
biomarkers might facilitate drug discovery programs. At a more
rigorous standard, biomarkers validated as surrogate endpoints
could reduce expense by identifying in early phase 2 studies
the drugs unlikely to translate from mouse to human in
a clinically effective manner. Imagine an EEG method that
predicts or reports, with high sensitivity and specificity, successful
modulation of the mGluR5 system within individuals with FXS.
A conventional clinical trial using a single agent might require
months of intervention before the robust behavioral or cognitive
effects of the drug could be achieved. By contrast, a sensitive,
validated marker of mGluR5 modulation could allow fast-fail
testing of multiple drug candidates, eliminating those which
fail to modulate mGluR5 in humans. The presence of target
engagement, however, would not necessarily ensure that the
compound could safely create the clinical outcomes of interest,
but at least large-scale clinical trials could be focused on a
biomarker determined dose range for testing drug efficiency.

While genetically homogenous disorders, such as FXS, have
a “head start” in identifying mechanisms for targeted drug
therapies, biomarkers can still be relevant for identifying
processes to target given that behaviorally defined disorders
given their often have diverse behavioral presentations indicating
that factors beyond a specific genotype are at play. A theory
of ASD which has been gaining traction over the last decade
specifies that the behavioral phenotype results from an imbalance
in inhibitory and excitatory (I/E) processes toward increased
neural excitability (Rubenstein and Merzenich, 2003; Belmonte
et al., 2004; Ajram et al., 2019). Belmonte et al. (2004) linked
these findings with a cognitive model suggesting that decreased
inhibition results in dysfunction of early attentional mechanisms
and subsequent “overload” of later, capacity-limited processes.
They proposed that such physiological-cognitive changes would
result in a greater amplitude of event-related potentials (ERPs)
captured during relevant tasks. If this could be established, one
might select agents which facilitate inhibitory pathways using
normalization of ERP amplitude as a read-out.

To date, successful development and validation of biomarkers
has usually depend on demonstration of a relationship to some
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tissue pathology [e.g., plaques and tangles in Alzheimer’s disease
(AD)] or a robust functional measure that can be related to some
pathological event (e.g., blood pressure and stroke). In the case
of AD, before current biomarkers were developed, a definitive
diagnosis depended on findings at autopsy. AD biomarkers, such
as PET imaging and cerebro-spinal fluid (CSF) assays, are now
established as sufficiently predictive of autopsy findings to serve
as entry criteria in many clinical trials as well as providing a basis
for new diagnostic criteria that included biomarkers (Jack et al.,
2018; Veitch et al., 2019).

Advances in the mechanistic knowledge of NDD, even in
the absence of known brain tissue pathologies, coupled with
advances in EEG analysis technology, have raised the hope
of identifying EEG-based biomarkers to increase the yield of
clinical trials and ultimately enhance clinical care. The question
arises as to whether EEG represents a good investment as a
potential biomarker. This question is poorly posed, as EEG
is a technology rather than a specific biomarker. An infinite
number of parameters can be derived from the EEG signal
in both task-locked and spontaneous recordings: time-domain
evoked- and ERPs, spectral power, entropy, cross-frequency
coupling, and a wide range of different connectivity metrics
(Cohen, 2014). Each approach needs to be validated in each
individual context (e.g., patient group, treatment) and will rise
or fall in that context on its own merits. However, to answer
the question as to whether EEG as a technology holds promise
as a basis for biomarkers, one need only consider that EEG has
been the technology par excellence (apart from the neurological
exam and psychometric testing) for measuring CNS physiology
in the clinical setting for the better part of a century. Not
only clinical EEG, but somatosensory evoked potentials, motor
evoked potentials, brainstem auditory evoked potentials and
visual evoked potentials have had unparalleled tenure meeting the
high bar of clinical validation.

The question at the current time is whether new EEG
approaches will have the reproducibility (reliability) and
discriminatory ability (validity) to serve a useful purpose in drug
trials for NDD. In the best work to date, biomarker development
and validation has taken cues from decades of experience
with clinical test validation in the fields of psychometrics and
clinical laboratory medicine (Lord, 1955). However, at the
current stage of research progress, specific issues related to
validation in the context of NDD and EEG are beginning
to be grappled with. The vision is that biomarkers can fill
a need for reducing uncertainty in clinical care and clinical
trials. Poorly validated biomarkers, however, can be expensive
and time-consuming wastes of subject and investigator time.
To achieve success in biomarker development, it is important
that biomarker validation proceed systematically and rigorously
to establish utility/validity in the context of performing a
specific function in order to be accepted by clinicians, the
pharmaceutical industry, and the FDA and related agencies
world-wide. With this background in mind, the primary goal of
this manuscript is to identify conceptual, strategic and regulatory
issues relevant to beginning the path toward valid biomarkers for
behaviorally defined NDD and to propose solutions to the many
obstacles to success.

Many things are regularly said about what we hope biomarkers
will be able to do: that they will offer a highly specific index
of one particular molecular or cognitive mechanism, that they
can reframe our nosology in a more productive way, or that
they will be able to transcend “squishy” outcome measures.
We return to these commonly held beliefs over the course
of the paper, but begin by offering a concrete definition of
“biomarker” and “validation,” in line with how clinical laboratory
tests have long been validated. A biomarker is simply a read-
out that empirically provides an estimate of a reference test (i.e.,
a previously established diagnostic determination or treatment
outcome), under specific operating conditions (specific patient
criteria, including age group, symptomatology and/or diagnoses;
a specific intervention, where relevant; a specific function, such
as prediction of response; and a specific machine and analysis
pipeline). Validation establishes how good the estimate is (i.e.,
sensitivity and specificity. The requirements and logic of a
validation study, specifically targeting EEG-based biomarkers, is
covered elsewhere (Ewen and Beniczky, 2018), and necessary
components for diagnostic biomarkers (but not other types of
biomarkers relevant to clinical trials) are defined by the STARD
checklist (Bossuyt et al., 2015).

A process similar to validation is qualification, which refers to
a regulatory processes within FDA for judging the effectiveness
of a set of biomarkers; it explicitly differs from validation in
that qualified (and not only-validated) biomarkers need to be
shown to function independently of the technology and precise
procedures used (Califf, 2018; CDER Biomarker Qualification
Program, 2019). The goal of the qualification process is to
allow biomarkers to be used in clinical trials without regulatory
endorsement of similar biomarkers individually within each new
clinical trial. Validation and qualification differ in that validation
occurs in the scientific literature using appropriate psychometric
procedures, whereas qualification is currently achieved via
consensus panels. For context, only 8 biomarker families have
been qualified by FDA, and none for brain-based processes. In the
case of AD, amyloid measures have not yet been qualified, despite
being in widespread use.

The field has not yet progressed to the point where EEG-
based biomarkers in NDD are being routinely validated, and it
is informative to consider the “pre-validation” types of studies
that are occurring currently (Table 1). We may call these studies
biomarker discovery. Discovery includes two-groups comparisons
of some physiological measure as a dependent variable, or the
demonstration that a certain EEG measure correlates with a
clinical measure within a patient group. Such studies do not
inherently meet the rigorous requirements of validation studies
for three reasons: (1) the demonstration of group differences in a
dependent variable is a lower statistical bar than showing accurate
classification at the individual level, (2) two-group studies often
by design refine the clinical and especially the control samples,
whereas validation studies face the more daunting task of
classification using groups that encompass all of the real-world
patient heterogeneity that will be faced by the clinical trialist or
the clinician, and (3) validation studies require setting a threshold
based on a “training sample” and replication in the form of a “test
sample” (Ewen and Beniczky, 2018).
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TABLE 1 | Types of Studies Related to Biomarker Development.

Study Type Form Implication

Biomarker Discovery Two-group comparisons Correlation between physiological
(EEG) measure and clinical variable Data-driven cluster
identification Identification of EEG measure in which clinical
group is in tail of normative distribution

A priori information to suggest that a physiological metric
may be a promising candidate for validation

Biomarker Reliability Test-retest measurement of biomarker read-out Studies demonstrating poor reliability are adequate to
exclude a biomarker candidate from further consideration.

Biomarker Validation Data collection in training sample. Determination of optimal
threshold. In test sample, calculation of
sensitivity/specificity.

Adequately validated, a biomarker is ready for use within
the constrained context under which it was validated.

FDA Biomarker Qualification Similar to biomarker validation, but not limited to a single
methodology or analysis pipeline

Allows the biomarker to be used in FDA studies without
re-validation.

Establishing Biomarker as Tool
for Measuring an Underlying
Physiologic Process in Multiple
Contexts

Not a study per se, but an accumulation of mechanistic and
validation results for a single physiological metric under
different contexts of use (COU), different disorders, different
age groups and different therapeutic agents

Cross-linked knowledge that will allow us to propose, with
some confidence, utility of the biomarker in an even greater
range of applications

Another class of biomarker discovery study is data-driven
identification of clusters within a particular physiological read-
out (i.e., at the intermediate level of the biomarker). While
such studies inherently work at the individual level and the
overarching sample often contains a great deal of heterogeneity,
these clusters are not of value until it has been shown that
they are (1) replicable and (2) represent a clinically meaningful
heterogeneity (e.g., predicting a response to a particular therapy).
The empirical demonstration that data-driven clusters predict
some clinically meaningful outcome is the work of validation,
whereas the identification of the clusters in the first place is
discovery. Efforts are underway and show promising results in
neighboring fields. For example, data-driven “biotype” clusters
have been identified in EEG and cognitive data in individuals
with psychosis syndromes (Clementz et al., 2016). The groups
were primarily differentiated using EEG data, with one group
showing increased responsiveness to sensory input and increased
intrinsic neurophysiological activity relative to healthy controls,
and a second group showing reduced responsivity sensory input,
reduced intrinsic activity and reduced cortical volumes relative
to healthy controls. Inferential statistical tests, such as meaningful
heterogeneity and mixture models (Anderberg, 1973; Pauler et al.,
1996; Sun et al., 2018), can help establish whether these clusters
are likely by chance. This step opens the door to determining
whether membership in a cluster better predicts natural history
and treatment responsiveness in individuals with psychosis than
does clinical diagnostic categorization. In this instance, even if the
EEG measure overlaps with normal functioning in some cases,
and approximately 1/3 of patients do not show either pattern or
difference from healthy controls on these measures, having high
or low values might be predictive of response to one or another
class of medications.

A related type of discovery study is one in which it is shown
that some clinical group occupies the tail of a distribution of
a normative sample, on some EEG metric. As with cluster
analysis, these data would serve as preliminary evidence that
the biomarker may index something of relevance to the clinical
group, but it does not specify what the utility of this information
may be. All of these biomarker discovery approaches generate

potentially important motivation for biomarker validation, but
they are insufficient in and of themselves.

Between biomarker discovery and biomarker validation
lie reliability studies, which demonstrate that a particular
biomarker (within a particular context) is reproducible (test-
retest reliability) and insensitive to factors which we hope would
not affect it, such as site or specific technologist (inter-rater
reliability). Reliability studies, unlike validation studies, do not
require demonstration that the biomarker candidate estimates
the reference test (e.g., clinical outcome). While reliability is
insufficient for validation, it is, however, necessary: reliability
sets the mathematical ceiling for validity. Therefore a biomarker
candidate can be efficiently excluded prior to a full validation
study based solely on poor reliability. In a reliability study, two
measurements can be take in the same day, whereas a validation
study could take years to show that a biomarker measurement
at the outset predicts an outcome years later. We argue it is
this is the stage of development—assessment of reliability—
where the field should currently have a focus of attention, both
in terms of rapidly screening biomarker candidates as well as
for establishing field-wide, empirically derived guidance. Some
tentative proposals for steps in this direction are made in the final
section of this paper.

On the other hand, going even beyond the level of knowledge
required by validation studies, we also begin to imagine what
it would take to develop biomarkers that are so well validated,
in so many clinical groups and contexts that we can begin
to understand them as a representation of a pathological
mechanism, like cholesterol in heart disease or a blood sugar
in diabetes mellitus. Such an outcome would require cross-
linked knowledge and iterative studies (Woo et al., 2017)—both
mechanistic and validation—that would transcend the “single-
use” biomarker validation studies that form the core of the
current discussion.

One crucial aspect this shift from discovery science to
biomarker development efforts is to consider data at the
individual participant rather than as group means. Biomarkers
need to be applied to individuals, and their utility for some
context of use needs to be established with such data to
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demonstrate prediction of outcome, dose optimization, etc. Data
in discovery studies are rarely reported from individuals, and
this limits existing literature in establishing promising parameters
for consideration as targets for biomarker development in future
studies. Individual data are also important for identifying cut
points for decisions (increase dose, stratify for trials) and to
examine distributions for a group of outliers from the range of
healthy controls, or bimodality/discrete heterogeneity that would
suggest subgroups that could be examined separately.

The goal of this manuscript is not to review the state-of-the-
art in EEG-based biomarkers in NDD; several such reviews are
in the recent literature (Wang et al., 2013; Takarae et al., 2016;
Gurau et al., 2017). Our goal, rather, is twofold: in the first half,
we dissect commonly held conceptual issues specific to NDD-
focused and EEG-based biomarkers. Specifically, we discuss
knowledge requirements for reliability and validation studies. We
consider factors of heterogeneity/comorbidity, development and
state/task performance.

In the second half of this manuscript, we argue for a strategic
approach that includes academic, industry and governmental
stakeholders (including NIH and FDA). We talk about the many
significant advantages of EEG for biomarker development in
NDD populations. We offer tentative reliability thresholds a
promising biomarker should meet for it to be intensively studied
and used for biomarker purposes. While the suggested criteria
are preliminary and will evolve over time, we believe that they
represent a good starting point, based on experience across
fields, and highlight the need for operational standards. We
argue that much research to date aiming to advance biomarkers
of brain function has suffered from a lack of alignment on
performance characteristics (“psychometrics”) of the methods,
the rare use of biomarkers in randomized clinical trials, especially
in pediatric neuropsychiatry, and emphasis of grant funding
on using technologies at hand to explore disease mechanisms.
These latter studies often occur in the context of small single-
site studies using “pure” samples with restricted recruitment
criteria and novel neuroscience techniques. These studies are
rarely followed by larger multi-site studies that take into account
the heterogeneity and confounds encountered in typical clinical
populations in order to validate measures as biomarkers for broad
use. Large multisite studies can accelerate testing of a range of
measures to select which provide information that is truly useful
for a context of use, and to identify biologically distinct subgroups
in behaviorally defined conditions. Such first steps are needed
for biomarker discovery, but are insufficient toward validating
biomarkers to improve clinical trials, enhance the replicability
of studies of disease mechanisms and ultimately inform clinical
practice for the general population. For years, the FDA has
pointed out (Mullard, 2019) that consortia models are far more
likely to succeed in developing data in support of biomarkers.

Criteria for Validation
As discussed above, the core of validation is the empirical
demonstration that a biomarker performs its specified function
at some criterion level. As such, only an empirical statistical
relationship between biomarker and reference test is needed; no
mechanistic knowledge is required. Indeed, some of the most

widely ordered and demonstrably useful tests in the history of
modern medicine are not supported by an understanding of how
the test read-out relates to the pathophysiology of the disorder.
The Westergren erythrocyte sedimentation rate (ESR or “sed
rate”) has been a widely utilized test in the care of patients with
possible and actual inflammatory conditions, yet the rate at which
red blood cells settle in test tubes is only indirectly related to
the pathogenesis of those inflammatory conditions (Figure 1).
We return to causal diagrams later, when envisioning sets of
biomarkers that begin to transcend single applications.

While the process of EEG-based biomarker validation has
been explicated elsewhere (Ewen and Beniczky, 2018), it may
help to organize our thinking by considering four “ingredients”:
a specified EEG measure derived from the raw data; a
context of use (COU), a reference test for comparison, and
selection of population.

What to Measure
The EEG is a complex signal, and there is no end to the
mathematical techniques that can be applied to it (Cohen,
2014). This poses the challenge of identifying which specific
EEG measures and what specific behavioral paradigms from this
infinite list stand the greatest chance of successfully proving valid
for their intended purpose. Biomarker discovery studies, of the
type laid out in the Introduction, identify potential biomarker
candidates. Scientific studies of the pathogenesis of the disorder
in question or the pharmacological mechanism of the proposed
treatment also allow one to identify candidate biomarkers that
seem most promising. Because EEG-based techniques are widely
used as scientific tools in the study of NDD mechanisms both
at the behavioral/cognitive and molecular/circuit levels, there
is an active literature for first-stage evaluation of the most

FIGURE 1 | Causal models of blood sugar used as a biomarker In diabetes
and sed rate as a biomarker in autoimmune disorders. Biomarkers shown in
red. Mechanistic knowledge is neither necessary nor sufficient for
demonstrating validity of a biomarker candidate within a particular COU.
However, because we know that blood sugar has a direct causal role on
certain complications of diabetes, this knowledge opens up the reasonable
possibility that blood sugar could be successfully validated as a surrogate
biomarker as well as a diagnostic, pharmacodynamics/response and
monitoring biomarker. By contrast, little It known about the relationship
between sed rate, most used as a monitoring biomarker, and the causal path
of clinical sequellae in autoimmune disorders. This absence of information
does prohibit the sed rate from being validated as a diagnostic, response or
monitoring biomarker; it simply means there is less a priori knowledge going
into those validation studies.
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disorder-relevant EEG measurements and paradigms that are
biomarker candidates.

There may be a difference in how this step is approached in
behaviorally defined disorders vs. genetically defined disorders,
because of the “convergence point” of both the pathophysiology
of the disorder as well as of therapies. Genetically defined
disorders typically implicate a molecular pathway in their
pathogenesis, and current-day efforts at treatment are often
pharmacological, targeting the pathogenic pathway. The EEG
biomarkers most tapped in an effort to specifically index
these pathways tends to be low-level sensory responses, for
which animal models provide extensive information about
relevant neurophysiology and neurochemistry. Low-level sensory
responses are biologically “closer” to molecular, cellular and
circuit processes, and can also be performed on relevant animal
models, facilitating direct translational application of testing and
measurement procedures. A specific example and what is needed
to advance it for some COU is provided later.

Behaviorally defined disorders, such as ASD, likely have
multiple potential genetic, molecular and circuit deficits that all
result in a more or less common cognitive deficit [though see also
(Waterhouse et al., 2016)]. Because we cannot currently parse or
subdivide the potential “lower level” causes, we are currently left
with conceptualizing and managing the disorder on a cognitive
level. The differential diagnosis (e.g., social-pragmatic language
disorder, intellectual disability) is also defined at the cognitive
level. The partially effective therapies for core symptoms to date
are behavioral in nature, such as Applied Behavior Analysis
(Lovaas, 1987). As a result, it seems reasonable that one would
have the highest probability of validation success for a biomarker
candidate that was designing on a cognitive intermediate
phenotype, taking into account known and theorized factors
about the specific disorder and intervention. The ERP paradigm
involving looking at faces discussed later is an example involving
observable and theorized aspects of ASD.

Task-related EEG measures have been a mainstay of
experimental (cognitive) psychology and psychophysics for
decades (Luck, 2014), parsing such models in both “health” and
disorder. Therefore, we can leverage existing scientific tools from
that literature for consideration as biomarker candidates. We are
hesitant about the use of “out-of-the-box” paradigms to elicit
certain ERP components vs. developing or selecting tools based
on intended use and clinical considerations. For example, the
P3 component (a/k/a P300) is elicited in oddball paradigms.
Tasks can be designed, however, to elicit the P3 to specifically
index stimulus discrimination effects (Patel and Azzam, 2005),
expectancy effects (Wu and Zhou, 2009), contextual effects
(Polich, 2007), memory recall effects (Fabiani et al., 1986),
resource allocation effects (Kida et al., 2004), and processing
efficiency effects (van Dinteren et al., 2014). A biomarker is more
likely to be shown to be empirically valid if a task is designed
that takes into account data and theory regarding the disorder
under study, the cognitive endophenotype under study, as well as
intended or known effects of the study therapy.

Additional EEG metrics and their corresponding constructs
in neuroscience, such as cerebral connectivity (Vasa et al., 2016;
O’Reilly et al., 2017), are currently under scientific investigation

and could potentially serve as biomarker candidates in the
future. This line of work is now widely used in the fMRI
and EEG literature, but its use for biomarker purposes is
largely unexplored.

Recording standards and procedures, and the analysis pipeline
are also specified within this element. Multi-site studies such
as the (ABC-CT) are taking the lead in developing rigorous
standards. This effort follows in the footsteps of long-standing
standards in clinical EEG (Sinha et al., 2016) and more
recent guidelines in EEG-based research (Picton et al., 2000;
Webb et al., 2015).

Context of Use
The second ingredient for validation is the COU. COU is FDA
language for the specific function that the biomarker performs.
FDA and NIH, in their “BEST” (Biomarkers, EndpointS and
other Tools) collaboration (CDER Biomarker Qualification
Program, 2019) define the multiple types of COU and are critical
for preparation for FDA qualification (Table 2).

This manuscript focuses on prospective biomarkers in
clinical trials. There are some preliminary efforts at diagnostic
biomarkers for clinical care in NDD (Loo et al., 2013; Snyder
et al., 2015; Ewen, 2016; Gloss et al., 2016). There is at least one
prognostic, EEG-based biomarker used in NDD, beyond clinical
EEG interpretation: infants born with a port-wine birthmark
(PWB) have around a 25% probability of going on to develop the
brain involvement that is definitional to Sturge-Weber syndrome
(SWS). The use of a quantitative EEG metric, based on a measure
validated to measure ischemia during carotid endarterectomy
(van Putten et al., 2004), prognosticates which infants are
at higher risk and is less expensive and invasive than using
MRI (risks associated with sedation and gadolinium contrast
administration) and possibly an earlier biomarker, given the rates
of MRI false negatives in the first year of life (Hatfield et al., 2007;
Ewen et al., 2009).

While a particular method or read-out may eventually be
shown to function validly in multiple COU, a single validation
study reports on performance only within a single COU.

TABLE 2 | FDA Biomarker Contexts of Use (COU).

COU Description

Diagnostic Concurrent biomarker that specifies whether or not an
individual has a disorder/pathologic process

Monitoring Concurrent biomarker that concurrently reflects a change in
a disease or in a side effect

Safety Concurrent biomarker that reflects presence/degree of
toxicity from an exposure

Response Prospective biomarker that reflects a response to an
intervention; when highly well validated, may serve as a
surrogate endpoint in a clinical trial

Prognostic Prospective biomarker that predicts clinical course

Predictive Prospective biomarker that predicts response to an
intervention

Susceptibility/Risk Prospective biomarker that reflects potential for developing
or disease sensitivity to a negative outcome following an
exposure

Frontiers in Integrative Neuroscience | www.frontiersin.org 6 August 2019 | Volume 13 | Article 45

https://www.frontiersin.org/journals/integrative-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/integrative-neuroscience#articles


fnint-13-00045 August 19, 2019 Time: 18:8 # 7

Ewen et al. Biomarker Validation in NDD

FIGURE 2 | EEG finding can be a good diagnostic biomarker while being a
poor monitoring biomarker in epilepsy. In this causal model, lEDs follow from
the pathophysiology that causes seizures but are upstream to the effect of
seizure medications.

Successful performance in one COU does not guarantee adequate
performance in another COU (Figure 2). For example, a valid
and useful diagnostic biomarker may not be an effective response
biomarker. An example from current clinical practice: if a patient
is suspected of having epilepsy, we often perform an EEG to
look for inter-ictal epileptiform discharges (IEDs)—spikes and
sharp waves which indicate an increased likelihood that the spells
are epileptic, rather than some non-epileptic “mimic.” IEDs on
EEG, while imperfect, are a clinically useful diagnostic biomarker.
If our example patient is then diagnosed with epilepsy, the
goal of treatment is to reduce or eliminate the seizures. In
the process, some seizure medications also normalize the EEG
(suppress IEDs), but others effectively reduce seizures without
minimizing or eliminating IEDs on EEG. IEDs on EEG, then,
are a good diagnostic biomarker, but they are a poor monitoring
biomarker for patients treated with non-spike-suppressing anti-
seizure medications.

As the field develops, we can envision biomarkers that have
been validated in multiple COUs, and paired with progress in
the understanding of how lower-level mechanisms produce the
biomarker read-out (Table 1). Imagine an EEG-based biomarker
that is similar to blood sugar (Figure 1). Blood sugar has been
validated as diagnostic marker for diabetes mellitus. Because we
understand how high blood sugar plays a pathogenic, causal
role in the complications associated with diabetes, we can
we can propose with confidence (and subsequently validate)
blood sugar not only as a diagnostic biomarker, but also as a
monitoring biomarker. This link would not be true if blood
sugar were only a peripheral, epiphenomenological read-out.
This mechanistic knowledge can also motivate novel therapeutics
(e.g., those which control blood sugar) and subsequently serve
as a pharmacodynamics/response biomarker or even surrogate
endpoint for this new therapy. However, despite this mechanistic
knowledge, sensitivity/specificity need to be calculated separately
in each COU (validation). The number of EEG read-outs
tightly linked to lower-level mechanisms is small. One auditory
ERP paradigm is tentatively becoming linked to a LTP-like
mechanism, with systematic studies that showing it is sensitive
to the same experimental manipulations as LTP in mouse models
(Clapp et al., 2012). If one were to conduct a clinical trial of a
drug that is known to affect LTP in animal models and whose
mechanism of action to benefit the patient is through modulation

of LTP, then using this LTP-sensitive ERP biomarker may give at
least some a priori confidence that the biomarker will predict or
track the efficacy of the therapy.

Reference Test
The third element of the validation “equation” is a de facto
reference test or reference standard, in the terminology of
clinical test validation (Bossuyt et al., 2015). Reference standards
are often referred to as representing “ground truth” or the
“gold standard.” A validation study outputs the sensitivity and
specificity with which the biomarker (“index test”) estimates
the reference test. The COUs most relevant to clinical trials are
the prospective COU: prognostic biomarkers (for enrichment in
prevention trials), predictive biomarkers (for stratifying based
on expected sensitivity to treatment), and risk biomarkers (for
exclusion based on anticipated risk). The value added by the novel
biomarker is that it reports earlier than the reference test. The
reference standard may therefore be a relatively simple outcome
measure, such as a clinical global impression (CGI).

It seems self-evident that sensitivity and specificity can only be
calculated relative to some “gold standard.” The reason we make
a point of it is in response to an oft repeated hope that a novel
biomarker can transcend the limitations of a noisy or subjective
reference test, such as the CGI. This hope may be founded in
cases where a biomarker is so well validated in multiple contexts,
disorders and therapies that it is a proven, faithful representation
of a particular mechanism (Table 1; Woo et al., 2017). However,
in the case of “single-use” validation studies, it is logically
impossible to demonstrate that a novel biomarker is “better”
than the reference test against which it is being compared, since
it is impossible to disambiguate the uncertainty associated with
the novel biomarker from the uncertainty associated with the
reference test; this is analogous to being unable to solve a single
equation with two unknowns in algebra. Imagine if we had a
EEG biomarker which was shown to predict outcome on therapy
12 months before the CGI demonstrated that outcome. There
would be some individuals in whom the two tests disagreed. If
we took the position that the EEG predictive biomarker were
“more correct” than the “squishy” CGI, what data that is “even
more true” than the CGI reference test could we even use to
demonstrate this was so?

The relationship between biomarker candidates and
concurrent biomarker reference standards is a bit more
complex and will not be fully discussed here. Put briefly,
the motivation for developing a new biomarker to substitute for
or complement an existing concurrent reference test is because
the newer biomarker is less expensive, easier to perform or
is less invasive than the biomarker it will replace. Moreover,
special issues pertain to reference standards for concurrent
COUs specifically in behaviorally defined NDD, and diagnostic
biomarkers in particular. However, it is worth mentioning
that potential advances in reframing our current diagnostic
paradigms to be more in line with evolving therapies could be
made via predictive biomarkers. Responsiveness to Intervention
(RTI) diagnostic approaches have been used in the context of
academic interventions for specific learning disabilities (Ewen
and Shapiro, 2008). Because a patient with a NDD may eventually
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be prescribed both pharmacological and behavioral/cognitive
therapies, an RTI framework may be multiaxial and contain
multiple, parallel frameworks, one for each of the types
of therapy.

Selection of Population
The fourth element of the validation “equation” is the selection
of the population to be studied (i.e., inclusion/exclusion criteria
for the validation study and also patients on whom the
biomarker can be validly used in clinical practice or trials).
These same inclusion/exclusion criteria and sampling scheme
that define the participants/patients for which the biomarker
can be validly used in eventual clinical trials or clinical practice.
Because we are limiting our discussion primarily to biomarkers
which are validated prospectively (prognostic, predictive, and
risk COUs), only one group will be recruited; considerations
about appropriate comparison groups for validated biomarkers
with concurrent reference standards (e.g., diagnostic COU) are
not relevant here.

Heterogeneity is a potential confound in validation studies that
is well recognized in the study of behaviorally defined NDD as
well as across neuropsychiatry generally. Aspects of heterogeneity
include ranges of severity of core features, presence/absence of
non-core but highly penetrant features (e.g., motor dysfunction
in ASD) and the presence of comorbidities (e.g., Axis I psychiatric
comorbidities). When considering the impact of heterogeneity
on biomarker validation, the first point is to restate that a
particular biomarker is only valid in implementation for the
inclusion/exclusion criteria under which it was validated. While
mechanistic science typically seeks “pure” samples to reduce the
effect of confounds, biomarkers for advancing drug discovery
typically need to seek study participants with more diverse
ecological heterogeneity. This heterogeneity then is “baked into”
the sensitivity and specificity estimates, which are the end result
of validation. Because of this, biomarker studies need to include
more messy heterogeneity than projects primarily interested in
disease mechanism.

It is possible, however, to improve on gross
sensitivity/specificity estimates derived from binary biomarker
outcomes by including additional terms in a more complex
predictive model. Such terms may and generally should include
age, gender, intelligence, duration of symptoms and psychiatric
comorbidities in the case of NDDs; the choice of terms will
depend on existing knowledge and mechanistic hypotheses
about how these factors could influence the biomarker output,
but machine learning can readily accommodate such data,
given adequate sample size. An interaction term may be critical.
Anxiety, for example, may manifest and be due to different
mechanisms when co-occurring with ASD vs. when occurring in
individuals without ASD (Rosen et al., 2018). As a consequence,
if one tries to control for a psychiatric comorbidity in a NDD
biomarker, it is important to study the biomarker in a 2 × 2
contrast (NDD, psychiatric diagnosis), and to use interaction
terms in the predictive model. Similarly, if we hope to account
for the effect of medication on the EEG dependent variable, such
effects need to be studied both independently and within the
context of the disorder of interest.

Certain confounds will require exclusion, such as inadequate
visual, auditory or motor function to participate in the biomarker
data collection (Picton et al., 2000).

Development represents a special case of a confound. We know
that many both resting state EEG measures and ERPs vary over
the course of development (Tome et al., 2015; Eberhard-Moscicka
et al., 2016). While the inclusion/exclusion criteria define the
relevant potential patients for biomarker use, a priori knowledge
about development in neurotypical subjects may itself indicate
a need to limit use of a given biomarker only to a relatively
narrow age group that does not have significant changes in the
EEG dependent variable, or to carefully define developmental
progression prior to broad biomarker implementation.

Most biomarker dependent variables represent a
measurement at a single point in time. Monitoring COU
biomarkers, by contrast, measure changes over time.
Measurements of such changes will be influenced by test-retest
variability, typical developmental changes over long follow-up
periods and intervention-related changes. Control measurements
over a variety of time courses are necessary to quantify test-retest
variability and typical developmental changes for specific COU.
There is also, in principle, no reason that diagnostic biomarkers
could not be defined by trajectories over time, rather than by
point measurements, or that predictive biomarkers showing a
small response to a brief treatment challenge could not validly
predict a larger response to a longer treatment.

At the current stage of development, most EEG-based
biomarker candidates for NDD have only begun to be
systematically evaluated for biomarker use. Research efforts
typically have focused on a specified age group, in the context
of a single disorder, a single therapy (where relevant), and
a single specific assay/analysis pipeline – often focused much
more on mechanistic science than practical use of measurement
for applied biomarker purposes. The latter requires focus on
casewise data, utility for prediction or classification, and optimal
thresholds for decision making. As we move toward biomarker
families that index an important mechanism across multiple
conditions, COUs and age groups, we may develop normative
data. Such studies, as in the field of psychometrics, will require
large, heterogeneous groups with random sampling, with sample
sizes dependent on the relevant variance (reliability) and effect
sizes in the groups.

Analytic Approach for Reliability and Validity
Reliability is a precondition for validity. Said another way, it is
impossible to detect a meaningful change if the metric varies
randomly in the absence of a substantive change of the process
that is being measured. Reliability is a metric that is internal
to the biomarker itself and does not need to be compared with
the reference standard (in fact, the reference standard is taken
to be a scalar and not a probability distribution, therefore a
reference standard does not have reliability per se). Reliability can,
however, be compared with that of other, competing biomarkers.
Because measurement error and reliable effect size have an
inverse relationship, smaller changes can be detected in a measure
that has greater reliability. When clinicians or trialists hope that
an EEG biomarker will be “less subjective” than, say, parent
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report, it is increased reliability that they are to a large extent
seeking. Because reliability of a certain effect size is necessary for
validity at that effect size, it is possible to exclude a biomarker
candidate if the reliability is lower than an acceptable threshold.
Specific recommendations for EEG-based biomarkers in NDD
will be made in the next section.

Validity: Many of the clinical electrophysiological tests that
have been used in practice for decades have had extremely
high sensitivity (like 3 Hz spike-wave for absence epilepsy)
or have been definitionally related to their clinical syndrome
(Trisomy 21). We cannot assume that current day biomarker
candidates, considered in isolation, will have such robustness for
syndromal neurodevelopmental disorders, and we need statistical
approaches to deal with this reality.

Most analytic approaches for validation have a pipeline of
continuous data, binarized data and probabilities. Validation
studies require the recruitment of two participant samples with
identical inclusion/exclusion criteria: the training set and the
test set. Within a training set, continuous data (e.g., ERP
amplitude) is collected for subjects in each group; in the case of
prospective (prognostic, predictive and risk) biomarkers, group
status is assigned retrospectively (good vs. bad outcome). receiver
operator curves (ROC) allow the break point to be set at a
preferred sensitivity/specificity trade-off. The second sample, the
test sample, then has the same procedures run, with the same
EEG metric, same procedures, same reference standard and same
inclusion/exclusion criteria. On this test sample data, the data
are binarized via the threshold determined using the training
sample, and the true sensitivity and specificity are computed
as probabilities. These sensitivities and specificities explicate the
uncertainty with which the biomarker estimates the reference
standard and serve as the culmination of the validation process.

Criteria for judging minimal data quality standards for a
particular set of data from a particular patient/participant to
be considered “valid” also need to be explicated within the
training sample stage, both from EEG data quality as well as
from behavioral performance on any task under which the
EEG is recorded.

Biomarkers may be judged not only by their sensitivity and
specificity, but by their cost, availability, invasiveness, ease of
deployment (including training requirements for staff), rate of
data loss to artifact/non-compliance and ability to be tolerated
by patients. These considerations can often help decide between
two biomarker technologies as most likely to be most efficient
for clinical and trial needs. Compared with fMRI, EEG is less
sensitive to motion because the electrodes move with the head,
and it is far less expensive, therefore more widely available.

State-, Performance- and Noise-Related Confounds
A variety of confounds commonly encountered in individuals
with NDD and in EEG metrics can create problems of
variance (reliability) and bias (specificity and subsequently
validity). Cognitive electrophysiology biomarkers can be
sensitive to processes that are outside the causal chain of
(epiphenomenological to) the biological mechanism that
is the focus of study—processes which can differ between
systematically less- and more-severely affected individuals or

FIGURE 3 | Confounded measure intended to index visual perception. In this
example relevant to a diagnostic biomarker, a specific form of Visual
Perception alteration is understood to be a consequence of ASD and is
intended to be indexed by the Event-Related Potential (ERP). However, Visual
Attention (such as looking at the stimulus display) is both necessary for task
performance and is also systematically different between the ASD group and
the control group. In this example, Visual Attention has a bigger impact on the
ERP dependent variably (heavy arrow) than does the Visual Perception ability,
and therefore confounds the interpretation of the ERP read-out as a valid
measure of Visual Perception.

treatment responders and non-responders. In the example of
Figure 3, the ERP read-out as a valid measure of a particular
visual processing mechanism is confounded by a visual attention
capacity which is systematically different between groups.

There are at least three approaches to minimizing the effect
of artifact and other confounds: utilizing measures insensitive to
the artifact generator, using signal processing methods to remove
the artifact, and controlling statistically for artifact. The optimal
solution is to use electrophysiological metrics which are relatively
insensitive to these confounds. For example, the mismatch
negativity (MMN) ERP component is minimally sensitive to
attention, whereas the P3 component is highly dependent on
attention. Auditory perception does not require the orienting of
sensory organs in the way that vision does, and therefore auditory
tasks may be preferable when testing children who are less able
to follow task instructions. EEG and magnetoencephalography
(MEG) are silent, making them preferable to fMRI for auditory
tasks, and especially for patients with auditory hypersensitivity.

It is critical to study these metrics explicitly in terms of their
sensitivity to confounds. A poignant example comes from the
fMRI literature, in which it was learned that motion artifact
(Power et al., 2012) leads to spurious changes in connectivity
measures, which subsequently led to a substantial portion of ASD
connectivity literature being called into question (Vasa et al.,
2016). Muscle artifact can be a similar issue in EEG studies.
When a particular target mechanism or confound is not amenable
to direct control, an alternative is to try to equate participant
state during individual trials as much as possible. For example,
eye tracking can be used to trigger stimulus presentation only
when a participant is looking at the screen (Varcin et al., 2016).
Behavioral psychological preparation and management during
testing can help equate task engagement in a way that is often
not directly quantifiable (Paasch et al., 2012). When the EEG
biomarker is collected in the context of a psychophysical task,
it may be possible to use a staircase method to equate subjects
on task performance, to eliminate measured differences that may
be due to performance-related mechanisms and not diagnosis-
related mechanisms. Parametric studies across a wide range of
task difficult are another strategy for dealing with this issue, as
it allows brain activity to be modeled across a range of task
performance quality.
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A final method to control for state/performance confounds
is to record behavioral variables during the task and to adjust
statistically. In some cases, the behaviors quantified are subjective
(e.g., behavioral aide impression of participant engagement);
in other cases, they are objective (e.g., reaction times and
error rates to the psychophysical task being recorded). Control
conditions in psychophysical tasks may help in controlling
statistically for confounding processes. There is an added benefit
by contrasting conditions within a subject, that any within-
subject error term that is common to two conditions is eliminated
(Webb et al., 2015).

The number of trials excluded for behavioral (not attended,
incorrect task response) and EEG-signal-quality reasons also
needs to be tracked, at the very least to make a judgment about
which subjects are judged to have inadequate data, invalidating
the use of the biomarker for that particular testing session.
The same objective criteria for excluding a subject’s data need
to be employed both during the biomarker validation study
and when the biomarker is eventually used in clinical trials or
clinical practice, which involves objective, rules-based definition
of acceptable data a priori.

Electrophysiology signal quality may differ between groups for
reasons that are not clearly known and may not be related to the
processes that the biomarker is intended to index (Butler et al.,
2017). Additional signal quality metrics are on the horizon. In
the meanwhile, it should be pointed out that biomarker studies
and mechanistic studies differ in terms of how they are impacted
by unaddressed confounds. In mechanistic or treatment studies,
where the end result is a binary conclusion (groups do or do
not differ in a certain regard), confounds may bias toward a
Type I or Type II error. In biomarker studies, the end result
is not binary, but statistical measure of uncertainty (sensitivity,
specificity), and uncontrolled confounds may simply result in
poorer sensitivities and specificities than would otherwise be
the cases (assuming random sampling). In some instances, the
confounds make the biomarker. The ADHD200 competition was
an attempt to discover and validate a fMRI-based diagnostic
biomarker for ADHD—and the head-movement variable turned
out to be the key predictor (Eloyan et al., 2012)!

Epilepsy, which has increased in recognized prevalence in
ASD (Spence and Schneider, 2009; Ewen et al., 2019) and many
other NDDs, presents several confounds. First, frank seizures
can affect both consciousness/the ability to make volitional
responses as well as the EEG tracing. One would suspect that most
perceptual/cognitive/motor biomarkers would not be reliable in
patients actively having seizures during the recording. The role
that IEDs have in alterations of consciousness in the absence of
clinical seizures is controversial (Landi et al., 2018). However,
patients who have epilepsy but who are not actively seizing
also have IEDs in their EEGs (Fisher and Lowenbach, 1934;
Gibbs et al., 1935). The extent to which these inter-ictal EEG
changes affect (bias) any particular EEG analysis method is an
empiric question. Perhaps surprisingly, Key et al. were able
to obtain similar ERP waveforms with a similar number of
trials from controls and children with Angelman syndrome—a
disorder which is known to cause extreme abnormalities of both
background oscillatory activity as well as the frequent presence

of IEDs, since the IEDs and oscillations are not consistently
phase-locked to the stimulus and were therefore canceled out
in time-locked averaging. It is probable that spectral (frequency-
domain) measurements would be more affected than ERPs in
Angelman syndrome. On the other hand, while working on this
very manuscript, one of the authors’ (JBE) labs recorded an ERP
study in a participant with epilepsy who had IEDs time-locked to
and apparently evoked by an auditory stimulus; these focal sharp
waves confounded the ERP waveform in certain channels.

In summary, researchers and clinicians desire predictive,
prognostic and risk biomarkers to provide an indication of
efficacy or side effect earlier than would otherwise be possible,
thus making clinical trials more efficient and potentially
reframing diagnosis to an intermediate phenotype more tightly
related to effective treatments. These biomarkers can also help
stratify patients to increase effective power in clinical trials, using
the same sample size. While few biomarker candidates are on the
horizon for full validation, the simpler assessment of reliability
may help cull the heard of candidates. Mechanistic knowledge is
not formally required for validation but has the potential to link
validated biomarkers to new COUs and can help investigators
predict and mitigate certain confounds.

Developing Paths Forward for
EEG-Based Biomarkers in NDDs
As noted earlier, the FDA process, which endorses some specific
COU for biomarker qualification, does not have explicitly
published requirements. Nor for the broader field is there
alignment as to the level of evidence required to judge a
biomarker as both sufficiently validated and robust to justify
decision making in any interventional study. In order for a
biomarker to be used as an inclusion criteria or early intermediate
outcome measure, cut off points for decision making need to
be specified. And when using a cut-off value in an individual
for such uses one wants to have as much confidence as possible
that the value truly represents a characteristic of that individual
which is potentially relevant to treatment and not due to other
sources of variation. In the absence of any EEG based biomarker
embraced as likely to currently serve such a role, an initial
step in recommending a path forward is to identify gaps in
approaches taken to date.

Performance characteristics of single analyte biomarkers
in a biofluid such as serum cholesterol are much more
straightforward to establish—e.g., standard tube type and
processing of sample prior to determination of concentration
with clinical laboratory improvement amendments (CLIA)
standards in place to provide confidence in reported values—than
any functional EEG measure. The wide range of factors that can
affect EEG data have been spelled out in the preceding section.
Clinical EEG societies specify minimal technical standards (Sinha
et al., 2016), and research ERP standards have been published
in cognitive psychology broadly (Picton et al., 2000) and for
ASD specifically (Webb et al., 2015), but these are not at
the level of CLIA standards. It remains to be seen whether
they are sufficient for purposes of biomarker qualification and
validation or are even followed by most investigators. Given
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that fMRI-based biomarkers are the other major functional brain
measure being pursued in syndromal CNS disorders, we refer
the reader to recent reviews of the various roles of fMRI as a
functional brain measure applied to drug development (Woo
et al., 2017; Carmichael et al., 2018), since these highlight many
parallel issues to those arising with EEG. fMRI and EEG though
provide very different information. While fMRI provides whole
brain coverage and far superior source resolution, the superior
temporal resolution of EEG (∼1000Hz vs. 1Hz for fMRI) provides
a far better characterization of the dynamic interaction of cortical
regions and latencies of brain responses, and the biological
meaning of frequency information is much clearer than are
oscillations in fMRI BOLD signals.

Typical gaps in EEG biomarker development efforts result
from a failure to study a sufficiently large and representative
slice of the population for which it is ultimately intended. Most
preliminary studies of a novel biomarker candidate focus on some
small (less than 25 subjects) rarified patient group accessible to a
single site and a completely asymptomatic healthy-control group.
As a corollary, studies in special populations at sites with staff
enthusiastic about and committed to the measure may convey
an overly optimistic sense of what percentage of participants
can comply with the biomarker procedure and return valid data.
This consideration is particularly critical in EEG-based tests
for children with neurodevelopmental disabilities (NDD). Task-
based EEG measures, particularly those which require behavioral
responses in addition to the EEG data collection, set a higher
bar for participant compliance than do spontaneous (“resting-
state”) metrics.

Differing EEG data-cleaning and processing pipelines are
used by different investigators, and it is not clear whether
these differences account for differences in reported values
and biomarker utility. Variability also occurs because many
EEG measures are sensitive to subject state: drowsiness/level of
alertness, effortful cooperativeness and degree of relaxation—so
how such variables are controlled needs to be clearly defined for
reprodicibility. There is also a potential impact of duration of
testing, as these factors may become increasingly relevant with
longer testing of NDD patients.

At its core, validation requires an evaluation of sensitivity
and specificity which are in turn limited by the test-retest
reliability for which precise estimates, especially across sites,
requires methodologic studies. Ideally, everything relevant to
having confidence in reported values should be addressed
in the methods section of reports. Fundamental research is
needed to investigate explicitly the impact of technical and
analytical differences. While equipment manufacturer is assumed
to play a far smaller role in EEG output than in fMRI,
it would be helpful to know to what extent different EEG
amplifiers produce meaningfully different results. Questions
also arise about whether activity should be averaged over a
prespecified set of electrodes to increase reproducibility, vs.
selecting electrodes on an individual patient level (through
some principled basis) in hopes of increasing SNR. Studies
to consider different behavioral test paradigms and different
data analytic approaches are thus a crucial part of EEG
biomarker development.

In the context of these considerations, performance thresholds
or targets for biomarkers likely to be adequate for use in
trials and/or qualification by the FDA will need to be refined
iteratively with experience. As a starting point, we propose
explicit (albeit preliminary) criteria which we hope will drive
forward EEG-based biomarker development for drug discovery.
To illustrate why we believe that target criteria might be helpful,
and to provide and critique examples of biomarker development
approaches, we next consider examples from three different
classes of EEG based studies—resting-state EEG, ERP to a sensory
stimulus anchored in neural systems research, and ERP to a
more complex stimulus derived from psychological models and
clinical observations.

We start with consideration of resting state EEG studies, using
a recent review of relevant published studies in ASD published
between 1980–2016 (Gurau et al., 2017). Their summary is
instructive with regard to what might be required to nail
down an EEG measure as a biomarker at the individual level.
All reviewed case-control studies reported some, but not the
same, differences between ASD and control subjects. The review
considered studies of potential diagnostic biomarkers and efforts
to identify pathophysiologic subgroups. The greatest number
of studies focused on spectral analysis as a potential diagnostic
index with four out of 21 reporting a directionally similar finding
as interpreted by Gurau et al. (2017). They concluded that,
despite inconsistencies, some generalizations could be inferred.
Significant differences in the alpha band were shown by five
studies with relaxed eyes open condition. Four studies showed a
decrease in absolute alpha spectral power in ASD in children of
similar ages, but another showed elevated absolute alpha power in
adults. Inspection of the cited studies reveal that even a common
finding of “decrease in absolute spectral power” is unclear
because absolute spectral power was not presented in each paper.

Specifically, selecting the only two studies among the four with
supposedly common findings that included an ASD group of
more than 25 subjects, one reports lower relative (not absolute)
alpha power calculated from channels T3 + T6 + C3 + F4
(selected by stepwise discriminant-function analysis) (Chan
et al., 2007) whereas another study used retrospective clinical
recordings from a 10 year period (2001–2011) to look for
differences in recordings from subjects diagnosed as ASD
(children 4–8 years old). The control group was based on
selecting EEGs that had been read as normal in same age children
over the same period who based on chart review were free of any
NDD although the reasons for EEGs having been done were not
specified. This later study reported a lower ratio of posterior to
anterior alpha power (Matlis et al., 2015). Relative advantages of
examining absolute and relative power in a particular frequency
bandwidth require empirical study.

At the current exploratory stage of the development of EEG
biomarkers, investigators appear to be operating with the dual
aim of discovery neuroscience and a secondary goal of finding
or generating data suggestive that there might be something
worth following as a biomarker. But from the vantage point of
looking for biomarkers that might be informative at an individual
level, for predicting something of clinical importance about a
specific person, small, site-specific studies with varying analytic
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approaches and specific outcome measures make it difficult to
select parameters to pursue for biomarker development with
confidence. Developing such confidence will require multisite
studies (using coordinated recruitment or at least some set of
overlapping data) using common (standardized) measures that
allow not only for apples to apples comparisons of results across
sites but also, ideally, allowing for aggregation of data into
common databases.

As an example of a systems neuroscience-based sensory ERP
study, a recent study utilized an EEG measure that can applied
across a genetic mouse model of a disorder and in patients
with the disorder utilizing an ingenious aural chirp stimulus. To
evaluate the ability of the brain to generate robust oscillatory
responses across a 1–100 Hz frequency range, they evaluated
neural synchronization across this range to an auditory stimulus
oscillating from low to high frequency in the 1–100 Hz frequency
range band. Deficits were detectable in the gamma frequency
range in FXS patients (Ethridge et al., 2017) as they were later
observed in fMR1 KO mice (Lovelace et al., 2018). The human
study was a single site study in 17 subjects with full mutation
FXS individuals (age range 13–57 of whom 4 were female) and
17 age/gender matched controls. Obviously, issues of potential
age and gender effects would ultimately need to be addressed
as well as what is usually required to move from a single site
study in a small number of individuals to a broader population
in diverse settings. Such issues will be partially resolved in the
ongoing multisite NeuroNEXT study of the Novartis mGluR5
negative allosteric modulator AFQ056.

The investigators used an analytic approach including
PCA-weighted un-baseline-corrected epoched single-trial data
to generate single-trial power (STP) metrics which revealed
decreased gamma band phase-locking to the chirp stimulus in
FXS individuals. Interestingly, there were elevations of baseline
gamma power in FXS vs. control subjects before, during and after
chirp presentation as in fMR1 KO mice. This raises the question
of what additional information is provided by the STP measure
of the ability to synchronize neural oscillations to the frequency
of the auditory stimulus relative to information provided by
increased baseline gamma power from a predictive biomarker
perspective, given the observed correlation between elevated
baseline gamma power values and the reduced entrainment of
gamma band activity to the chirp stimulus.

To advance these measures as potential biomarkers, one
might begin with examining whether the two measures (baseline
resting-state gamma-power and gamma-band STP to chirp)
met a criteria of 90% test-retest reliability on the same day
and over longer periods. A second issue is the examination of
distributional characteristics of these alterations, such as whether
there is a subgroup of highly deviant outliers or bimodality
with discrete subgroups. This is needed to get a sense of the
distribution of values at the individual level, something not
provided by group-level heat-maps that displayed log power
at neural oscillation frequencies over time (ms). To move
from discovery science to establishing the promise and utility
of the measures as biomarkers for advancing drug discovery,
future studies will need to establish clinical relevance and study
larger groups to reasonably estimate parameter distributions

and ROC curves for the different metrics examined. Optimal
electrodes to use for this work would also need to be formally
determined and validated to maximize the signal to noise ratio
of data in a consistent way across laboratories for individual
study participants.

The third example considers ERP response to a psychological
stimulus in studies of ASD. A recent meta-analysis of 23
studies (374 participants) established the finding of delayed N170
response to face stimuli in individuals with ASD (Kang et al.,
2018). The N170 is a negative-going change in the ERP waveform
that peaks approximately 170ms after stimulus presentation. In
healthy individuals, it is larger in amplitude and shorter in latency
to faces in comparison with responses to inanimate objects. As
such, it is presumed to reflect neural activity associated with early-
stage face processing, and believed to reflect aspects of social
cognition. Overall deficits in N170 ERP amplitudes were not seen,
but amplitudes were reduced in adults and those with higher
cognitive ability relative to matched typically developing controls.
Only 3 of the studies involved at least 25 subjects per group and
the review utilized effect sizes of group differences calculated
from each study. The extent to which the specific latencies or
amplitudes did or did not align across studies is not addressed
in the review and difficult to extract from the actual papers given
differences in the details of the paradigms employed.

Neural indices of face processing are of interest as candidate
biomarkers for social processes in ASD, and build on an extensive
psychological literature linking face perception to social process
in typically developing (TD) individuals and in ASD (Bublatzky
et al., 2017; Webb et al., 2017). While overall effects are promising
at the group level, potential limitations of this line of work
include: (1) some non-confirming reports in the literature, (2)
uncertainty about how much this deficit relates to early-stage
visual system disturbances vs. later perceptual analysis of faces,
(3) uncertainty about whether or how the effect is related to
affective response to faces vs. a disturbance in the perceptual
ability to process face information, (4) uncertainty about whether
an index of this nature will separate subtypes of patients
for stratification purposes or provide a dimensional/objective
measure of a core behavioral trait in ASD with which the EEG
measure is correlated—and therefore the additional information
provided by the EEG metric, (5) the neural and cognitive
implications of a delayed N170 component that is not reduced
in amplitude remain to be fully elucidated, and (6) psychometric
properties (reliability and validity) of the latency and amplitude
measures with regard to establishing potential cut-off points at
the individual level continue to be developed. Several of these
issues are being addressed by the ongoing Autism Biomarkers
Consortium for Clinical Trials (ABC-CT) study, a US-based
multisite effort to identify biomarkers to support intervention
research in autism (McPartland, 2016, 2017).

The study of N170 in ASD is rooted in psychological
models and behavioral observations, and has the advantages of
a relatively strong supporting literature and face-valid clinical
relevance. The approach also has potential limitations, including
limited potential for translational integration and limited
clarity of neurobiological implications beyond localization of
effect to particular areas of neocortex to be informative
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at a level that could provide direct rational link to drug
targets. The reduced N170 latency in ASD is of interest in
its own right, but the comparison to our auditory chirp
example highlights the relative development, strengths and
limitations of psychologically rooted and neurobiologically
rooted approaches for developing EEG biomarkers for advancing
drug discovery. Clarifying and maximally utilizing the relative
advantages of these approaches for developing EEG biomarkers
for neurodevelopmental disorders remains an important and
relatively uncharted direction for future research.

What might represent a sufficient degree of standardization
and what level of “assay” performance would one be looking for
to rule a measure in or out as a usual biomarker for some specified
COU? For any functional brain measure such as EEG, with
many potential variables both as regards acquisition paradigms
including number of channels and analytic approaches, the
suitability of a range of approaches for different COU will
require extensive evaluation. One would expect that approaches
could be compared in later stage developmental efforts prior to
large-scale validation. That does not mean, however, that it is
not possible to specify some common practices that will allow
the field to be more confident that the raw data generated at
different sites does or does not replicate (same values, not simply
directionally similar case-control differences). Multivariable
development studies can ideally contrast distributional properties
and differential utility in a COU of different EEG measures,
and examine their relation to age and developmental state of
the brain. This would allow for addressing questions of whether
a biomarker can be informative at the individual level, which
is crucial for their applied use. For that purpose, we suggest
preliminary thresholds for promising biomarkers:

1. Deployable in >80% of patients administered by technician
level staff outside of a CNS research center

2. Reproducible value of a specific EEG measurements within
individual at ±7.5%, if tested within the same acquisition
period

3. Day to day stability within an individual at ±10% in
absence of change in clinical condition, treatment and
environmental factors; stability week to week within±15%

4. Evidence that different sites can achieve values in the same
individual within 15% of each other (traveling subject
approach) and generate mean value for a control group of
12 subjects within 10%

5. Normative data that allows for correction of data for any
significant effects of age, gender, educational status or
intellectual capacity that might influence measurement of
an EEG biomarker

While reliability thresholds mathematically depend on effect
sizes, many of these specific proposed degrees of variation of a
variable within an individual reflect the experience of one of the
authors (WZP) in terms of assumptions that go into powering
of studies to assess the utility of potential biomarkers carried
out within the Biomarkers Consortium of the Foundation of the
National Institute of Health. The precise performance targets
are illustrative and might be relaxed or tightened depending on

the situation; the point is to have pre-specified and reasonably
stringent performance targets when moving from biomarker
discovery to qualification for some COU. If an EEG biomarker
can meet the proposed targets, it should be relatively straight-
forward to determine utility in a COU with a sample size on the
order of 100–200 participants.

Given the complexity of the brain, and everything that
contributes to EEGs, combinations of EEG measures may
ultimately achieve the most stable and useful characterization
of brain function within an individual. To identify the “best”
parameter combinations, approaches such as machine learning,
which benefit from larger sample sizes, can help identify
biomarker measures that in combination optimize practical
utility. In light of the above criteria for a single biomarker,
criteria that a combination is “better” should involve at least a
5% increase in, for instance, the AUC of the ROC curve for
some purpose of use.

We assume that to approach meeting these criteria, which are
admittedly aspirational, standardization of paradigms, analysis
pipelines, electrode array size and perhaps even equipment will be
required. Recently completed and ongoing studies with EEG and
ERP in various neurodevelopmental and psychiatric populations
as well as in healthy volunteers as measures of drug effect have
generated data that will help assess whether these criteria are
met under ideal research conditions. If not, the data may allow
for more informed setting of criteria or argue that we search for
EEG/ERP paradigms that could meet those as proposed.

We assume that later stage validation studies would
necessarily be multi-site. Single site studies would be focused on
biomarker discovery such as some novel ERP paradigm or resting
state EEG measure. In keeping with recommendations from
the FDA (Amur et al., 2015), we believe that to address criteria
1–5 at any level is best done through collaborative consortia
approaches with extensive data sharing. Full transparency allows
for confidence in the data and expedites the rate of uptake of
any biomarker that may facilitate the development of desperately
needed treatments.

Given all the considerations discussed above, it seems fair to
say that biomarker development for NDDs is not nearing the
end stage of well validated and regular application, but we do
now see the end of the beginning phase as we move from pure
discovery to planning for testing validation for application. Many
small-sample studies have found promising leads, especially
for EEG/ERP biomarkers both for ASD and for related single
gene disorders such as FXS. Future studies will also need to
examine community populations not rigorously selected for
mechanistic studies in academic medical centers but recruited to
characterize a disorder as it exists in the population. Secondly,
biomarkers will need to be evaluated in terms of their proximity
to clinical symptoms vs. to biological disease mechanisms. Both
are important, but most approaches will have greater relevant
utility for one or the other purpose. For example, one might
consider ERP studies of psychological features such as emotional
face viewing as a promising diagnostic biomarker for ASD, as it is
likely to be common across ASD cases given its close association
with social cognition, which is a defining feature of the disorder.
Alternatively, a study of theta-gamma coupling at rest, a more
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fundamental feature of brain physiology, might be more likely
to resolve syndromal heterogeneity and be linked to the selective
action of particular drugs in particular individuals.

This distinction has important implications for biomarker
evaluation. A biomarker useful for identifying a meaningful
subgroup in a population almost by necessity would fail as
a diagnostic biomarker by virtue of its low sensitivity for
the condition, and a biomarker with high sensitivity likely
would have limited utility for identifying subgroups within
a clinical syndrome. This idea is related to the idea of
degeneracy as one moves from gene to molecular biology
to local circuit networks to large-scale functional networks
to behavior. Biomarkers at different places along this path
are likely to serve different purposes and will need to be
developed and evaluated in this context. For this reason, and
others, different ERP paradigms and analysis approaches to the
data may be suitable for different diagnostic and predictive
purposes, and need to be evaluated within the limits of
their intended COU.

At a practical level, electrophysiological biomarkers will need
to be evaluated for utility across the age-span, across sexes and
disorders, in relation to treatment outcome to different classes of
medication, and across different hardware and software analysis
strategies. Given the very large amount of data provided by
resting-state and task-based analyses, novel analytic and signal-
processing approaches recently developed to work with the data
may allow for much more information content at the individual

level not possible with currently employed data analytic pipelines.
Addressing such issues in scale is now a major challenge for
electrophysiological biomarker development in NDDs but one
that holds enormous promise. By committing to standardization
of some core set of measures, the field should be able to generate
a new set of EEG/ERP derived measures that will better serve
various COUs for developing treatments of NDDs.
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