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Recent task fMRI studies suggest that individual differences in trait empathy and
empathic concern are mediated by patterns of connectivity between self-other
resonance and top-down control networks that are stable across task demands. An
untested implication of this hypothesis is that these stable patterns of connectivity
should be visible even in the absence of empathy tasks. Using machine learning,
we demonstrate that patterns of resting state fMRI connectivity (i.e., the degree of
synchronous BOLD activity across multiple cortical areas in the absence of explicit
task demands) of resonance and control networks predict trait empathic concern
(n = 58). Empathic concern was also predicted by connectivity patterns within the
somatomotor network. These findings further support the role of resonance-control
network interactions and of somatomotor function in our vicariously driven concern
for others. Furthermore, a practical implication of these results is that it is possible to
assess empathic predispositions in individuals without needing to perform conventional
empathy assessments.

Keywords: empathy, empathic concern, fMRI, resting state, connectivity, machine learning, experience sharing,
mirroring

INTRODUCTION

Empathy is a complex phenomenon that allows us to share in (or resonate with) the internal states
of others, as well as infer their beliefs and intentions (Decety and Jackson, 2006; Zaki and Ochsner,
2012; Christov-Moore and Iacoboni, 2016). It has been suggested that empathy’s purpose, in both
humans and non-human animals, can be broadly divided into two categories: First, promoting pro-
social, cooperative behavior via empathic concern for others and second, inferring and predicting
the internal states, behavior and intentions of others (Davis, 1983; Preston and De Waal, 2002;
Smith, 2006). In this study, we will focus primarily on elucidating the mechanisms underlying
empathic concern.

In order to fulfill these purposes, empathy relies in part on our brains’ ability to reflexively
process the observed or inferred experiences of others much in the same way we do our own,
causing us to respond vicariously to their pain, visceral sensations, and emotions, and simulate
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their behavior within our own motor systems (reviewed in Zaki
and Ochsner, 2012). Furthermore, this phenomenon extends
beyond perception to behavior: we tend to reflexively mimic
each other’s behavior, often without our knowledge (Chartrand
and Bargh, 1999; Lakin and Chartrand, 2003; Sperduti et al.,
2014), a process that can occur involuntarily when certain
prefrontal control areas are damaged (Lhermitte, 1983; De Renzi
et al., 1996). We will refer to this reflexive and embodied
ability to simulate others as “self-other resonance” (Eisenberg
and Fabes, 1990; Batson, 1991; Christov-Moore and Iacoboni,
2016), or resonance for short. The most likely neural substrate for
resonance appears to be “neural resonance” (Zaki and Ochsner,
2012), the phenomenon of shared neural representations for
the perception and experience of disgust (Wicker et al., 2003;
Jabbi et al., 2007), somatosensation (Singer et al., 2006; Bufalari
et al., 2007; Masten et al., 2011), emotion (Carr et al., 2003;
Pfeifer et al., 2012), and motor behavior (Keysers and Fadiga,
2008; Iacoboni, 2009). Not surprisingly, neural resonance has
been repeatedly associated with self-reported measures of trait
empathy (Jabbi et al., 2007; Avenanti et al., 2009; Pfeifer et al.,
2012) and is predictive of pro-social behavior (non-strategic
generosity in economic games: Christov-Moore and Iacoboni,
2016; harm aversion in moral dilemmas: Christov-Moore et al.,
2017b; donations to reduce pain in another: Gallo et al., 2018;
helping behavior: Hein et al., 2011; Masten et al., 2011; charitable
donations: Ma et al., 2011), suggesting that our resonance with
others may underlie our empathic concern (and hence prosocial
inclinations) for others.

In further support of a common substrate, prosocial
inclinations and self-other resonance are similarly modulated
by others’ closeness, status, group affiliation, and perceived
trustworthiness (Chartrand and Bargh, 1999; Lakin and
Chartrand, 2003; Singer et al., 2006; Gu and Han, 2007; Lamm
et al., 2007; Hein and Singer, 2008; Loggia et al., 2008; Cheng et al.,
2010; Guo et al., 2012; Reynolds-Losin et al., 2012, 2014, 2015;
Sperduti et al., 2014; Schmälzle et al., 2017). This is likely due to
top-down control processes that integrate contextual information
and conscious appraisal with affective, somatosensory and motor
processes into behavior and decision-making, implemented by
prefrontal and temporal systems including the temporoparietal
junction (TPJ) as well as dorsomedial and dorsolateral prefrontal
cortex (DMPFC and DLPFC) (Miller and Cohen, 2001; Banks
et al., 2007; Decety and Lamm, 2007; Cho and Strafella, 2009;
Spengler et al., 2010; Brighina et al., 2011; Volman et al., 2011;
Tassy et al., 2012; Winecoff et al., 2013). Not surprisingly, these
control systems overlap considerably with those associated with
conscious appraisal processes and inferential forms of empathy
or mentalizing (Mahy et al., 2014). The nature of this control
seems to be inhibitory: a recent study has found that disruptive
neuromodulation of DMPFC and DLPFC caused a decrease
in the inhibitory influence of context on prosocial behavior
(Christov-Moore et al., 2017a). Evidence suggests that this
top-down control of resonance is also continuously engaged:
lesions to prefrontal cortex are associated with compulsive
imitative behavior, suggesting that, for normal behavior to exist,
some mechanisms to control resonance are always at play, unless
damaged (Lhermitte, 1983; De Renzi et al., 1996). Within the

context of empathy, resonance and control may exist most often
as clusters within a single integrated system.

Indeed, the neural bases of resonance and control processes
are not cleanly separable within cognitive function. Recent
research suggests that somatomotor and affective processing
contribute to our evaluations of others’ internal states, beliefs,
and intentions (Gallese, 2007; Schulte-Rüther et al., 2007; Frith
and Singer, 2008; Obhi, 2012; Christov-Moore and Iacoboni,
2016; Christov-Moore et al., 2017a), as well as our decisions
about others’ welfare (Greene, 2001; Camerer, 2003; Van’t Wout
et al., 2006; Oullier and Basso, 2010; Hewig et al., 2011; Christov-
Moore et al., 2017a,b). Conversely, top-down control processes
are increasingly implicated in the contextual modulation of
neural resonance (Singer et al., 2006; Gu and Han, 2007; Lamm
et al., 2007; Hein and Singer, 2008; Loggia et al., 2008; Cheng
et al., 2010; Guo et al., 2012; Reynolds-Losin et al., 2012, 2014,
2015). Many studies have reported concurrent activation of and
connectivity between ROI’s within one or more cortical networks
associated with resonance and top-down control, such as during
passive observation of emotions or pain (Christov-Moore and
Iacoboni, 2016), passive observation of films depicting personal
loss (Raz et al., 2014), reciprocal imitation (Sperduti et al., 2014),
tests of empathic accuracy (Zaki et al., 2009), and comprehension
of others’ emotions (Spunt and Lieberman, 2013). Co-existence
of bottom-up resonance and top-down control mechanisms can
be documented even at the level of TMS-induced motor evoked
potentials (MEPs), a functional readout of motor excitability
(Gordon et al., 2018). Thus, the neural instantiation of resonance
and control may rely on systems that operate like connected
clusters in a network, with different modes and configurations of
function (Fox and Friston, 2012).

On the basis of this evidence, we propose that individual
differences in empathic function (particularly empathic concern
for others) arise in large part from stable, characteristic
interactions between resonance and control processes at the
neural level (Christov-Moore and Iacoboni, 2016; Christov-
Moore et al., 2017a). This view is in line with studies showing
that individual differences in active, task-relevant network
configuration are reflected in intrinsic functional connectivity
patterns (Smith et al., 2009; Tavor et al., 2016). We propose
that in adults, these individual differences in empathic function
should be apparent in resting connectivity (i.e., in the absence
of empathy-evoking stimuli), much in the way a river carves
out a characteristic pattern in bedrock over time. If so,
this could have implications for understanding differences in
empathic functioning without needing to probe participants with
specialized tasks or questionnaires. Thus, we approached this
current work with specific and general hypotheses: Specifically,
we hypothesized, in line with our prior studies on the neural
bases of prosociality, that patterns of functional connectivity
between resonance and top-down control networks (proposed in
Christov-Moore and Iacoboni, 2016) would predict participants’
empathic concern for others. In contrast to the previous
univariate analyses, our goal was to derive a multivariate
understanding of how empathy is represented by connectivity
in these networks. Following work on resting-state and empathy
(e.g., Cox et al., 2012), in a more exploratory fashion, we
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hypothesized that resting connectivity patterns within and
between other cortical networks could also predict levels of trait
empathy, with particular attention to the somatomotor network,
which has been linked to many forms of prosociality (non-
strategic generosity in economic games: Christov-Moore and
Iacoboni, 2016; harm aversion in moral dilemmas: Christov-
Moore et al., 2017b; donations to reduce pain in another: Gallo
et al., 2018; helping behavior: Hein et al., 2011; Masten et al., 2011;
charitable donations: Ma et al., 2011).

Additionally, there is a great deal of evidence for sex
differences in empathy across a broad array of measures and
associated brain function (reviewed in Hoffman, 1977; Eisenberg
and Lennon, 1993; Christov-Moore et al., 2014; although, for
negative/null results, see Lamm et al., 2011). For example,
females display greater concern and sympathetic behavior toward
others in real and hypothetical scenarios (Eisenberg and Lennon,
1993; Mesch et al., 2011; Christov-Moore et al., 2014; Friesdorf
et al., 2015). Females also show greater vicarious somatosensory
responses to the sight or knowledge of another person in
pain or distress (Singer et al., 2006; Yang et al., 2009; Groen
et al., 2013; Christov-Moore et al., 2014; Christov-Moore and
Iacoboni, 2019), and exhibit greater facial mimicry when viewing
emotional facial expressions (Sonnby-Borgström, 2002). For
this reason, we controlled for sex within the primary analysis
predicting trait empathy.

Taken together, previous studies suggest that resonance and
control processes’ interactions, as measured via connectivity,
may be the basis for individual differences in empathic
concern for others, and that these interactions are relatively
stable across task demands, sufficiently so that they should
be observeable at rest. Thus, we sought to test two families
of hypotheses: (I) our primary, theory-driven hypothesis
that Resonance and Control interconnectivity at rest predicts
trait Empathic Concern, and (II) our exploratory, theory-
consistent but broader hypothesis that trait empathy can
be predicted from resting intra- and inter-connectivity of
intrinsic brain networks.

MATERIALS AND METHODS

Participants
Participants were 58 ethnically diverse adults aged 18–35
(30 female, 28 males) recruited from the local community
through fliers. All recruitment and experimental procedures
were performed under approval of University of California, Los
Angeles (UCLA)’s Institutional Review Board, in accordance
with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards.
Informed consent was obtained from all individual participants
included in the study.

Eligibility criteria for participants included: right handed, no
prior or concurrent diagnosis of any neurological, psychiatric, or
developmental disorders, and no history of drug or alcohol abuse.
These were all assessed during preliminary screening interviews
conducted by phone at the time of recruitment.

Trait Empathy Assessment
Participants filled out the Interpersonal Reactivity Index (IRI)
at the end of each experimental session in a closed room,
unobserved. The IRI (Davis, 1983) is a widely used (Avenanti
et al., 2009; Pfeifer et al., 2012) and validated (Litvack-Miller
et al., 1997) questionnaire designed to measure both “cognitive”
and “emotional” components of empathy. It consists of 24
statements that the participant rates on a five-point scale ranging
from 0 (Does not describe me very well) to 5 (Describes me
very well). The statements are calculated to test four theorized
subdimensions of empathy:

Fantasizing Scale (FS): the tendency to take the perspective
of fictional characters.
Empathic Concern (EC): sympathetic reactions to the
distress of others.
Perspective Taking (PT): the tendency to take
other’s perspective.
Personal Distress (PD): aversive reactions to the
distress of others.

Participants’ scores were summed for each sub-dimension
(measured by six items) to make four scores per participant.
Cronbach’s alpha, a measure of reliability, was assessed for the
IRI using SPSS (FS = 0.752, EC = 0.792, PT = 0.816, PD = 0.839)
(Ibm Corp, 2017).

Functional MRI Data Collection
All neuroimaging data were acquired via a series of MRI
scans conducted in a Siemens Trio 3T scanner housed in the
Ahmanson-Lovelace Brain Mapping Center at UCLA. Resting
data were collected while participants passively observed a white
fixation cross on a black screen. They were instructed only to
“Look at the fixation cross and just let your mind wander.”
Resting-state functional images were acquired over 36 axial
slices covering the whole cerebral volume using an echo planar
T2∗-weighted gradient echo sequence (6 min; TR = 2500 ms;
TE = 25 ms; flip angle = 90◦; matrix size = 64 × 64;
FOV 20 cm; in-plane resolution = 3 mm × 3 mm; slice
thickness = 3 mm/1 mm gap). A T1-weighted volume was also
acquired in each participant (TR = 2300 ms, TE = 25 ms,
TI = 100 ms, flip angle = 8◦, matrix size = 192 × 192,
FOV = 256 cm, 160 slices, voxel size 1.3× 1.3× 1.0 mm).

Functional MRI Preprocessing
Functional MRI preprocessing was performed in FEAT
(FMRI Expert Analysis Tool), part of FSL (FMRIB’s Software
Library1). After motion correction using MCFLIRT, images
were temporally high-pass filtered with a cutoff period of
100 s (equivalent to 0.01 Hz) and smoothed using a 6 mm
Gaussian FHWM algorithm in three dimensions. Our protocol
stipulated that participants showing absolute or relative head
motion exceeding 1 mm were excluded from further analyses,
though no participants exceeded this threshold. In order to
remove non-neuronal sources of coherent oscillation in the

1www.fmrib.ox.ac.uk/fsl
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relevant frequency band (0.01–0.1 Hz), preprocessed data were
subjected to probabilistic independent component analysis
as implemented in MELODIC (Multivariate Exploratory
Linear Decomposition into Independent Components)
Version 3.10, part of FSL (FMRIB’s Software Library1).
Noise components corresponding to head motion, scanner
noise, and cardiac/respiratory signals were identified by
observing their localization, time series, and spectral
properties (as per Kelly et al., 2010) and removed using
FSL’s regfilt command. Each participants’ functional data
were coregistered to standard space (MNI 152 template) via
registration of an averaged functional image to the high-
resolution T1-weighted volume using a six degree-of-freedom
linear registration and of the high-resolution T1-weighted
volume to the MNI 152 template via non-linear registration,
implemented in FNIRT.

Designation of Regions of Interest
All networks were created by pooling from a set of 198 5 mm
spherical ROIs; 196 of the ROIs were derived from a functionally
derived cortical atlas (Power et al., 2011). We also included an
additional pair of 5 mm ROIs centered on left (x = −22 mm,
y = −6 mm, z = −14 mm) and right (x = 22 mm, y = −6 mm,
z = −14 mm) amygdala, as this region was not included in the
original cortical atlas. We used ROIs from the following networks
defined by Power et al. (2011): visual (31 ROIs), fronto-parietal
(25 ROIs), somatosensory motor (25 ROIs), dorsal attention (11
ROIs), ventral attention (nine ROIs), salience (18 ROIs), memory
retrieval (five ROIs), cingulo-opercular (14 ROIs), and default
mode (58 ROIs) Networks. ROIs were defined in MNI_152
standard space.

Two theory-driven networks (bottom-up resonance and top-
down control) were also created by selecting ROIS from the
Power cortical atlas overlapping with brain areas associated
with neural resonance and top-down control. Resonance areas
included the core cortical imitation circuitry (inferior frontal
gyrus, inferior parietal lobule, superior temporal sulcus), as
well as insular, limbic (bilateral amygdala), and somatomotor
areas associated with neural resonance for visceral sensation,
emotion, pain, and motor behavior (e.g., reviewed in Lamm
et al., 2011; Zaki and Ochsner, 2012). This putative bottom-
up resonance network consisted of 34 ROIs. Control areas
included dorsolateral prefrontal cortex, TPJ, lateral orbitofrontal
cortex, and sites covering a range from dorsal to ventral medial
prefrontal and paracingulate cortex, implicated in top-down
regulation of spontaneous and deliberate imitation, affect, and
pain (Miller and Cohen, 2001; Banks et al., 2007; Decety and
Lamm, 2007; Cho and Strafella, 2009; Spengler et al., 2010;
Brighina et al., 2011; Volman et al., 2011; Tassy et al., 2012;
Winecoff et al., 2013; Christov-Moore and Iacoboni, 2016;
Christov-Moore et al., 2017b). This putative top-down control
network consisted of 22 ROIs. This allowed us to test our
conceptual model of resonance-control interaction as a substrate
for empathic concern (Christov-Moore and Iacoboni, 2016;
Christov-Moore et al., 2017b), while constraining ROI locations
to those defined in Power et al. (2011) and assigning these ROI
locations to the two networks on the basis of existing literature

(see Table 1 for a list of ROIs used to define the resonance
and control networks and Figure 1 for a visual rendering of the
same ROIs/networks).

Machine Learning Analyses
Mean BOLD time-courses were extracted from the average
activity across voxels within each ROI. Matrices of pairwise
Pearson correlation coefficients (operationalized here as
connectivity weights) were created for each participant by
correlating each ROI’s mean BOLD time-course with that of
every other ROI within each network. Each of the non-redundant
functional connectivity weights within the pairwise correlation
matrices were concatenated into a single vector, creating a
“feature set” for each participant. As such, each participant’s
feature set consisted of n(n−1)

2 features, with n being the number
of ROIs in the network(s) of interest, n-1 because diagonal
identity correlations are not needed, and divided by two because
the upper and lower parts of the matrices are symmetric. For
“between-networks” analyses, ROIs belonging to each pair of
networks being studied (e.g., Resonance and Control) were
pooled in order to analyze the aggregate sets of ROIs as if they
composed a single network, allowing for pairwise connectivity
across all member ROIs of both networks.

To account for potential covariation, participant sex was
iteratively regressed out of each feature and the residuals were
subsequently used as the functional connectivity features. We
implemented a leave-ten-subjects-out cross validation to assess
the predictive power of network-specific feature sets. Specifically,
we leveraged a least absolute shrinkage and selection operator
(LASSO) regression model built on N-10 participants’ feature sets
for each IRI subscale. The model’s intercept term and outcome
beta values were then used as coefficients for each left-out
subject’s feature set—obtaining a predicted subscale measure for
that individual. After N folds, whereby each set of 10 participants
was left out exactly once, we correlated the array of predicted
values (Ŷ) with the actual values (Y), yielding Pearson’s R—
a measure of our model’s feature-dependent ability to capture
the behavioral variance across participants. We repeated this
cross-validation 10 times and averaged the R values to converge
on a true estimate of our test statistic, independent of which
participants were randomly included in each fold. The LASSO
regularization parameter was optimized before the leave-ten-
subject-out cross-validation by using the least angle regression
(LARS) algorithm on an N - 1 cross-validation that maximized
the Pearson correlation between predicted values (Ŷ) with the
actual values (Y) (Reggente et al., 2018).

Significance Testing and Multiple
Comparisons Correction
R-values from the N-10 cross-validation, averaged across the
10 iterations, were submitted to a significance test of the
correlation coefficient (t = r√

1−r2
N−2

). In order to correct for

multiple comparisons, we applied three family-wise corrections,
for each set of hypotheses: (I) our main, theory-driven hypothesis
that Resonance and Control interconnectivity predict Empathic
Concern) and (II) our exploratory, broad hypothesis that
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TABLE 1 | MNI coordinates of powers cortical atlas ROIs employed in resonance
and control networks.

Region Atlas ID Network MNI coordinates

X Y Z

Inferior frontal gyrus
pars opercularis

207 Resonance 48 22 10

176 Resonance −47 11 23

Anterior insula 208 Resonance −35 20 0

209 Resonance 36 22 3

Primary motor
cortex

36 Resonance 42 −20 55

29 Resonance 44 −8 57

24 Resonance −40 −19 54

37 Resonance −38 −15 69

Primary
somatosensory
cortex

27 Resonance −38 −27 69

26 Resonance 50 −20 42

46 Resonance 66 −8 25

45 Resonance −53 −10 24

Inferior parietal
lobule

33 Resonance −45 −32 47

190 Resonance 49 −42 45

255 Resonance 47 −30 49

259 Resonance −33 −46 47

Superior parietal
lobule

30 Resonance −29 −43 61

25 Resonance 29 −39 59

22 Resonance 10 −46 73

32 Resonance 22 −42 69

38 Resonance −16 −46 73

34 Resonance −21 −31 61

Premotor cortex 261 Resonance −32 −1 54

205 Resonance 42 0 47

264 Resonance 29 −5 54

174 Resonance −44 2 46

Parahippocampal
gyrus

125 Resonance 27 −37 −13

126 Resonance −34 −38 −16

Amygdala N/A Resonance −22 −6 −14

N/A Resonance 22 −6 −14

Superior temporal
sulcus

236 Resonance −56 −50 10

238 Resonance 52 −33 8

240 Resonance 56 −46 11

237 Resonance −55 −40 14

Medial
prefrontal/cingulate
cortex

54 Control 7 8 51

47 Control −3 2 53

213 Control −1 15 44

202 Control −3 26 44

112 Control −2 38 36

115 Control −8 48 23

113 Control −3 42 16

75 Control 6 67 −4

216 Control 5 23 37

105 Control 6 54 16

106 Control 6 64 22

108 Control 9 54 3

Dorsolateral
prefrontal cortex

100 Control −35 20 51

193 Control 32 14 56

196 Control 40 18 40

201 Control −42 25 30

Temporoparietal
junction

79 Control −46 −61 21

(Continued)

TABLE 1 | Continued

Region Atlas ID Network MNI coordinates

X Y Z

204 Control 55 −45 37

86 Control −44 −65 35

235 Control 54 −43 22

Orbitofrontal cortex 139 Control 49 35 −12

137 Control −46 31 −13

IFGpo = inferior frontal gyrus pars opercularis.

FIGURE 1 | Resonance (top) and control (bottom) networks; 5 mm regions
of interest were visualized with the BrainNet Viewer (http://www.nitrc.org/
projects/bnv/) (Xia et al., 2013).

trait empathy can be predicted from resting intra- and inter-
connectivity of canonical and theory-driven intrinsic networks.
Matrices of p-values within each family were created using a
Benjamini–Hochberg approach (Benjamini and Hochberg, 1995)
in R (p.adjust; method = “BH“; R Core Team, 2013) and
corrected p-values were considered significant at the 5% positive-
tail (i.e., p < 0.05). (Negative R values, indicating poor prediction
accuracy—i.e., predicting a negative subscale score when the
actual value is positive—are not readily interpretable).

Data and Code Availability Statement
All data are freely available upon request. For
human fMRI and behavioral data contact LC-M
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(leonardo.christovmoore@usc.edu). Custom scripts used in
this analysis can be found at https://github.com/mobiuscydonia/
Moore-2019-Empathic-Concern. Data and code sharing adopted
by the authors complies with the requirements of our funding
body as well as institutional ethics.

RESULTS

Trait Empathy IRI Scores
We used a one-way ANOVA to examine whether the male
and female participants differed significantly in self-reported
trait empathy. Males and females did not differ significantly in
Fantasizing (F = 2.68, p = 0.108), Empathic Concern (F = 2.59,
p = 0.114), or Perspective-Taking (F = 0.274, p = 0.603). However,
female subjects scored significantly higher on Personal Distress
(F = 9.79, p = 0.003) (see Table 2).

Machine Learning and Connectivity
As described above, for these analyses, we examined 5 mm
spherical regions of interest set in MNI_152 space for the visual,
fronto-parietal, cingulo-opercular, dorsal and ventral attention,
salience, memory retrieval, subcortical, somatomotor, and default
mode networks (derived from Power et al., 2011) as well
as two theory-driven networks (Resonance and Control, see
Figure 1) created based on (a) a model of resonance-control
interactions as a substrate for empathic concern (Christov-Moore
and Iacoboni, 2016) and with ROIs derived from the literature as
described above.

Within-Network Resting Connectivity Predicts Trait
Empathy
When examining the predictive power of connectivity weights
within the selected intrinsic networks (Figure 2), empathic
concern was significantly predicted by the somatomotor network
(R = 0.374, p = 0.022, Benjamini–Hochberg false discovery
rate (FDR) corrected). Personal distress was predicted above
threshold by resonance (R = 0.236, p = 0.037, uncorrected),
control (R = 0.22, p = 0.048, uncorrected), and cingulo-opercular
networks (R = 0.242, p = 0.033, uncorrected); however, these
did not survive FDR correction for multiple comparisons. None
of the remaining subdimensions of empathy were significantly
predicted by any of the within-network connectivity weights.

Between-Network Resting Connectivity Predicts Trait
Empathy
When analyzing the predictive power of connectivity within
and across multiple networks simultaneously, empathic concern
was predicted by the between-network connectivity between the
a priori resonance and control networks (R = 0.221, p = 0.0475,
Benjamini–Hochberg FDR corrected), supporting the primary
hypothesis of this study.

When testing our second family of hypotheses, we examined
whether subdimensions of empathic function could be
predicted by connectivity within and across three types of
network complexes: bottom-up resonance (visual/somatomotor,
visual/frontoparietal, somatomotor/frontoparietal), resonance

and control (control/frontoparietal, control/visual,
control/somatomotor, cingulo-opercular/default mode), and
links of no a priori interest as a comparison (dorsal/ventral
attention, salience/dorsal attention), selected to test whether any
of the subdimensions of empathic function could be predicted
by differences in attentional networks (Figure 3). None of these
survived FDR correction for multiple comparisons.

Control Analyses
To ascertain if these findings were indeed specific to functionally
defined networks, we set out to create random, “sham networks,”
where membership was not based on functional cohesion
previously observed in the literature. As such, a random sampling
without replacement from the pool of the 198 5 mm spherical
ROIs across the whole brain was conducted to create two
networks with equal numbers of ROIs as those in the networks
that were significant and survived correction (i.e., 35 ROIs for the
Somatomotor and Empathic Concern finding and 56 ROIs for the
Resonance/Control and Empathic Concern result). These sham
networks were submitted to the same iterative cross-validation
procedure as our main analyses. We found that neither the
sham somatomotor network (r = 0.018; p = 0.89) nor the sham
resonance/control network (r = 0.004; p = 0.97) had significant
power in predicting Empathic Concern.

DISCUSSION

In this study, we tested two hypotheses:

(I) We hypothesized that participants’ empathic concern for
others would be predicted by resting connectivity between
our theory-driven and literature-derived resonance and
control networks.
(II) We hypothesized that we could predict subcomponents
of participants’ trait empathy from the within- and
between-network resting connectivity of canonical
resting state networks.

As hypothesized in (I), participants’ levels of empathic
concern were predicted by patterns of connectivity within and
across the resonance and control networks (when treated as
a single network), supporting the hypothesis (put forth in
Christov-Moore and Iacoboni, 2016 and supported by Christov-
Moore et al., 2017a) that these systems (a) continuously

TABLE 2 | Means (with 95% confidence intervals) and standard deviations for
each IRI subscale by gender.

Male Female

x̄ (95%CI) σx̄ x̄ (95%CI) σx̄

FS 18.58 (16.54,20.61) 5.02 20.84 (18.89,22.79) 4.82

EC 22.61 (20.88,24.36) 4.31 24.54 (22.79,26.29) 4.34

PT 20.00 (17.88,22.12) 5.24 20.73 (18.78,2268) 4.82

PD 11.73 (9.41,14.05) 5.75 16.54 (14.39,18.69) 5.32

Females scored higher on personal distress (PD), but not on PT (perspective-
taking), FS (fantasizing) or EC (empathic concern).
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FIGURE 2 | Within-network somatomotor resting connectivity predicts empathic concern. Y-axis depicts average correlations between values predicted from model
trained on n-10 cross-validation set and remaining 10 subjects over multiple iterations. Red dashed line indicates threshold for p < 0.05, uncorrected.
*p-value < 0.05 FDR corrected.

FIGURE 3 | Between-network resting connectivity of resonance and control networks predicts empathic concern. Y-axis depicts average correlations between
values predicted from model trained on n-10 cross-validation set and remaining 10 subjects over multiple iterations. Red dashed line indicates threshold for
p < 0.05, uncorrected. *p-value < 0.05 FDR corrected.

interact in a characteristic fashion observable in the absence
of pertinent task demands and (b) this interaction is a likely
neural substrate of empathic concern for others. Our findings
(along with the previous work that prompted this study)
support a dynamic, integrated view of empathic function, based
on complex patterns of interaction between resonance and
control systems rather than simply a univariate measure of

overall connectivity. Indeed, numerous studies have reported
task-related changes in connectivity between resonance and
control networks during passive observation of emotions
or pain (Christov-Moore and Iacoboni, 2016), reciprocal
imitation (Sperduti et al., 2014), tests of empathic accuracy
(Zaki et al., 2009), and comprehension of others’ emotions
(Spunt and Lieberman, 2013). Interestingly, Raz et al. (2014)
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found evidence for complex, context-dependent interactions
between “simulation” and “theory-of-mind” networks (largely
corresponding to what are defined here as resonance and
control networks) during empathic experience (observing films
depicting personal loss). This multivariate approach may help
reconcile findings supporting an integrated view with activation
(e.g., Van Overwalle and Baetens, 2009) or lesion studies that
suggest dissociated systems (e.g., Shamay-Tsoory et al., 2009):
Lesions (transient/induced or physical) may simply be altering
a crucial node for a specific integrated network outcome, just
as a hand injury may affect the ability to catch a ball more
than a back injury, though catching-like activities typically rely
on hands, arms, and the core operating in unison. Indeed,
the complexity of these interactions may be an obstacle to
their efficient detection by standard activation or univariate
connectivity methods. By employing flexible machine learning
methods that make few a priori assumptions about the patterns
of intrinsic connectivity underlying individual differences, we
may achieve a more comprehensive multivariate view of the
possible network-level patterns of neural interaction that give
rise to individual differences in empathic function. It is
common within cognitive neuroscience to theorize first about
psychological processes and then investigate the neural correlates
of such processes. However, in an exceedingly complex system
such as the brain, much could be gained by approaching
the problem from the opposite direction, by investigating
how psychological processes emerge from brain organization
(Fox and Friston, 2012).

As for (II), empathic concern was predicted by the within-
network connectivity of the somatomotor network. This result
further supports an embodied, somatomotor foundation for our
concern for others’ welfare, in line with numerous findings
relating vicarious somatosensory activation to multiple forms
of prosocial behavior (non-strategic generosity in economic
games: Christov-Moore and Iacoboni, 2016; harm aversion in
moral dilemmas: Christov-Moore et al., 2017b; donations to
reduce pain in another: Gallo et al., 2018; helping behavior:
Hein et al., 2011; Masten et al., 2011; charitable donations:
Ma et al., 2011). This also agrees with our recent finding
that inferior premotor activation during observation of pain
in others was predictive of participants’ later tendency to
avoid inflicting harm in hypothetical moral dilemmas (Christov-
Moore et al., 2017b). A major proposed subcomponent of
empathy is fantasizing (Davis, 1983; Clay and Iacoboni,
2011), our ability to take the perspective of absent or
fictional characters and become correspondingly invested in
their welfare. Perhaps we implicitly construct internal models
of others (present or implied/hypothetical) using perceptual,
affective, and motor experiences we associate with past
experience, framed by others’ intentions, moral character,
group affiliation, etc. This embodied model of the “other”
and its contextual framing would likely be represented by
interactions between resonance and control processes, thus
shaping the relative utility of their welfare (Bechara and Damasio,
2005), and hence the positive and negative reward values
assigned to the outcomes of decisions that can affect them
(Fehr and Camerer, 2007).

A clinical avenue suggested by this study is the potential ability
to predict empathic functioning in populations that might have
difficulty performing empathy tasks or filling out questionnaires,
either due to being less cooperative or less cognitively able,
e.g., in populations such as those with schizophrenia, low
functioning autism, intellectual disabilities, or traumatic brain
injury. Individuals in these groups might have, in principle,
intact inherent capability for normal-range empathy that could
be impeded by other limitations such as verbal or non-verbal
communication (autism) or disorganized thought processes
(schizophrenia); thus it would help us know what reasonable
outcomes in terms of social and interpersonal functioning could
be expected to result from therapies that help with training to
rehabilitate or improve empathy, ultimately in the interest of
enhancing social competence and social cognition. Indeed, it may
be pertinent to include measures of empathic function along
with standardized, multisite resting state scan protocols (like the
Human Connectome Project), paving the way for a massive data-
driven approach to produce models that can predict empathic
function from the resting brain in many different populations.

Limitations
While we have focused primarily on the patterns of functionally
defined network activity underlying empathic concern, future
work could make a similar theory-driven test of putative
networks underlying other facets of empathic function (such
as perspective-taking—a pursuit that did not succeed in this
current work). Additionally, while we have shown that network
properties, i.e., the aggregate of connectivity weights, can be used
meaningfully as features to predict trait empathy, the nature
of this multivariate approach does not readily provide simple
conclusions about what aspects of these networks are predictive
and in which direction. We cannot, for example, say: “increased
interconnectivity predicts personal distress.” Graph theoretical
analyses may allow for complementary mechanistic insights
into the properties of whole networks, and parts of networks,
that can predict trait empathy. Also, this study only examines
“standard” connectivity, i.e., BOLD time-series correlation.
Effective connectivity or mutual information analyses may shed
light on more complex or non-linear interactions that might
underlie the more dynamic, cognitive aspects of empathy (such as
mentalizing or perspective-taking). Further, future larger studies
could employ a whole-brain search that could potentially more
broadly identify additional systems that contribute to empathy
outside of the chosen networks implicated from previous studies.

CONCLUSION

In conclusion, these findings support a dynamic, integrated
model of the neural substrates for empathic concern. The
presence of informative patterns of connectivity at rest suggests
that these networks interact in a characteristic function
regardless of task demands. Along the same lines, albeit
at a more fine-grained, local level, these data support an
embodied view of empathic concern, in which somatomotor
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representations of others’ harm situates our feelings and decisions
about their welfare.

More broadly, these results add an important piece to a
growing body of work demonstrating links between resting and
task-positive brain function (Smith et al., 2009), suggesting that
the two may not be as cleanly separable as is often implicitly
assumed. Perhaps a multivariate, theory-driven method like
the one employed here, combined with large datasets, could
be applied to predict many aspects of cognition and behavior
from resting brain activity. Having metrics that are stable,
relatively context-invariant, and predictive of behavior is of great
importance for the future of psychiatric research. Along these
lines, finding markers of empathic functioning that are visible at
rest may be of great potential prognostic and therapeutic utility,
and could shed light on mechanisms underlying both healthy and
abnormal empathic functioning.
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