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Temporomandibular joint disorder (TMD) is associated with pain in the joint
(temporomandibular joint, TMJ) and muscles involved in mastication. TMD pain
dissipates following menopause but returns in some women undergoing estrogen
replacement therapy. Progesterone has both anti-inflammatory and antinociceptive
properties, while estrogen’s effects on nociception are variable and highly dependent
on both natural hormone fluctuations and estrogen dosage during pharmacological
treatments, with high doses increasing pain. Allopregnanolone, a progesterone
metabolite and positive allosteric modulator of the GABAA receptor, also has
antinociceptive properties. While progesterone and allopregnanolone are antinociceptive,
their effect on estrogen-exacerbated TMD pain has not been determined. We
hypothesized that removing the source of endogenous ovarian hormones would reduce
inflammatory allodynia in the TMJ of rats and both progesterone and allopregnanolone
would attenuate the estrogen-provoked return of allodynia. Baseline mechanical
sensitivity was measured in female Sprague–Dawley rats (150–175 g) using the von
Frey filament method followed by a unilateral injection of complete Freund’s adjuvant
(CFA) into the TMJ. Mechanical allodynia was confirmed 24 h later; then rats were
ovariectomized or received sham surgery. Two weeks later, allodynia was reassessed
and rats received one of the following subcutaneous hormone treatments over 5 days:
a daily pharmacological dose of estradiol benzoate (E2; 50 µg/kg), daily E2 and
pharmacological to sub-physiological doses of progesterone (P4; 16 mg/kg, 16 µg/kg,
or 16 ng/kg), E2 daily and interrupted P4 given every other day, daily P4, or daily
vehicle control. A separate group of animals received allopregnanolone (0.16 mg/kg)
instead of P4. Allodynia was reassessed 1 h following injections. Here, we report
that CFA-evoked mechanical allodynia was attenuated following ovariectomy and daily
high E2 treatment triggered the return of allodynia, which was rapidly attenuated
when P4 was also administered either daily or every other day. Allopregnanolone
treatment, whether daily or every other day, also attenuated estrogen-exacerbated
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allodynia within 1 h of treatment, but only on the first treatment day. These data indicate
that when gonadal hormone levels have diminished, treatment with a lower dose of
progesterone may be effective at rapidly reducing the estrogen-evoked recurrence of
inflammatory mechanical allodynia in the TMJ.

Keywords: orofacial pain, progesterone, estrogen, mechanical allodynia, temporomandibular joint, inflammatory
pain, allopregnanolone, gonadal hormones

INTRODUCTION

Women are genetically predisposed to experiencing certain
chronic pain disorders. Some chronic pain conditions,
such as endometriosis (Mehedintu et al., 2014), vulvodynia
(Hoffstetter and Shah, 2015), and menstrual pain, are female-
specific. Further, chronic pain disorders that affect both
genders but are more prevalent in women include fibromyalgia,
irritable bowel syndrome, temporomandibular joint disorders
(TMD), Raynaud’s syndrome, rheumatoid arthritis, multiple
sclerosis, and migraine (Wei et al., 2018). Further, there is
a gender disparity not only in the predominance of pain
disorders reported in women but also pain perception.
Women report a greater sensitivity to pain (Rosseland and
Stubhaug, 2004; Fillingim et al., 2009; Kim et al., 2013), lower
pain threshold, and less tolerance to pain (Fillingim et al.,
2009; IOM, 2011). This gender disparity in increased pain
and/or pain sensitivity may be attributed to ovarian hormones.
In support, pain sensitivity or intensity also vary during the
menstrual cycle (Marcus, 1995; Unruh, 1996; Riley et al.,
1999; Sherman and LeResche, 2006; Craft, 2007; Martin,
2009; Teepker et al., 2010). Exogenous ovarian hormones
also affect pain such that oral contraceptives, which result in
more constant hormone levels, can improve pain symptoms
(Coffee et al., 2007; Craft, 2007; Sulak et al., 2007). However,
exogenous hormones also increase pain sensitivity. Transgender
individuals who undergo physical transition from male to
female are usually prescribed a dose of estrogen equivalent
to the recommended dose for hormone replacement therapy
(HRT) in postmenopausal women (Moore et al., 2003).
These individuals report an increase in pain, whereas, the
individuals that transition physically from female to male report a
significant improvement in pre-existing pain conditions (Aloisi
et al., 2007).

Estrogen can be pronociceptive (Wu et al., 2010; Kou
et al., 2011; Zhang et al., 2012a,b; Ralya and McCarson,
2014; Pratap et al., 2015; Bi et al., 2017) and can upregulate
inflammatory mediators (Kou et al., 2011; Puri et al., 2011),
however, antinociceptive properties of estrogen have also been
reported (Fischer et al., 2008; Fávaro-Moreira et al., 2009;
Kramer and Bellinger, 2013). Together, the literature indicates
that pharmacological doses of estrogen tend to increase pain.
Progesterone and its metabolite, allopregnanolone, on the other
hand, have well-documented anti-inflammatory (He et al., 2004;
VanLandingham et al., 2007; Labombarda et al., 2011; Garay
et al., 2012; Coronel et al., 2014, 2016b; Grandi et al., 2016)
and antinociceptive effects on neuropathic pain (Charlet et al.,

2008; Coronel et al., 2011; Kawano et al., 2011; Afrazi and
Esmaeili-Mahani, 2014; Jarahi et al., 2014; Liu et al., 2014;
Huang et al., 2016). Progesterone and allopregnanolone have
been reported to reduce neuropathic pain in animal models of
chemotherapy-induced neuropathy (Meyer et al., 2010, 2011),
sciatic nerve crush or constriction (Roglio et al., 2008; Coronel
et al., 2011; Huang et al., 2016), diabetic-neuropathy (Leonelli
et al., 2007; Afrazi and Esmaeili-Mahani, 2014), and trigeminal
nerve root demyelination (Kim et al., 2012). These studies used
a pharmacological dose of progesterone (e.g., 16 mg/kg) in
their treatments.

One major pain disorder that is more prevalent in women is
temporomandibular joint disorder (TMD; Liu and Steinkeler,
2013). TMD affects approximately 10% of the population
(LeResche, 1997) and is more prevalent in women (Unruh,
1996; Berkley, 1997; Isong et al., 2008; Manson, 2010; Bartley
and Fillingim, 2013), which account for 75% of all cases
reported (Macfarlane et al., 2001). While the causes of TMD
are well established, the underlying mechanisms that make
TMD pain more prevalent and severe in women is unclear,
but the ovarian hormones estrogen and progesterone have
been implicated. TMD pain intensifies at the onset of puberty,
is highest during child-bearing years, and dissipates during
pregnancy and after menopause (LeResche et al., 2003). TMD
pain has been reported to reemerge in some post-menopausal
women undergoing HRT, particularly, pharmacological
estrogen replacement therapy (LeResche et al., 1997;
Wise et al., 2000).

Estrogen, when administered in a pharmacological dose,
appears to aggravate TMD pain. In animal models, high estrogen
enhances temporomandibular joint (TMJ) nociception (Cairns
et al., 2002; Bereiter et al., 2005; Flake et al., 2005; Okamoto
et al., 2008; Kou et al., 2011, 2014; Bi et al., 2017), although
the opposite has also been reported (Fischer et al., 2008). High
estrogen upregulates pro-inflammatory cytokines in the TMJ
(Yun et al., 2008; Kou et al., 2011, 2014; Xue et al., 2018) and
voltage-gated sodium channels in the trigeminal ganglia resulting
in hyperalgesia (Bi et al., 2017). On the other hand, physiological
levels can upregulate GABAA receptor subunit expression in
the trigeminal ganglia (Puri et al., 2011) resulting in a decrease
in nociceptive behavior (Kramer and Bellinger, 2013, 2014).
Estrogen treatment decreases action potential thresholds in TMJ
afferents (Flake et al., 2005) and increases reflex jaw muscle
activity which was reduced by ovariectomy (Cairns et al., 2002).
At second order neurons, estrogen increases neural activity
and excitability within the trigeminal nucleus caudalis of the
medullary spinal cord (Bereiter et al., 2005; Okamoto et al., 2008).
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While estrogen seems to have a complicated role, the
contribution of progesterone has been largely overlooked in
research on TMD. It has been reported that both estrogen
and progesterone decrease formalin and glutamate-evoked
TMJ nociceptive behaviors and progesterone reduces
pro-inflammatory cytokines in the TMJ (Xue et al., 2017).
Of the studies reporting the effects of estrogen and progesterone
on TMD, no studies have examined the effects of ovariectomy
on established mechanical allodynia at the inflamed TMJ
and then re-examined sensory thresholds following the
re-introduction of a pharmacological dose of estrogen and
pharmacological to sub-physiological doses of progesterone.
Therefore, we hypothesized that removal of endogenous ovarian
hormones would attenuate inflammatory allodynia at the TMJ,
which would return following high estrogen treatment. We
further hypothesized that progesterone and its metabolite
allopregnanolone would attenuate the return of inflammatory
orofacial mechanical allodynia in female rats. These hypotheses
were tested in the present experiments designed to determine
if: (1) the removal of endogenous ovarian hormones would
attenuate TMD allodynia, modeling clinical reports of reduced
TMD pain in post-menopausal women; (2) whether the
reintroduction of exogenous estrogen would trigger the return of
TMD allodynia; and (3) whether exogenous progesterone or its
major metabolite could dampen reemergence of TMD allodynia.

MATERIALS AND METHODS

Subjects
A total of 97 adult Sprague–Dawley female rats (150–175 grams;
Charles River Laboratories, Wilmington, MA, USA) were used
in these experiments. Rats were housed two per cage in a colony
room with a 12:12 h light:dark cycle (lights on at 8 a.m.).
Food and water were available ad libitum. Rats were allowed
1 week to acclimate to the facility before experiments began.
Vaginal lavages were conducted between 9 a.m. and 11 a.m.
for 10 days or two consecutive cycles to ensure rats were
cycling properly. Estrus was determined by the predominance
of cornified epithelial tissue and proestrus was determined by
the predominance of nucleated epithelial tissue. Diestrus I was
differentiated from diestrus II by the presence of leukocytes.
All studies were approved by Texas Woman’s University
Institutional Animal Care and Use Committee. Experiments
conformed to federal guidelines and the committee for Research
and Ethical Issues of the International Association for the Study
of Pain.

Drugs
Stock solutions of estradiol benzoate (E2), progesterone (P4), and
5α-Pregnan-3α-ol-20-one (allopregnanolone; Sigma Aldrich, St.
Louis, MO, USA) were dissolved in sesame seed oil (Sigma
Aldrich, St. Louis, MO, USA), diluted prior to injection, and
administered subcutaneously (s.c).

Ovariectomy
Female rats were deeply anesthetized (induction 3%;
maintenance 2.5%) with inhalation of gas (isoflurane, USP,

Henry Schein Animal Health, Dublin, OH, USA) anesthesia.
Topical lidocaine was applied before a single incision was made
to the anterolateral abdominal area. The abdominal muscle was
cut, ovaries were ligated with 3-0 Vicryl sutures, and excised.
Abdominal muscle was sutured with 3-0 Vicryl sutures and the
epidermal layer was stapled with an Autoclip Wound Closing
System (Braintree Scientific, Braintree, MA, USA). Immediately
before and 24 h following surgery, animals were administered
the antibiotic Baytril (0.02 ml of a 22.7 mg/kg solution leading
to approximately 4.4 mg/kg dose) intramuscularly (i.m.). The
analgesic Rimadyl (0.03 ml of a 50 mg/kg solution leading to
approximately 2.5 mg/kg dose) was administered subcutaneously
(s.c.) immediately following surgery. Rats that received sham
surgery received the same procedural manipulations and
treatments except for removal of ovaries. Rats were allowed
2 weeks recovery from surgery and for the elimination of
endogenous ovarian hormones.

Temporomandibular Joint Inflammation
Complete Freund’s adjuvant (CFA; 30 µl 1 mg/ml; CFA;
mycobacterium tuberculosis; Sigma–Aldrich) was dissolved
1:1 in saline solution and injected under brief isoflurane gas
anesthesia into the intra-articular area of the TMJ. The TMJ
area was palpated for the TMJ, confirmed by movement of the
mandible, then the needle was directed to the joint and injected
with CFA using a 30-gauge needle.

Behavior Testing
Behavior was tested before CFA injections, 24 h after CFA
injections, then 2 weeks after OVX. Von Frey filaments (North
Coast Medical Inc., Gilroy, CA, USA) were utilized to test
the force to withdrawal threshold as a measure of mechanical
allodynia at the cutaneous tissues surrounding the inflamed
TMJ, as previously reported (Ren, 1999). For this test, a starting
filament was first applied to the TMJ; 2.0-g for non-inflamed
tissues and 0.16-g filament for inflamed tissue (Ren, 1999; Villa
et al., 2010). If no response was observed, 30 s later the next
thickest filament was applied, and so on until a withdrawal
response was observed. The thickest filament that elicited a
withdrawal response was 10.0 g; however, most animals withdrew
their head to the 6.0 g filament. If a withdrawal response was
observed with the starting filament, 30 s later the next thinnest
filament was applied, and so on until no withdrawal response was
observed. The filament size that produced at least three responses
was recorded as the threshold grams of pressure required to elicit
a withdrawal response as a measure of mechanical allodynia.

Hormone Treatments
To test the role of P4 after 5 days of hormone treatment,
animals received one of the following hormone treatments
s.c. every day for 5 days: (a) daily pharmacological dose of
estradiol benzoate (E2; 50 µg/kg; Fischer et al., 2008); (b)
daily pharmacological dose of progesterone (P4, 16 mg/kg);
(c) daily E2 and P4 (16 mg/kg); (d) daily E2 and intermittent
progesterone; or (e) vehicle (sesame seed oil) control and
behavior testing was completed 1 h after last hormone injection.
To determine if P4’s effects on mechanical allodynia occurred
prior to the 5th day of hormone treatments, animals received
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one of the following hormone treatments s.c. every day for
5 days: (a) daily pharmacological dose of E2 (50 µg/kg); (b)
daily pharmacological dose of P4 (16 mg/kg); (c) daily E2 and
P4 (16 mg/kg); (d) daily E2 and intermittent progesterone;
or (e) vehicle control and behavior testing was completed
1 h after hormone injections. To determine if physiological to
sub-physiological doses of P4 would be effective in attenuating
the return of mechanical allodynia, animals received one of
the following hormone treatments s.c. every day for 5 days:
(a) daily pharmacological dose of E2 (50 µg/kg); (b) daily P4
(16 µg/kg or 16 ng/kg); (c) daily E2 and P4 (16 µg/kg or
16 ng/kg); (d) daily E2 and intermittent progesterone; or (e)
vehicle control and behavior testing was completed 1 h after
hormone injections. To test the effects of allopregnanolone, a
separate group of rats received one of the following hormone
treatments: (a) daily E2 (50 µg/kg); (b) daily allopregnanolone
(0.16 mg/kg); (c) daily E2 and continuous allopregnanolone;
(d) daily E2 and intermittent allopregnanolone; or (e) vehicle
control and behavior testing was completed 1 h after hormone
injections. The pharmacological dose of progesterone (16 mg/kg)
was chosen from previous studies reporting attenuation of
mechanical allodynia in a rat model of spinal cord injury-
induced neuropathic pain (Coronel et al., 2011, 2014). The
two lower doses (16 µg/kg or 16 ng/kg) of progesterone were
chosen to include physiological to sub-physiological doses. The
dose of allopregnanolone was chosen from a previous study
reporting attenuation of mechanical allodynia in a rat model of
post-operative neuropathic pain (Fujita et al., 2018).

Progesterone Radioimmunoassay
A separate group of 20 female rats were used to measure
serum progesterone levels. Rats received CFA injections into
the intra-articular area of the TMJ and were ovariectomized
24 h later. Two weeks post-OVX, animals received one of the
following hormone treatments: (a) E2 (50 µg/kg); (b) E2 and P4
(16 mg/kg); (c) E2 and P4 (16 µg/kg); (d) E2 and P4 (16 ng/kg;
n = 5 per group). One hour after hormone treatment, animals
were rapidly decapitated under gas anesthesia (isoflurane; 3%)
and trunk blood was collected in BD vacutainerr spray-
coated K2EDTA collection tubes (Pulmolab, CA, USA) on
ice. Immediately after collection, blood was centrifuged at
3,000 rpm for 15 min. Serum was separated and stored at
−20◦C. After diethyl ether extraction, P4 levels were measured
with a Progesterone Radioimmunoassay Kit (Immuno-Biological
Laboratories Inc.; Minneapolis, MN, USA) according to the
manufacturer’s instructions.

Data Analysis
Behavioral data were presented as the mean ± standard error of
the mean of the force in grams (g) required to elicit a withdraw
as a measure of the degree of mechanical allodynia. Data were
analyzed by one-way analysis of variance (ANOVA) and two-way
repeated measures ANOVA using GraphPad Prism 7 with time
as the repeated measure and treatment as the independent factor.
Tukey’s post hoc analysis was conducted. Statistical significance
was tested at p ≤ 0.05. Radioimmunoassay data were presented
as the mean ± standard error of the mean (range) in ng/ml and

analyzed by Mann–Whitney t-test and statistical significance was
tested at p ≤ 0.05.

RESULTS

Ovariectomy Reverses CFA-Evoked
Mechanical Allodynia in the TMJ
Baseline mechanical threshold was measured before and after
CFA injections then again 2 weeks after OVX or sham surgery
(see timeline Figure 1A). There was a significant interaction
between the treatment groups across time (F(2,44) = 20.6;
p <0.05). CFA evoked a significant reduction in the force
to withdrawal in all rats (p < 0.05; Figure 1B). Following
ovariectomy, the force required to elicit withdraw (in grams)
was significantly greater in ovariectomized rats (closed bars;
p<0.05) compared to sham rats which remained allodynic (open
bars). TMJ inflammation did not cause weight loss as animal
weight 2 weeks post-surgery was significantly greater than animal
weight prior to CFA injections (F(1.859,117.1) = 441.4; p<0.05; data
not shown).

E2 (50 µg/kg) Treatment Elicits Return of
CFA-Evoked Mechanical Allodynia in the
TMJ
Following OVX, rats received 5 days of hormone treatment
(see treatment groups Figure 1A) and mechanical allodynia
was reassessed 1 h following the last injection day (day
21 on timeline; day 5 of hormone treatment). There was
a significant effect of treatment (F(3,18) = 22.92; p <0.05).
Ovariectomized rats that received daily E2 with daily P4 (mid
gray bars) retained significantly higher mechanical thresholds
(p <0.05), while rats that received only daily E2 (light
gray bars) displayed similar mechanical allodynia to sham
animals that received vehicle injections (open bars; p > 0.05;
Figure 1C). Rats that received daily E2 and P4 every other
day (dark gray bars) also displayed similar mechanical allodynia
to sham animals that received vehicle injections (open bars;
p > 0.05; Figure 1C).

A Pharmacological Dose of Progesterone
(16 mg/kg) Rapidly Protects Against
E2-Elicited Return of CFA-Evoked
Mechanical Allodynia in the TMJ
We then repeated the experiment with an altered timeline to
assess whether the observed effects of P4 on mechanical allodynia
occurred prior to the last day of hormone treatments. Similar
to Figure 1B, we found a significant effect of treatment on
mechanical allodynia (F(1,76) = 42.8; p ≤ 0.05; Figure 2B). CFA
again evoked a significant reduction in the force to withdrawal
in all rats (p ≤ 0.05). In rats that were then ovariectomized,
the force to withdraw returned to baseline levels (closed bars;
p ≤ 0.05) and was significantly greater than the sham surgery
rats that remained allodynic (open bars; p > 0.05). There was a
significant effect of treatment (F(5,32) = 282.9; p ≤ 0.05), but not
time (F(1.9,61.5) = 1.931; p > 0.05). On day 17 (1st day of hormone
treatments), there was a significant effect of treatment 1 h
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FIGURE 1 | Effects of ovariectomy and gonadal hormone treatment on complete Freund’s adjuvant (CFA)-evoked mechanical allodynia in the inflamed rat
temporomandibular joint. (A) Experimental timeline of behavior testing, ovariectomy, and hormone treatments administered. Behavior testing was done 24-hrs prior
to and following CFA injections followed by either ovariectomy (OVX; n = 19) or sham surgery (n = 5). Two-weeks later behavior testing occurred followed by
hormone treatments. Hormones were administered every day for 5 days except interrupted progesterone, which was administered on days 2 and 4. Behavior testing
occurred 1 h after hormone injection on day 5. (B) Bar graph showing CFA-evoked mechanical allodynia (pre-CFA vs. post-CFA/pre-OVX) followed by sham (open
bars) vs. OVX (closed bars) surgery (post-CFA/post-OVX). (C) Effects of hormone treatment 1 h after last treatment on day 21 following a five-day hormone treatment
regimen of a daily pharmacological dose of estradiol (50 µg/kg E2; n = 5), daily E2 and daily pharmacological dose of progesterone (50 µg/kg E2 + 16 mg/kg P4;
n = 7), or daily E2 with interrupted P4 (n = 5) compared to sham treated with daily vehicle (sesame seed oil, open bars; n = 5). # Indicates significant difference
between pre-CFA and post-CFA/pre-OVX groups. + Indicates significant difference between OVX and sham groups post-surgery. *Indicates significant difference
between hormone treatment groups. Statistical significance was tested at p ≤ 0.01.

following the first hormone treatment (F(5,32) = 83.40; p ≤ 0.05;
Figure 2C). We found significantly lower mechanical thresholds
in ovariectomized females that received daily E2 (light gray bars;
p≤ 0.05) and the sham rats that received vehicle treatment (open
bars; p ≤ 0.05) when compared to all other groups. There was
also a significant effect of treatment on day 19 1 h following
the 3rd day of hormone injections (F(5,32) = 98.61; p ≤ 0.05;
Figure 2D) with significantly lower mechanical thresholds in
ovariectomized females that received daily E2 (light gray bars;
p ≤ 0.05) and the sham rats that received vehicle treatment
(open bars; p ≤ 0.05) when compared to all other groups.
We did not observe a decrease in mechanical threshold in
ovariectomized rats treated with P4 (p > 0.05), ovariectomized
rats treated with E2 and P4 (p > 0.05), or ovariectomized rats
treated with E2 and P4 every other day (p > 0.05) compared
to sham control (open bars) and E2-treated rats (light gray
bars). There was also a significant effect of treatment observed
1 h after the last injection on day 21 (after 5 days of hormone
treatment paradigm; F(5,32) = 161.6; p ≤ 0.05; Figure 2E).
Sham females that received vehicle injections (open bars) and

ovariectomized females that received daily E2 (light gray bars)
displayed a significantly lower force to withdraw compared to
ovariectomized rats that received vehicle (crossed bars), daily
E2 and P4, daily P4 alone, or daily E2 with P4 injected every other
day (p≤ 0.05). There was no significant difference between sham
controls (open bars) and ovariectomized females treated with E2
(crossed bars; p > 0.05). No mechanical allodynia was observed
in any group receiving P4 compared to sham or E2 injected
rats (p > 0.05). On all 3 days, all rats receiving P4 treatment
were similar to rats receiving vehicle treatment (crossed bars;
p > 0.05).

A 16 µg/kg but Not 16 ng/kg, Dose of
Progesterone Protects Against E2-Elicited
Return of CFA-Evoked Mechanical
Allodynia in the TMJ
We next tested whether a lower dose of P4, 16 µg/kg, could also
protect against the E2-elicited return of mechanical allodynia.
Using the same treatment paradigm as Figure 2A, we measured
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FIGURE 2 | Effects of a pharmacological dose of progesterone (16 mg/kg) on estrogen-exacerbated inflammatory mechanical allodynia in the inflamed rat
temporomandibular joint. (A) Experimental timeline of behavior testing, ovariectomy, and hormone treatments administered to a different group of rats from Figure 1.
Behavior testing was done 24-hrs prior to and following CFA injections followed by either ovariectomy (OVX; closed bars) or sham surgery (open bars). Two-weeks
later behavior testing occurred followed by hormone treatments. Hormones were administered every day for 5 days except interrupted progesterone, which was
administered on days 17, 19, and 21. Interrupted progesterone administration schedule differs from the interrupted progesterone schedule for rats in Figure 1. Rats
in Figure 1 that were in the interrupted progesterone group were tested 25 h after their last treatment of progesterone on day 21. Whereas, rats in Figure 2 that
were in the interrupted progesterone group were tested 1 h following administration beginning on day 17. Behavior testing occurred 1 h after hormone injection on
days 17, 19, and 21. (B) Bar graph showing CFA-evoked mechanical allodynia (pre-CFA vs. post-CFA/pre-OVX) followed by sham (open bars; n = 7) vs. OVX (closed
bars; n = 7) surgery (post-CFA/post-OVX). (C) Effects of hormone treatment 1 h after hormone injections on day 17 (C), day 19 (D), and day 21 (E) in OVX rats
treated over last 5 days with daily vehicle (sesame seed oil; crossed bars; n = 7), daily estradiol (50 µg/kg E2; n = 6), daily progesterone (16 mg/kg P4; n = 6), daily
E2 and daily P4 (E2+P4; n = 6), or daily E2 with interrupted P4 (n = 6) compared to sham treated with daily vehicle (open bars; n = 7). # Indicates significant difference
from pre-CFA and post-CFA/post-OVX groups. + Indicates significant difference between OVX and sham groups post-surgery. *Indicates significant difference
compared to OVX and vehicle control group. Statistical significance was tested at p ≤ 0.01.
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mechanical allodynia 1 h after hormone injections on day 17, day
19, and day 21 (days 1, 3, and 5 of hormone treatments). There
was a significant effect of treatment (F(5,35) = 39.1; p ≤ 0.05), but
not time (F(1.9,67.9) = 0.77; p > 0.05). As the treatment effect was
again the same on each day, we compared the treatment groups
within each day. There was a significant effect of treatment with
16 µg/kg P4 on day 17 (F(5,35) = 18.65; p ≤ 0.05; Figure 3A),
day 19 (F(5,35) = 11.76; p ≤ 0.05; Figure 3B), and day 21
(F(5,35) = 26.13; p ≤ 0.05; Figure 3C) of the treatment regimen.
On each day, we observed a significantly lower mechanical
threshold in the rats receiving daily E2 (light gray bars; p ≤
0.05) and sham controls (open bars; p ≤ 0.05) compared to
ovariectomized rats receiving vehicle (crossed bars) and all
P4 treated rats with or without E2. There was no significant
difference in CFA-evoked mechanical allodynia between sham
controls (open bars) and ovariectomized rats receiving only E2
(light gray bars) on any treatment day tested (p > 0.05) and no
mechanical allodynia was observed between any groups receiving
P4 (p > 0.05).

We then tested whether a sub-physiological dose of P4,
16 ng/kg, would have an effect on E2-elicited return of
mechanical allodynia. There was a significant effect of treatment
(F(5,32) = 315.0; p≤ 0.05), but not time (F(1.9,62.2) = 1.3; p > 0.05).
As the treatment effect was again the same on each day, we
compared the treatment groups within each day. There was
a significant effect of treatment on day 17 (F(4,27) = 162.2;
p ≤ 0.05; Figure 3D), day 19 (F(4,27) = 120.7; p ≤ 0.05;
Figure 3E), and day 21 (F(4,27) = 268.2; p ≤ 0.05; Figure 3F).
On each testing day, we observed a significantly lower force to
withdraw in sham rats (open bars) compared to ovariectomized
rats with vehicle treatments (crossed bars; p ≤ 0.05) and
rats receiving daily P4 only (p ≤ 0.05). Significantly lower
mechanical thresholds were also observed in ovariectomized rats
treated with daily E2 (light gray bars) or in combination with
daily or interrupted 16 ng/kg P4 compared to ovariectomized
rats with vehicle treatments (crossed bars; p ≤ 0.05) and
compared to ovariectomized rats with only P4 treatment
(p ≤ 0.05).

Plasma Progesterone Levels in Female
Rats That Received 16 mg/kg or 16 µg/kg,
but Not 16 ng/kg, of Progesterone Were
Significantly Higher Than Ovariectomized
Females
Plasma P4 levels were measured following high E2 + P4
(16 mg/kg, 16 µg/kg, or 16 ng/kg) and in OVX females receiving
the vehicle injection (sesame seed oil). The pharmacological
16 mg/kg dose of P4 resulted in plasma P4 levels significantly
higher than OVX control females (40.02 ± 2.08 (37.11–48.04)
ng/ml vs. 0.82 ± 0.16 (0.45–1.4) ng/ml; Mann–Whitney U = 0,
n1 = 5, n2 = 5, p ≤ 0.05), females that received 16 µg/kg P4
(2.25 ± 0.40 (1.22–3.26) ng/ml; Mann–Whitney U = 0, n1 = 5,
n2 = 5, p ≤ 0.05), and from females that received 16 ng/kg
P4 (mean = 1.96 ± 0.41 (0.41–2.67) ng/ml; Mann–Whitney
U = 0, n1 = 5, n2 = 5, p ≤ 0.05; data not shown). Also,
plasma P4 levels following the 16 µg/kg dose were significantly

different from ovariectomized control females (Mann–Whitney
U = 2, n1 = 5, n2 = 5, p ≤ 0.05), but did not differ from
plasma P4 levels following the 16 ng/kg dose (Mann–Whitney
U = 9, n1 = 5, n2 = 5, p > 0.05). Plasma P4 levels
of females that received 16 ng/kg P4 did not differ from
ovariectomized control females (Mann–Whitney U = 4, n1 = 5,
n2 = 5, p > 0.05).

Allopregnanolone (0.16 mg/kg) Rapidly, but
Only Acutely, Protects Against E2-Elicited
Return of CFA-Evoked Mechanical
Allodynia in the TMJ
The same behavior testing paradigm was used here, but AP was
injected instead of P4 and mechanical allodynia was detected
on day 17, day 19, and day 21 (days 1, 3, and 5 of hormone
treatments; Figure 4A). We found a significant interaction
between treatment groups across time (F(10,62) = 39.1; p ≤ 0.05).
There was a significant effect of treatment (F(5,31) = 295.6; p ≤
0.01) and a significant effect of time (F(2,62) = 66.2; p ≤ 0.05).
When comparing treatment groups within each day, there was
a significant effect of treatment on the first day of hormone
treatments (day 17; F(5,31) = 47.54; p ≤ 0.05; Figure 4B) 1 h
after hormone injections. The force to withdraw was significantly
lower in ovariectomized rats treated daily with E2 (light gray
bars; p ≤ 0.05) and the sham controls (open bars; p ≤ 0.05)
when compared to ovariectomized females receiving vehicle
(crossed bars), daily AP, daily E2 and AP, or daily E2 and
AP every other day. No mechanical allodynia was observed
in any group receiving AP compared to sham (open bars) or
E2 injected rats (light gray bars; p > 0.05). There was also a
significant effect of treatment on day 19 (F(5,31) = 1,762; p ≤
0.05) and day 21 (F(5,31) = 191.7; p ≤ 0.05). However, on day
19 (Figure 4C) and day 21 (Figure 4D), mechanical threshold
was significantly lower in all ovariectomized females receiving
daily E2 with or without AP compared to receiving only AP (p
≤ 0.05). Similar to day 17, rats receiving daily AP did not display
allodynia on day 19 or day 21 and were similar to vehicle treated
rats (p > 0.05).

DISCUSSION

TMD pain is a hallmark pain disorder more prevalent in women
that is greatest during the reproductive years, dissipates after
menopause (LeResche et al., 2003), and can reemerge with
estrogen replacement therapy (LeResche, 1997; Wise et al.,
2000). Progesterone and it’s metabolite allopregnanolone
have anti-inflammatory and antinociceptive properties (for
review, see Coronel et al., 2016a), while estrogen appears
to be pronociceptive at high pharmacological doses (Wu
et al., 2010; Kou et al., 2011; Ralya and McCarson, 2014;
Pratap et al., 2015). Here, we hypothesized that ovariectomy
would attenuate inflammatory allodynia in the rat TMJ
and that both progesterone and allopregnanolone would
attenuate the pharmacological estrogen-evoked reemergence
of inflammatory TMJ allodynia in female rats. Overall, we
report that: (1) ovariectomy attenuated CFA-evoked mechanical
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FIGURE 3 | Effects of 16 µg/kg and 16 ng/kg progesterone on estrogen-exacerbated inflammatory mechanical allodynia in the inflamed rat temporomandibular
joint. Experimental timeline of behavior testing, ovariectomy, and hormone treatments administered are the same as the timeline in Figure 2. Behavior testing was
done 24-hrs prior to and following CFA injections followed by either ovariectomy (OVX) or sham surgery. Two-weeks later behavior testing occurred followed by
hormone treatments. Hormones were administered every day over the last 5 days except interrupted progesterone, which was administered on days 17, 19, and 21.
Behavior testing was completed on days 17, 19, and 21. Effects of 16 µg/kg of progesterone on mechanical threshold in OVX rats 1 h after last injection of daily
vehicle (sesame seed oil; crossed bars; n = 6), daily estradiol (E2; n = 6), daily progesterone (P4; n = 7), daily E2 and daily P4 (E2+P4; n = 7), or daily E2 with
interrupted P4 (n = 7) compared to sham treated with daily vehicle (open bars; n = 7) on day 17 (A), day 19 (B) and day 21 (C). Effects of 16 ng/ kg of progesterone
on mechanical threshold in OVX rats 1 h after last injection of daily vehicle (sesame seed oil; crossed bars; n = 7), daily estradiol (E2; n = 6), daily progesterone (P4;
n = 6), daily E2 and daily P4 (E2+P4; n = 6), or daily E2 with interrupted P4 (n = 6) compared to sham treated with daily vehicle (open bars; n = 7) on day 17 (D), day
19 (E), and day 21 (F) for 16 ng/kg of progesterone. *Indicates significant difference from OVX and vehicle group. Statistical significance was tested at p ≤ 0.01.
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FIGURE 4 | Effects of 0.16 mg/kg allopregnanolone on estrogen-exacerbated inflammatory mechanical allodynia in the inflamed rat temporomandibular joint.
(A) Experimental timeline of behavior testing, ovariectomy, and hormone treatments administered. Behavior testing was done 24-hrs prior to and following CFA
injections followed by either ovariectomy (OVX) or sham surgery. Two-weeks later behavior testing occurred followed by hormone treatments. Hormones were
administered every day over the last 5 days except interrupted allopregnanolone, which was administered on days 17, 19, and 21. Behavior testing was completed
on days 17, 19, and 21. Bar graphs showing mechanical threshold in OVX rats on day 1 (B), day 3 (C), and day 5 (D) 1 h after last injection of daily vehicle (sesame
seed oil; crossed bars; n = 6), daily estradiol (E2; n = 6), daily allopregnanolone (AP; n = 6), daily E2 and daily AP (E2+AP; n = 7), or daily E2 with interrupted AP
(n = 6) compared to sham treated with daily vehicle (open bars; n = 6). *Indicates significant difference from OVX and vehicle group. Statistical significance was
tested at p ≤ 0.01.

allodynia at the TMJ; (2) pharmacological estrogen treatment
triggered the reemergence of mechanical allodynia which was
attenuated by co-treatment with progesterone at 16 mg/kg
and 16 µg/kg, but not 16 ng/kg; and (3) the progesterone
metabolite allopregnanolone was also able to attenuate
E2-evoked reemergence of allodynia, but only on the first
injection day.

CFA injection at the TMJ triggered significant mechanical
allodynia as measured by von Frey filaments, similar to previous
studies (Ren, 1999; Guo et al., 2010; Villa et al., 2010). A
limitation of this method is that deep pain in the joint is not
detected, however, our data and previous studies indicate that
mechanical allodynia can be readily detected at the cutaneous
tissues surrounding the joint. Thus, while CFA-injection at the
TMJ provides an inflammatory pain model, it may not fully
capture the TMJ damage and resulting deep pain in the joint
observed in the clinic. The repeated open-mouth procedure
to induce TMJ dysfunction and orofacial mechanical allodynia
(Wang et al., 2018) may provide a more clinically-relevant model
to utilize to examine the potential mechanisms underlying the
role of estrogen and progesterone on TMD pain. This model,
however, does not produce persistent pain required for our

experimental design. Future studies could integrate CFA- or
carrageenan-evoked joint inflammation into the open-mouth
procedure to create more persistent TMD-like pain conditions.

In order to observe the effects of ovariectomy on
inflammatory TMD pain, CFA was injected prior to ovariectomy.
In this paradigm, ovariectomy resulted in antinociception when
compared to the sham controls. However, in a different
paradigm where CFA was injected after ovariectomy, the
ovariectomized rats experienced nociception, as measured
by meal duration (Kramer and Bellinger, 2009). Data from
these two different paradigms suggest timing of ovariectomy
in relation to CFA injection, may affect the development
of nociception. However, further studies are warranted to
determine if ovariectomy before injury affects the development
of nociceptive behaviors or the response to hormonal treatment.
Following ovariectomy, mechanical sensitivity subsided
to basal levels while sham animals remained allodynic,
in concurrence with previous findings (Wu et al., 2010).
While mechanical sensitivity decreased, the rats from that
study did not return to basal levels of sensitivity, which
is likely due to a difference in unilateral vs. bilateral CFA
injections. Interestingly, when our rats were treated with
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pharmacological estrogen a reemergence of mechanical
allodynia was observed, supporting a pronociceptive role of
high doses of estrogen in the TMJ, and similar to previous
reports (Kou et al., 2011; Zhang et al., 2012a; Wang et al., 2013;
Fejes-Szabó et al., 2018). In opposition, estrogen treatment
can also attenuate CFA-induced TMJ nociception (Kramer
and Bellinger, 2009). The opposing reports on estrogen’s
pronociceptive effects are likely due to differences in estrogen
dose, timing of injections, and model used between studies.
A low, continuously administered physiological dose of E2
(750 ng/6 µl per day by a pump and an injection of 2.5 µg
E2 every 5 days) administered prior to and during TMJ
inflammation appears to be antinociceptive on orofacial
pain (Kramer and Bellinger, 2009). We report that a higher
pharmacological E2 dose (50 µg/kg) administered after TMJ
inflammation is pronociceptive. Together these data are
interesting because they point to a possibility that consistent,
physiological or low E2 is protective against orofacial pain
when administered prior to and during TMJ inflammation,
but large fluctuations in or high doses of E2 administered
after TMJ inflammation may enhance orofacial pain. This
is supported by clinical reports that migraine is worsened
during the late luteal and follicular phases, and during
menstruation (MacGregor et al., 2010; Gupta et al., 2011;
Shuster et al., 2011). Further, our data supports the clinical
reports of women experiencing TMD pain reemergence while
undergoing estrogen-replacement therapy. On the other hand,
the same pharmacological dose of E2 that was used in our
study was also reported to be antinociceptive in the formalin-
inflamed rat TMJ model (Fischer et al., 2008). Estrogen may
modulate formalin-induced inflammation differently than
CFA-induced inflammation, resulting in either a pronociceptive
or antinociceptive effect.

When estrogen was administered daily in the presence
of progesterone, the development of allodynia was not
observed. Others have also found that progesterone reduces
the development of persistent pain in animal models of
inflammatory pain (Ren et al., 2000), diabetic neuropathy
(Leonelli et al., 2007), and nerve injury (Roglio et al., 2008, 2009;
Coronel et al., 2011; Kim et al., 2012). Our data considered
in the context of these studies indicate that progesterone
may counter estrogen-evoked nociception. In support, a
previous study reported that estrogen-evoked hyperalgesia
was diminished when estrogen treatment was combined
with progesterone (Ji et al., 2005). Our findings support this
protective effect of progesterone on estrogen-evoked pain and
further we report that this occurs in the trigeminal system in a
rat model of inflammatory pain at the TMJ. Interestingly, we
also found that the effects of both estrogen and progesterone
occurred quickly. Evidence of estrogen-evoked reemergence
of mechanical allodynia at the TMJ was observed on the first
day of hormone treatments 1 h following injection. When
progesterone was administered on an interrupted schedule
instead of daily with estrogen, attenuation of mechanical
allodynia occurred within 1 h of injections and as early as
the first day on the 5-day treatment schedule (day 17 on
the overall timeline). These data indicate that progesterone

has quick-acting, but not long-lasting, actions on pain relief
in the TMJ.

The optimal pharmacological dose of progesterone used in
different animal models, such as traumatic brain or spinal
cord injury and neuropathic pain, is 16 mg/kg (Pettus et al.,
2005; Labombarda et al., 2011; Coronel et al., 2014, 2017).
This dose reduces edema, improves cognitive function, and
prevents neuronal loss (Cutler et al., 2005; Pettus et al., 2005;
Kasturi and Stein, 2009; Labombarda et al., 2009; Jarahi et al.,
2014). While, we found a protective effect of 16 mg/kg on
pain, we also tested two physiological to sub-physiological doses
of progesterone (16 µg/kg or 16 ng/kg) and observed rapid
attenuation with the 16 µg/kg dose of progesterone but not
with 16 ng/kg dose. In support, others have also reported
that timing, dosage, and duration of progesterone treatment is
vital for attenuating nociceptive behaviors (Verdi et al., 2013;
Jarahi et al., 2014; Liu et al., 2014). Progesterone has genomic
effects at the intracellular progesterone receptor but also has
rapid, non-genomic effects at membrane progesterone receptors
(mPRα, mPRβ, mPRδ, mPRε) and sigma receptors (Johannessen
et al., 2011). Progesterone’s binding affinity (in ascending order)
is 2.7 nM for mPRδ, 2.9 nM for mPRε (Pang et al., 2013),
3.4 nM for iPR (Ogle, 1980), 7 nM for mPRα, 12 nM for
mPRβ (Hanna et al., 2006), 239 nM for sigma 1 receptor (S1R)s,
and 441 nM for sigma 2 receptors (Johannessen et al., 2011).
Given the rapid effects of progesterone in the present study,
progesterone may be acting at mPRs rather than iPRs. In the
present study, 16 mg/kg progesterone produced ∼41.75 ng/ml
(or 127.26 nM) in the plasma and thus has the potential to bind
to and activate all of the progesterone receptors to attenuate
mechanical allodynia in the current study. Plasma progesterone
levels following 16 µg/kg and 16 ng/kg were 2.25 ng/ml (7.16 nM)
and 1.96 ng/ml (6.23 nM), respectively. Thus, the lower dose
could activate mPRδ and mPRε, while 16 µg/kg dose would
also activate mPRα. Both mPRδ and mPRε are stimulatory
G-protein coupled receptors (GPCR) that increase in cAMP
production (Hanna et al., 2006), which is associated with an
increase in nociception (for review see Skyba et al., 2004). We
elucidate that 16 ng/kg progesterone dose acting at mPRδ and
mPRε would have pronociceptive properties via increased cAMP
production, which could explain why this dose did not protect
against the return of mechanical allodynia. On the other hand,
16 µg/kg of progesterone would also activate mPRα receptor,
which is a GPCR that activates inhibitory G proteins, thus
inhibiting cAMP production (Zhu et al., 2003). Activation of
mPRα could inhibit cAMP production, thereby, attenuating
mechanical allodynia, as observed in our study. Taken together,
our data indicate an important role for the mPRs in our
TMD pain model, however, testing this hypothesis is currently
limited as there are no commercially available antagonists for
these receptors.

Another possible explanation for the antinociceptive effect
of 16 µg/kg, but not 16 ng/kg, progesterone (despite similar
plasma progesterone levels), could be linked to differences in
the serum progesterone to estrogen ratio. Unfortunately, there
appear to be no studies on the effect of altered progesterone
to estrogen ratios in animal pain models for female-prevalent
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disorders linked to gonadal hormones. In the present study, all
hormone-treated groups received the same pharmacological dose
of estradiol (50 µg/kg) and while the plasma progesterone levels
did not differ between the two lowest doses of progesterone, the
resulting plasma progesterone levels from the 16 µg/kg, but not
16 ng/kg, were significantly greater than ovariectomized rats.
We did not measure plasma estradiol levels, but this possibility
warrants future studies to detect a potential role of ovarian
hormonal ratios in nociceptive orofacial behavior.

The acute effects of these two major gonadal hormones may
be due to opposing activities on both pain and inflammation.
Estrogen enhances nociception by upregulating inflammatory
mediators (Kou et al., 2011; Pratap et al., 2015), upregulating
injury-induced inflammatory processes (Flake et al., 2006),
modulating ion channel expression (Wu et al., 2010, 2015;
Hu et al., 2012; Bi et al., 2017), and increasing sensory
neuron excitability in rats (Flake et al., 2005). Progesterone,
on the other hand, decreases nociception by attenuating
inflammatory microglial activation (Labombarda et al., 2011;
Garay et al., 2012), inhibiting injury-induced upregulation of
proinflammatory mediators (Garay et al., 2012; Coronel et al.,
2014, 2016b; Grandi et al., 2016), and inhibiting ion channel
activity (Johannessen et al., 2011; Kelley and Mermelstein, 2011).
Interestingly, progesterone, through actions at the intracellular
progesterone receptor, inhibits the ability of estrogen to
modulate gene expression and thus may underlie the attenuation
of estrogen’s effects on inflammatory mediators (Kraus et al.,
1995). So, it is possible in the present study that progesterone
is counteracting estrogen’s pronociceptive effects at the TMJ via
inhibiting inflammatory mediators and preventing the estrogen-
evoked upregulation of ion channel expression that triggers
hypersensitivity. It is unclear where the site of action of
gonadal hormones are in this system. Progesterone receptors are
expressed throughout regions of the brain, such as thalamus,
spinal cord, and medulla (Pang et al., 2013), as well as the
trigeminal ganglia (Manteniotis et al., 2013). Possibilities include
direct action at trigeminal sensory neurons or activity at the
trigeminal nucleus caudalis where primary afferents enter the
central nervous system. Proestrus estrogen levels upregulate
neurotransmitter receptors and pro-inflammatory cytokines
within the trigeminal ganglia, as well as, the superficial laminae
of the upper cervical cord region (Vc/C1-2; Puri et al., 2011)
and increase neural activity and excitability in the trigeminal
nucleus caudalis of the medullary spinal cord (Okamoto et al.,
2003, 2008; Bereiter et al., 2005). Future studies are warranted
to examine the effects of the hormone treatments utilized
in the current study on the neural activity in the trigeminal
nucleus caudalis.

Alternatively, progesterone’s acute effects on pain may
involve the S1R. The S1R is a non-opioid chaperone receptor
located in the plasm membrane of the endoplasmic reticulum
(Hayashi and Su, 2003) expressed in regions associated with pain
regulation, such as dorsal root ganglia, spinal cord, thalamus,
and rostroventral medulla of female mice (Sánchez-Fernández
et al., 2014) and the spinal cord, thalamus, and sciatic of male
rats (Alonso et al., 2000). S1R is reported in the trigeminal
ganglia of male mice (Yoon et al., 2015), but expression in female

trigeminal sensory neurons currently unknown. Activation of
S1R elicits nociceptive responses, which can be reversed with
SR1 antagonists (Kim et al., 2008; Gris et al., 2014; Parenti
et al., 2014; Pyun et al., 2014; Roh and Yoon, 2014; Tejada
et al., 2014; Entrena et al., 2016) or in S1R knockout mice
(Entrena et al., 2009; de la Puente et al., 2009). Progesterone
is a potent S1R antagonist (Johannessen et al., 2011; Zamanillo
et al., 2013) and can inhibit nociception (Maurice et al., 2001;
Ueda et al., 2001; Maurice and Su, 2009). In the current study,
it is possible that high levels of progesterone could be acting
at the S1R to counteract estrogen’s effects on inflammatory
orofacial allodynia.

The rapid attenuation by progesterone may also involve
its metabolite, allopregnanolone. Allopregnanolone synthesis
from progesterone involves two enzymes, 5α-reductase and
3α-hydroxysteroid oxidoreductase. The former converts
progesterone to 5α-dihydroprogesterone (5α-DHP), while the
latter converts 5α-DHP to allopregnanolone (Schumacher
et al., 2014). Allopregnanolone has been shown to have
antinociceptive effects. Allopregnanolone attenuates diabetes-
induced neuropathy (Afrazi and Esmaeili-Mahani, 2014),
postoperative pain (Fujita et al., 2018), inflammatory pain
(Charlet et al., 2008; Ocvirk et al., 2008), sciatic nerve
ligation nociception (Meyer et al., 2008), and chemotherapy-
induced nociception (Meyer et al., 2011). In the present
study, we observed a rapid attenuation in the reemergence of
mechanical allodynia within 1 h of injection on day 1. This is in
agreement with previous studies that investigated the effects of
allopregnanolone in animal models of neuropathic pain (Charlet
et al., 2008; Meyer et al., 2008, 2011; Ocvirk et al., 2008; Kawano
et al., 2011; Svensson et al., 2013; Afrazi and Esmaeili-Mahani,
2014; Fujita et al., 2018).

Surprisingly, allopregnanolone treatment did not attenuate
the return of mechanical allodynia on day 3 or 5 of hormone
treatment. This is not in agreement with a study that
reported allopregnanolone suppressed diabetes-induced thermal
hyperalgesia up to 7 weeks (Afrazi and Esmaeili-Mahani, 2014).
The variance could be due to different dosage effects. Their
study utilized high doses of allopregnanolone (5 mg/kg or
20 mg/kg) compared to our dose of 0.16 mg/kg. Perhaps a high
dose of allopregnanolone is necessary to provide continuous
attenuation of the return of orofacial mechanical allodynia after
several days of repeated hormone treatment. It was previously
reported that the most potent dose of allopregnanolone in
reducing nociception is 0.16 mg/kg, but effects over time
were not investigated (Ocvirk et al., 2008). It could be that
allopregnanolone underlies protective effects on pain early on
in treatment, but that progesterone’s continual attenuation
of the return of orofacial mechanical allodynia on the other
days may involve a mechanism such as the sigma1 receptor.
However, future studies are warranted to determine the reason
for the observed effects of allopregnanolone in the current
study on the reemergence of mechanical allodynia following
estrogen treatment.

Allopregnanolone may have acute antinociceptive effects
through the GABAA receptor. This is supported by reports
that allopregnanolone decreases pain in neuropathy models
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(Afrazi and Esmaeili-Mahani, 2014; Huang et al., 2016). This
effect may then be attenuated on day 3 and day 5 due to the
development of tolerance to allopregnanolone. Repeated
daily administration of allopregnanolone was reported
to induce tolerance to allopregnanolone’s anticonvulsant
(Członkowska et al., 2001) and hypothermic properties (Palmer
et al., 2002). Also a 90-min exposure to allopregnanolone
triggers an increase in allopregnanolone in brain regions
important in tolerance development (Zhu et al., 2004; for
review see Türkmen et al., 2011). Interestingly, prolonged
exposure to allopregnanolone alters GABAA receptor subunits,
resulting in a decrease in sensitivity to allopregnanolone
(Zhu et al., 2004; Türkmen et al., 2006, 2008). Alternatively,
on days 3 and 5 estrogen may be further increasing the
excitability of TMJ neurons (Flake et al., 2005), increasing
inflammatory mediators, and increasing GABAA receptor
in the trigeminal ganglia (Puri et al., 2011); all of which
could be opposing protective effects of allopregnanolone.
Based on these lines of evidence, studies examining potential
effects of progesterone and allopregnanolone on the GABAA
receptor in the trigeminal ganglia are needed to understand the
mechanism underlying the protective role of progesterone in our
treatment paradigm.

Overall, we show that removal of the endogenous source
of ovarian hormones after orofacial inflammation relieves
mechanical allodynia in the TMJ of female rats. We also
showed rapid attenuation of the high estrogen-evoked return of
mechanical allodynia by two different doses of progesterone and
acute, rapid attenuation by allopregnanolone. These data suggest
the allopregnanolone may provide short-term relief, whereas,
progesterone may provide continual relief in the reemergence
of TMD pain in post-menopausal women undergoing estrogen
replacement therapy.
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