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Optic neuritis (ON) is one of the most frequent symptoms of multiple sclerosis (MS)
that results in progressive loss of axons and neurons. In clinical trials of Traditional
Chinese Medicine, needling at the GB20 acupoint has been widely used for the treatment
of ocular diseases, including ON. However, the molecular mechanisms of needling
at this site are still unclear. In this study, we generated an experimental autoimmune
encephalomyelitis (EAE) mouse model and investigated the effects of needling treatment
at the GB20 acupoint on retina with EAE-associated ON. RNA sequencing of the
retinal transcriptome revealed that, of the 234 differentially expressed genes induced
by ON, 100 genes were upregulated, and 134 genes were downregulated by ON,
while needling at the GB20 acupoint specifically reversed the expression of 21 genes
compared with control treatment at GV16 acupoint. Among the reversed genes, Nr4a3,
Sncg, Uchl1, and Tppp3 were involved in axon development and regeneration and were
downregulated by ON, indicating the beneficial effect of needling at GB20. Further gene
ontology (GO) enrichment analysis revealed that needling at GB20 affected the molecular
process of Circadian rhythm in mouse retina with ON. Our study first reported that
needling treatment after ON at the GB20 acupoint regulated gene expression of the
retina and reversed the expression of downregulated axon development-related genes.
This study also demonstrated that GV16 was a perfect control treatment site for GB20 in
animal research. Our study provided a scientific basis for needling treatments at GB20 for
ocular diseases.

Keywords: needling, GB20 (Fengchi), GV16 (Fengfu), RNA sequencing, optic neuritis

INTRODUCTION

Multiple sclerosis (MS) is one of the most common inflammatory demyelinating diseases of the
central nervous system, characterized by inflammation, demyelination, axonal loss, and gliosis. In
MS patients, inflammation predominately affects the white matter of the brain and spinal cord, and
it leads to typical presenting syndromes, including monocular visual loss, limb weakness, sensory
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loss, double vision, and ataxia, depending on the location of
the MS lesions (Lassmann, 2018, 2019; Reich et al., 2018). As
a major target in MS, the optic nerve axon could be easily
injured, resulting in optic neuritis (ON). ON is a common
manifestation and the second most frequent symptom of MS
(Kemenyova et al., 2014). It mainly occurs in the setting of MS,
and patients with ON typically show a progressive unilateral
visual loss of variable severity (de Seze, 2013). The underlying
mechanisms of MS-associated ON remain unclear, and there is
no satisfactory treatment that could fully prevent visual disability
(Woung et al., 2011). In some patients with typical demyelinating
ON, no treatment is required, and visual loss is expected
to recover from relapses spontaneously (Jenkins and Toosy,
2017). However, most relapses leave behind such persistent
damage as color vision, contrast sensitivity, and depth perception
abnormalities after the recovery of visual acuity (Dobson and
Giovannoni, 2019). Evidence has demonstrated that steroid
treatment could accelerate visual recovery but could not improve
final visual outcome (Brusaferri and Candelise, 2000). In
addition, for patients who fail to recover, no suitable therapy
is available.

Needling is a kind of mechanical stimulation and a prevalent
clinical methodology based on Traditional Chinese Medicine,
which presents great therapeutic effects on ocular diseases
without many side-effects. It has been used for treatment of
ocular diseases like glaucoma, age-related macular degeneration,
retinitis pigmentosa, et cetera (Jiao, 2011; Xu et al., 2012; Law
and Li, 2013; Xu and Peng, 2015). According to Traditional
Chinese Medicine, treatment sites of GB20 and BL1 acupoint
are widely used for ON therapy. GB20 and BL1 were also
selected for needling treatment of other ocular diseases (Xu
and Peng, 2015; Qin et al., 2015). Our previous study showed
that GB20 was more suitable than BL1 in animal study of
ocular diseases (Chen et al., 2019). Although the application
of needling has shown good clinical efficacy in the treatment
of MS-associated ON, the mechanisms of needling are totally
unknown. In this study, we use the experimental autoimmune
encephalomyelitis (EAE)-optic neuritis (EAE-ON) model to
elucidate the scientific basis of needling treatment of ON. EAE
is a suitable model, in which animals develop inflammatory-
demyelinating diseases spontaneously and cover the specific
spectrum of the pathological and immunological features of MS
(Lassmann and Bradl, 2017). In mice, the EAE-ON model is
induced by injection of myelin oligodendrocyte glycoprotein
(MOG) peptide-MOG35–55, and clinical EAE scores are graded
daily and blindly according to the standard scoring system
(Dietrich et al., 2018; Locri et al., 2018; Torre-Fuentes et al.,
2020). Our previous results showed that retinal ganglion cells
(RGC), in the retina, were most affected by ON (Huang et al.,
2017). We also found that needling at GB20 increased RGC
survival in an optic nerve crush model (Chen et al., 2019).
However, the effect of needing at GB20 on retina with ON is still
unclear. RNA sequencing (RNA-seq) is a new technique effective
in identifying numerous genes regulated by specific treatment.
Therefore, we take advantage of RNA-seq technique and the EAE
mouse model to identify and analyze the differentially expressed
retinal genes induced by inflammatory demyelination and the

genes reversed after needling treatment at GB20 and reveal the
regulation effects of needling treatment on the retina with ON.

MATERIALS AND METHODS

Animals
We perform experiments on 8-week-old female C57BL/6 mice.
All animal procedures were performed in accordance with
the National Institute of Health guidelines. The protocol was
approved by the Animal Care and Use Committee of Beijing
Institute of Technology and Peking University.

MOG Immunization and EAE Model
Preparation
Female 8-week-old C57BL/6 mice were immunized with 150 µg
MOG35–55 peptide emulsified with complete Freund’s adjuvant
(CFA) and 2.5 mg/ml mycobacterium tuberculosis, followed
by immunization of 200 ng pertussis toxin at day 0 and day
2 (Quinn et al., 2011). The behavioral deficits of these mice
were assessed daily with a 5-point scale (Gran et al., 2002),
as follows: limp tail, 1; limp tail with waddling gait, 1.5;
partial limb paralysis, 2; full paralysis of one limb, 2.5; full
paralysis of one limb with partial paralysis of second limb, 3;
full paralysis of two limbs, 3.5; moribund, 4; and death, 5.
The clinical score was recorded every other day until 5 weeks
post-immunization.

Needling Treatment
Three weeks after MOG immunization, mice were anesthetized
by xylazine and ketamine based on their body weight (0.01 mg
xylazine/g + 0.08 mg ketamine/g) before needling treatment at
acupoint GB20 or GV16 at both sides, respectively. The depth of
the needling is around 2mm. The duration of needling treatment
was 20 min. EAE mice were treated with needling treatments
3 weeks after MOG immunization and treated every 3 days for
2 weeks before sacrifice.

RNA Preparation
Mice were randomly divided into four groups (two or
three mice/group). Experiments were repeated for three times.
Briefly, in each replicate, mice were sacrificed 5 weeks after
MOG immunization, and retinas were dissected out in HBSS
buffer (Cellgro) immediately. Retinas were then homogenized
with TRIzol Reagent (Thermo Fisher Scientific), and total
RNA was extracted from the homogenized mixture according
to the reagent instructions. RNA purity was checked using
the NanoPhotometerr spectrophotometer (IMPLEN). RNA
concentration was measured using Qubitr RNA Assay Kit in
Qubitr 2.0 Flurometer (Life Technologies). RNA integrity was
assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer
2100 system (Agilent Technologies).

Library Preparation and Sequencing
About 5 µg total RNA generated from each group was used
for RNA-seq, which was done at Novogene, Inc. Briefly,
RNA samples from three biological replicates went through
mRNA purification with poly-T oligo-attached magnetic
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beads. Sequencing libraries were generated using NEBNextr

UltraTM RNA Library Prep Kit for Illuminar (NEB) following
manufacturer’s recommendations and index codes were added
to attribute sequences to each sample. The library fragments were
purified with the AMPure XP system (Beckman Coulter) for
cDNA fragments of preferentially 250–300 bp in length. Library
quality was assessed on the Agilent Bioanalyzer 2100 system.
The clustering of the index-coded samples was performed on a
cBot Cluster Generation System using TruSeq PE Cluster Kit v3-
cBot-HS (Illumia) according to the manufacturer’s instructions.
After cluster generation, the library preparations were sequenced
on an Illumina Hiseq platform and 125/150 bp paired-end reads
were generated.

Gene Expression Analysis
The RNA-seq reads were aligned to the reference genome using
Hisat2 v2.0.5. FeatureCounts v1.5.0-p3 was used to count the
reads numbers mapped to each gene. We used Fragments Per
Kilobase of transcript sequence perMillions base pairs sequenced
(FPKM) to represent relative gene expression abundance. FPKM
of each gene was calculated based on the length of the gene
and reads count mapped to this gene, which normalizes gene
expression by considering the effect of sequencing depth and
gene transcript length at the same time. Differential expression
analysis was performed using the DESeq2 R package (1.16.1).
The resulting p-values were adjusted using the Benjamini and
Hochberg’s approach for controlling the false discovery rate
(less than 0.05). Genes with an adjusted p-value (padj) < 0.05
(detected by DESeq2) were considered differentially expressed.

Statistical Analysis
An adjusted p-value <0.05 was considered as statistically
significant. The raw data and GEO accession number for this
study are as follows: GSE148759, link: https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE148759.

RESULTS

Expression Analysis
To investigate the effects of needling treatments on regulation
of retinal gene expression in EAE/ON models, we extracted
retinal RNA 5 weeks after immunization, from SHAM control
group (SHAM), MOG immunization group (MOG) and MOG
immunization mice with needling treatments at acupoint GB20
(GB20) or control acupoint GV16 (GV16). The schematic image
illustrated the needling treatment sites of GB20 and GV16
(Figure 1A). Scores on a five-point scale showed the clinical
development of mice after MOG immunization (Figure 1B).
Needling treatment at GB20 or GV16 did not affect the EAE
clinical score (data not shown).

RNA integrity of each sample was assessed by Bioanalyzer
2100 system. Sample total reads ranged from 44.4 to 54.7 million,
and the mapping rate of sample total reads to mouse reference
genome ranged from 97.0 to 97.3%. We used FPKM to
represent relative gene expression abundance. The boxplot result
showed that the overall distribution of the FPKM values were
consistent among samples, suggesting that the RNA-seq data
were reproducible (Figure 2A). Cluster analysis showed that
needling treatment groups were clustered together and separated
from MOG control, and all the MOG groups with or without
needling treatments were separated from SHAM control group
(Figure 2B).

Differentially Expressed Retinal Genes by
MOG Immunization
To identify candidate genes affected by optic neuritis, we
performed differential expression analysis using the DESeq2
R package (1.16.1). Genes with |log2FoldChange| > 0 and
an adjusted p-value <0.05 were assigned as differentially
expressed. We then identified 234 differentially expressed genes
(DEGs) in total, with 100 genes upregulated and 134 genes
down-regulated (Figure 2C). The top most upregulated gene,

FIGURE 1 | Needling treatment sites and experimental autoimmune encephalomyelitis (EAE) mice scoring. (A) Schematic illustration of needling at sites of
GB20 and GV16 of the mouse. (B) Clinical scores of mice after MOG35–55 peptide immunization.
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FIGURE 2 | Quantitative analysis of retinal gene expression. (A) Boxplot shows the overall range and distribution of fragments per kilo base per million (FPKM) value
of gene expression. (B) Cluster analysis of differentially expressed genes among groups. The colors of the heat map indicate the relative gene expression. Red color
indicates the higher gene expression, while blue color indicates the lower gene expression. (C) The volcano map shows the numbers of differentially expressed
genes (DEGs) of retina after myelin oligodendrocyte glycoprotein (MOG) immunization, compared with SHAM control. padj: adjusted p-value.

Ecel1, had an alternative name ‘‘damage-induced neuronal
endopeptidase,’’ whose molecular functions were metal ion
binding and metalloendopeptidase activity (Kiryu-Seo et al.,
2000). Ecel1 was increased by eight times after ON and the
p-value was 1.41 × 10−15, which was incredibly significant. The
second most upregulated gene, Oas2, was an interferon-induced
dsRNA-activated antiviral enzyme that played a critical role in
cellular innate antiviral response (Oakes et al., 2017). It also
played a role in other cellular processes such as apoptosis, cell
growth, differentiation and gene regulation (Kristiansen et al.,
2011). Oas2 was increased by seven times after ON and the
p-value was 9.17 × 10−5. The third most up-regulated gene was
unknown. The fourth most upregulated gene, Cxcl10, was a pro-
inflammatory cytokine that was involved in processes such as
activation of peripheral immune cells, regulation of cell growth,
apoptosis andmodulation of angiostatic effects (Gao et al., 2017).
Activation of the CXCL10/CXCR3 axis also played an important
role in neurons in response to brain injury (Rappert et al.,
2004). Cxcl10 was increased by four times after ON and the
p-value was 0.0389. The fifth most upregulated gene, Tnnt2,
whose molecular functions were actin binding and calcium ion
binding, was increased by four times after ON and the p-value
was 3.61 × 10−13. The top most down-regulated gene, Ppp1r1c,
was a protein phosphatase inhibitor, increasing cell susceptibility

to TNF-induced apoptosis. Ppp1r1c was down-regulated by 75%
after ON and the p-value was 0.0107. The second most down-
regulated gene, Oxtr, was a G-protein coupled receptor involved
in many biological processes such as positive regulation of
synapse assembly and synaptic transmission. Oxtr was down-
regulated by 71% after ON and the p-value was 0.011. The
third most down-regulated gene, Egr4, was a transcriptional
regulator, activating the transcription of target genes required
for mitogenesis and differentiation. Egr4 was down-regulated by
68% after ON and the p-value was 4.49 × 10−2. The fourth most
down-regulated gene, Scn4b, was a voltage-gated sodium channel
subunit, positively regulating sodium ion transport. Scn4b was
down-regulated by 68% after ON and the p-value was 1.57 ×
10−11. The fifth most down-regulated gene was an unknown
gene. The top 20 upregulated and down-regulated DEGs together
with the information of log2 FoldChange and p-value were listed
in Table 1. Among the 20 down-regulated DEGs, there were
four transcription factors, Egr4, Nr4a3, Isl2, and Pou4f1, which
were highlighted in yellow (Table 1). The transcription factor
Nr4a3 functioned in negative regulation of apoptotic process,
and was reported to play a neuroprotection role in oxidative
stress-induced neuron death (Rappert et al., 2004). Nr4a3 was
down-regulated by 67% after ON and the p-value was 0.00183.
The transcription factor Isl2, was reported to be involved in
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TABLE 1 | Top 20 upregulated and 20 down-regulated retinal genes induced by optic neuritis (ON).

Genes were selected by adjusted p-value (padj) < 0.05, |log2FoldChange|>0 and FPKM > 0, genes highlighted in yellow are transcription factors.

axonogenesis and retinal ganglion cell axon guidance (Pak et al.,
2004). Isl2 was down-regulated by 55% after ON, and the p-
value was 0.000594. The transcription factor Pou4f1, also named
Brn3a, was another negative regulator of apoptotic process
(Hudson et al., 2008; Dykes et al., 2010). Pou4f1 was down-
regulated by 51% after ON and the p-value was 2.16× 10−8.

Enrichment Analysis of DEGs Induced by
Optic Neuritis
To analyze the overall regulation effects of these DEGs
induced by ON, we performed enriched gene ontology (GO)
analysis. Results showed that among the three main categories
of Biological Process (BP), Cellular Component (CC), and
Molecular Function (MF), the top three most significantly
regulated gene categories were: neurofilament, axonogenesis
and axon development (Figure 3A). Axonogenesis and axon
development were belonged to the main category of BP, while
neurofilament was belonged to the main category of CC. As to

the top 3 GeneRatio categories which contained the most count
of DEGs, they were axonogenesis, axon development and axon
part (Figure 3B). Axon parts also belonged to the main category
of CC. However, enriched KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway analysis showed no significant enriched
gene categories (Supplementary Figure S1).

Reversal of Optic Neuritis Induced DEGs
by Needling Treatment
To study the effect of needling treatment in mice with
ON, we performed needling treatments every 3 days at
acupoint GB20 or control acupoint GV16 3 weeks after MOG
immunization. RNA-seq analysis showed that among the ON
induced 234 DEGs, GB20 treatment significantly upregulated
13 and down-regulated 24 of total DEGs (Figure 4A), while
GV16 control treatment significantly up-regulated 4 and
down-regulated 14 of total DEGs (Figure 4B). Further analysis
revealed that, of the ON induced 100 up-regulated DEGs (MOG
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TABLE 2 | Differentially expressed genes (DEGs) reversed by needling treatments.

Reversed DEGs were selected by adjusted p-value (padj) < 0.05, |log2FoldChange| > 0 and FPKM > 0. The green color highlights the DEGs specifically reversed by needling treatment
at GB20, while yellow highlights the DEGs reversed both by needling treatment at GB20 and GV16.

vs. SHAM), 24 DEGs were reversed by GB20 treatment, while
14 were reversed by control GV16 treatment. However, 12 of
the 14 reversed DEGs of GV16 treatment were already included
in the 24 DEGs of GB20 (Figure 4C). The left 2 DEGs specific
to GV16 control were Gfap (glial fibrillary acidic protein) and
Fgf2 (fibroblast growth factor 2). Therefore, after deducting
the same DEGs shared by GV16 control, there were 12 DEGs
specifically down-regulated by GB20. Among the ON induced
134 down-regulated DEGs (MOG vs. SHAM), 12 DEGs were
reversed by GB20 treatment, while only three DEGs were
reversed by control GV16 treatment, and all the three reversed
DEGs of GV16 were also shown in that of GB20, not specific to
GV16 treatment (Figure 4C). After deducting the same DEGs
shared by GV16 control, there were nine DEGs specifically
upregulated by GB20. Together, there were totally 21 DEGs
specifically reversed by GB20 treatment compared with control
treatment. The reversed DEGs were listed in Table 2. DEGs
specifically reversed by GB20 treatment were highlighted in
green and DEGs both reversed by GB20 or GV16 treatment
were highlighted in yellow (Table 2). Finally, there was one
gene whose expression was further enhanced by either GB20 or
GV16 treatment, which was Folh1 (folate hydrolase 1). The
average FPKM values of the 234 DEGs of all groups were
listed in the supplemental data (Supplementary Table S1).

Mechanical stimulation at GB20 acupoint of EAE mice for
2 weeks, was resulted in reverse of total 36 ON induced
DEGs (Figure 4C). Specifically, among those reversed DEGs
(Table 2), Nr4a3, Sncg and Uchl1 were axonogenesis and axon
development related (Soto et al., 2008; Stevanato and Sinden,
2014; Bishop et al., 2016) and down-regulated in EAE model.
Tppp3 was involved in tubulin polymerization and promotion
of axon regeneration (Huang et al., 2017); and Slc5a8 was
involved in sodium ion transmembrane transport (Miyauchi
et al., 2004). Furthermore, Nr4a3 and Sncg were among the
top 20 down-regulated DEGs induced by MOG immunization
(Table 1).

Enrichment Analysis of Needling Treatment
To analyze the overall effects of needling treatments onmice with
ON, we performed enriched GO analysis comparing GB20 vs.
MOG and GV16 vs. MOG. Results showed that the top 3 most
significantly regulated gene categories after needling treatment
at GB20 were: entrainment of circadian clock by photoperiod,
Photoperiodism and Entrainment of circadian clock (Figure 5A).
As to the top 3 GeneRatio categories which contained the most
count of DEGs, they were Rhythmic process, Circadian rhythm,
and Circadian regulation of gene expression (Figure 5B). They
were all belonged to main category of BP. However, needling
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FIGURE 3 | Gene ontology (GO) enrichment analysis of DEGs induced by ON. (A) Bar plot lists the top 10 enrichments of each category based on padj value;
yellow color highlights the top 3 of the most significantly enriched gene categories based on padj value. (B) Dot plot shows the top enriched gene categories based
on DEG numbers; yellow color highlights the top 3 of the enriched gene categories with most DEG numbers. BP, Biological Process; CC, Cellular Component; MF,
Molecular Function. padj: adjusted p-value.

FIGURE 4 | Reverse of ON-induced DEGs by needling treatments. (A,B) Volcano map shows the ON-induced DEGs regulated by needling treatments at acupoint
GB20 and GV16, respectively. (C) Table shows the reversal numbers of ON-induced upregulated and down-regulated DEGs by needling treatments at acupoint
GB20 and GV16, respectively. Adjusted p-value (padj) <0.05.
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FIGURE 5 | GO enrichment analysis of needling treatments at GB20. (A) Bar plot lists the top 10 enrichments of each category based on padj value; yellow color
highlights the top 3 of the most significantly enriched gene categories based on padj value. (B) Dot plot shows the top enriched gene categories based on DEG
numbers; yellow color highlights the top 3 of the enriched gene categories with most DEG numbers. BP, Biological Process; CC, Cellular Component; MF, Molecular
Function. padj: adjusted p-value.

treatment at control acupoint GV16 showed no significant
gene category enrichment (Supplementary Figure S2). Finally,
KEGG pathway enrichment analysis showed that only gene
categories of Circadian rhythm and Ribosome were significantly
regulated (Figure 6). There were a total of 119 DEGs
after needling treatment at acupoint GB20 compared with
MOG group, while there were only 57 DEGs after needling
treatment at control acupoint GV16 compared with MOG group
(Supplementary Figure S3). The average FPKM values of the
119 DEGs induced by GB20 treatment and 57 DEGs induced by
GV16 control treatment were listed in the supplemental tables
(Supplementary Tables S2, S3).

DISCUSSION

ON is the second most frequent symptom of MS, while there is
no satisfactory treatment that could prevent visual disability. In
Traditional Chinese Medicine, needling is widely used in clinical
trials of ocular disease treatment. However, the underlying
mechanism remains unclear. In the present study, by using an
EAE mouse model and retinal RNA sequencing, we demonstrate
that GB20 needling can regulate the retinal transcriptome of
EAE mice and reverse the expression of genes induced by ON.
Many studies revealed that endoplasmic reticulum (ER) stress
ER stress is closely linked to neuroinflammation. Many key
molecules of unfolded protein response (UPR) pathways, such
as CHOP, ATF4, BiP, and XBP1, are reported to be induced

in autopsied brain specimens of MS patients and spinal cord of
EAE mice (Deslauriers et al., 2011). These ER stress molecules
are also induced in retina of EAE mouse (Stone and Lin, 2015;
Huang et al., 2017). However, the induction of those key UPR
pathway molecules is not found in the RNA sequencing analysis
of EAE retina samples. This may be due to the low induction
and expression level of ER stress molecules in retina with ON.
In our previous study, CHOP, PERK and ATF4 were all induced
in optic nerve crush model and identified by RNA sequencing
analysis (Chen et al., 2019). Optic neuropathies caused by either
traumatic injury such as optic nerve crush and ischemia or
chronic injury such as ON all results in retinal degeneration
and RGC death (Fernandes et al., 2013; Nashine et al., 2014;
Huang et al., 2017; Kumar et al., 2019). Although inhibition of
ER stress molecules provides neuroprotection, the manipulation
of ER stress molecules does not affect the disease development of
EAEmouse (Deslauriers et al., 2011; Huang et al., 2017; Yue et al.,
2019). In this study, needling at GB20 specifically reversed the
expression of 21 genes induced byON, while as the same, needing
treatment did not affect the clinical score of EAE development.

Among the DEGs reversed by GB20 needling treatment,
we found that Nr4a3 is a transcription factor and significantly
down-regulated by ON. Nr4a3 plays a critical role in pyramidal
cell survival and axonal guidance (Pönniö and Conneely, 2004).
Nr4a3 functions as a negative regulator of apoptotic process,
and plays a neuroprotection role in oxidative stress-induced
neuron death (Volakakis et al., 2010). Needling treatment at
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FIGURE 6 | KEGG pathways analysis of needling treatments at GB20. (A) Bar plot lists the top enriched pathways based on padj value; yellow color highlights the
significant enriched pathways. (B) Dot plot shows the top enriched pathways based on DEG numbers; yellow color highlights the significant enriched pathways.
padj: adjusted p-value.

GB20 significantly increased and recovered the expression level
of Nr4a3 (Table 2), indicating that mechanical stimulation at
GB20 did have beneficial effects in treatment of ON.

In the previous study, we used GV16 acupoint for the first
time as a control needling site for GB20 which was physically
very close to the GB20 acupoint (Chen et al., 2019). In the present
study, we have again proved that GV16 is the best control site for
the needling treatment at GB20. Almost all the DEGs reversed
by control GV16 treatment was also shown in the reversed DEG
list of GB20 treatment. There are 21 DEGs that are specifically
reversed by GB20 treatment (Figure 4C).

The GO enrichment analysis revealed that the most affected
gene category of retina was circadian rhythm after treatment
at GB20 (Figure 5B). So far, there is no report about the
link between the stimulation at GB20 and the regulation of
retinal circadian rhythm. Therefore, we are the first to report
the connection of GB20 needling to retinal circadian rhythm
regulation. There are some studies reported that acupuncture
treatment with acupoints combination can upregulate the
expression of circadian rhythm genes of Clock and Bmal1 in
the hypothalamus (Wei et al., 2017) and the circadian rhythm
genes of Per1 and Per2 in the suprachiasmatic nucleus (SCN) in
insomnia rats (Guo et al., 2017), while some other research group
reported that electroacupuncture treatment down-regulated the
expression of Per1 and Per2 in the SCN (Hou et al., 2018). It
is also reported that acupuncture treatments affect the circadian
rhythm of blood pressure (Kim et al., 2012; Yang et al., 2016;
Lei et al., 2017). Among the above reports, the acupoint GB20 is
not included in their acupoint combinations. In this study, single

needing treatment at GB20 also upregulated the gene expression
of Per1 and Per2 in mouse retina, in accordance with other
research groups’ reports that acupuncture treatments can affect
expression of circadian rhythm genes.

The mechanism of needling at GB20 affects the regulation of
retinal gene expression, is still unclear andmay be extraordinarily
complex, since the site of GB20 is at the back of the neck,
far from the eyes (Figure 1A). A previous functional magnetic
resonance imaging study revealed that needling at GB20 was
able to regulate neural activity within the visual region of the
brain (Li et al., 2018). It is reported that needling treatment
also regulated the expression of nerve growth factor and
brain-derived neurotrophic factor in retina (Pagani et al.,
2006), which may regulate retinal gene expression. During
neural development, neural activities also regulate neuron gene
expression and formation andmature ofmany synapses (Hensch,
2005; Hooks and Chen, 2006; Shah and Crair, 2008; Hong and
Chen, 2011; Furman and Crair, 2012; Ackman and Crair, 2014).
Therefore, mechanical stimulation at GB20 may activate and
transfer neural signals into the brain and then control the retinal
gene express by the feedback neural signal from the brain.
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FIGURE S1 | KEGG pathways analysis of DEGs induced by ON. (A) Bar plot
lists the top enriched pathways based on padj value. (B) Dot plot shows the top
enriched pathways based on DEG numbers. padj: adjusted p-value.

FIGURE S2 | Gene ontology enrichment analysis of needling treatments at
GV16. (A) Bar plot lists the top 10 enrichments of each category based on padj
value; yellow color highlights the top 3 of the most significantly enriched gene
categories based on padj value. (B) Dot plot shows the top enriched gene
categories based on DEG numbers; yellow highlights the top 3 of the enriched
gene categories with most DEG numbers. BP, Biological Process; CC, Cellular
Component; MF, Molecular Function. padj: adjusted p-value.

FIGURE S3 | Differentially expressed retinal genes after needling treatments at
GB20 and GV16 in ON mice. (A,B) The volcano map shows the numbers of
DEGs of retina after needling treatments at GB20 and GV16, respectively,
compared with MOG immunization alone. padj: adjusted p-value.

TABLE S1 | Average FPKM values of differential expressed genes of all groups.

TABLE S2 | Average FPKM values of DEGs of GB20 group compared with
MOG group.

TABLE S3 | Average FPKM values of DEGs of GV16 group compared with
MOG group.
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