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Editorial on the Research Topic

Brain extracellular matrix: Involvement in adult neural functions and

disease volume II

In recent years, the brain extracellular matrix (ECM) has come to the forefront of the

neuroscience field. Its role as a key player in developmental and adult brain functions

as well as in brain disease is being increasingly recognized. The ECM wide-ranging

functions span an organism’s lifetime, from early prenatal development to adulthood and

aging (Ishii and Maeda, 2008; Cabungcal et al., 2013; Senkov et al., 2014; Suttkus et al.,

2014; Maeda, 2015; Pomin, 2015; Karus et al., 2016; Carulli and Verhaagen, 2021; Fawcett

et al., 2022). Growing interest in the brain ECM is leading to a greater understanding

of the mechanisms underlying the ECM’s role in synaptic plasticity, learning and

memory (Senkov et al., 2014; Tsilibary et al., 2014; Beroun et al., 2019; Carulli and

Verhaagen, 2021; Fawcett et al., 2022), regulation of neuronal activity (Wingert and Sorg,

2021), neurodevelopmental processes such as neuronal migration and axon guidance

(Pizzorusso et al., 2002; Ishii and Maeda, 2008; Mauney et al., 2013; Maeda, 2015; Karus

et al., 2016), neuroprotection (Morawski et al., 2004; Cabungcal et al., 2013; Suttkus et al.,

2014), and hypothalamic regulation of metabolism (Dingess et al., 2018; Mirzadeh et al.,

2019). Mounting evidence implicates the ECM in a growing number of brain disorders

including schizophrenia, bipolar disorder, autism (Eastwood and Harrison, 2006; Ma

et al., 2009; Weiss et al., 2009; Abdallah et al., 2012; Poelmans et al., 2013; Pantazopoulos

and Berretta, 2016; Velmeshev et al., 2019; Brandenburg and Blatt, 2022), substance use

disorders (Slaker et al., 2016; Garcia-Keller et al., 2019; Seney et al., 2021), depression

(Riga et al., 2017; Alaiyed et al., 2020; Koskinen et al., 2020; Blanco and Conant,

2021), Alzheimer’s disease (Scholefield et al., 2003; Schworer et al., 2013; Morawski

et al., 2014; Yang et al., 2017), and stroke (Hobohm et al., 2005; Hartig et al., 2017).

Frontiers in IntegrativeNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://www.frontiersin.org/journals/integrative-neuroscience#editorial-board
https://doi.org/10.3389/fnint.2022.1009456
http://crossmark.crossref.org/dialog/?doi=10.3389/fnint.2022.1009456&domain=pdf&date_stamp=2022-08-15
mailto:cpantazopoulos@umc.edu
https://doi.org/10.3389/fnint.2022.1009456
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnint.2022.1009456/full
https://www.frontiersin.org/research-topics/27684/brain-extracellular-matrix-involvement-in-adult-neural-functions-and-disease-volume-ii
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org


Pantazopoulos and Berretta 10.3389/fnint.2022.1009456

This collection of original and review articles in Volume II of this

Special Issue, includes examples of novel ECM structures and

the ECM’s role in plasticity, axonal regeneration, neural injury,

neuroinflammation as well as a broad range of brain disorders,

providing a window into a growing but still largely unexplored

field of investigations.

For several decades, Wisteria floribunda agglutinin (WFA)

lectin labeling, first introduced in the 1990’s by Hartig et al.

(1992) has been the primary method for studying the ECM,

and more specifically a distinct population of perineuronal

nets (PNNs). Indeed, many important studies using WFA

labeling have provided information on the functional of role

of these ECM structured forms, their association with distinct

neuronal populations and involvement in brain disorders.

In this special issue, Hartig et al., provide an extensive

perspective on methodological aspects related to WFA lectin

for PNN labeling, based on 30 years of experience. Several

methodological factors potentially impacting PNN detection

with WFA are discussed, along with technical guidelines and a

PNN labeling “toolbox”. Notably, applications for in vivo and

in vivo labeling as well as electron microscopy are discussed.

At the same time, the authors share important considerations

related to experimental conditions that may affect WFA ECM

labeling and introduce bias. The authors point to intriguing

discrepancies between WFA labeling and its putative main

target, i.e., aggrecan-associated chondroitin sulfate chains,

discuss some of the factors potentially contributing to this

discrepancy and emphasize the need for use of multiple

PNN markers.

Much of the focus on brain ECM studies has been on

PNNs, specialized structures first described by Camillo Golgi

in 1898 (Golgi, 1989). PNNs ensheath distinct populations

of neurons and regulate key neural functions such as

synaptic plasticity, electrophysiological properties and access

to neuroactive molecules (Kalb and Hockfield, 1988; Sugiyama

et al., 2008; Gogolla et al., 2009). Emerging evidence shows

that PNNs are only one of many structured ECM forms in

the brain, including perisynaptic and perinodal ECM (Dours-

Zimmermann et al., 2009; Bekku and Oohashi, 2010; Faissner

et al., 2010; Frischknecht and Seidenbecher, 2012; Fawcett

et al., 2019), chondroitin-6-sulfate clusters (CS6-clusters) and

axonal coats (Hayashi et al., 2007; Bruckner et al., 2008;

Okuda et al., 2014; Pantazopoulos et al., 2015). Evidence

from the original manuscript by Pantazopoulos et al. shows

that the chondroitin sulfate proteoglycans (CSPGs) NG2 and

brevican form axonal coats, i.e., structured ECM sheaths,

surrounding myelinated axons in the human thalamus. Detailed

confocal and electronmicroscope analyses demonstrate intricate

interweaving patterns of CSPGs with myelin sheaths and

a preferential relationship with large axons. These findings,

consistent with a role of brevican and NG2 in the regulation

of axonal functions such as saltatory conductance and

fasciculation, add to emerging evidence for a variety of ECM

structures in the brain, likely to support specialized functions

(see also Ray et al.).

The regulation of axonal functions, and specifically axonal

growth, has been intensively studied in the context of axon

injuries (Miyata and Kitagawa, 2015; Hussein et al., 2020).

During neurodevelopment the ECM guides axons to their

targets and regulates fasciculation (Snow et al., 2003; Kwok

et al., 2012). In contrast, during adulthood, the ECM inhibits

axonal regrowth following injuries (Miyata and Kitagawa, 2015;

Hussein et al., 2020). Takiguchi et al. offer an important

contribution to this field of investigations. Their elegant studies

address an important question, i.e., whether growing axons

following an injury reach and synapse with their targets in

animals treated with ECM enzymatic degradation. Their results

indeed demonstrate that, in experimental animals with complete

spinal resection, enzymatic ECM degradation led to axonal

growth through the injured site, formation of synapses between

the newly grown axons and motor neurons, and improved

motor functions.

ECM functions are in large part mediated by CSPGs and

heparan sulfate proteoglycans (HSPGs). These large molecules

are composed by a protein core to which a variable number

of disaccharide chains are attached. The specificity of their

biological effects is mediated by the sulfation patterns of the

sugar chains, which determine their conformation, charge, and

molecular affinities (Miyata et al., 2012; Smith et al., 2015).

The elegant review contributed by Fawcett and Kwok focuses

on the functional role of disaccharide sulfation on CSPGs and

HSPGs. These latter have received less attention in the context

of investigations on the brain ECM. Evidence compellingly

reviewed by the authors highlights and compares CSPG and

HSPGs functional roles in memory processing, neural injury,

aging, axonal regeneration, and their modulation encoded by

sulfation patterns.

The considerations above, particularly those emphasized

by Hartig et al. and Fawcett and Kwok, resonate with those

poignantly made by Scarlett et al. in the context of studies on the

role of the ECM in brain disorders, and particularly Alzheimer’s

disease. As the authors eloquently point out, changes in the

ECM sulfation “coding,” together with technical limitations

surrounding traditional methods for PNN analyses, may reside

at the root of important discrepancies in literature on the role of

the ECM in neurodegenerative disorders. The paper puts forth

the intriguing hypothesis that disease state-related chondroitin

sulfation changes may impact PNN detection, and in turn

interpretations of results showing altered PNN representation

(Baig et al., 2005; Crapser et al., 2020). The distinction between

altered PNN numbers and altered chondroitin sulfation patterns

is significant, as each can affect CSPG functions, such as their

ability to restrict or promote synaptic plasticity, in a different

manner (Yang et al., 2021).

Inflammation has rapidly taken center stage as a key

factor in a growing number of brain disorders, from autism
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to dementias, motor, and psychiatric disorders. The blood-

brain barrier functions as a key interface regulating molecular

transport between the brain and the peripheral circulatory

system. In this special issue, Tabet et al. offer a comprehensive

description of the relationship between the ECM and several

components of the blood-brain barrier including the basement

membrane and the glycocalyx. The authors discuss the role of

the ECM in modulating blood-brain barrier permeability and its

mediation of blood-brain barrier alterations during brain injury

and inflammation.

Investigations on the ECM role in the pathogenesis of opioid

use disorder (OUD) are rapidly gathering pace. Ray et al. offer a

compelling overview of the ECM functional role within reward

circuits and its involvement in OUD, including opioid seeking,

craving and relapse. The authors consider the role of several

forms of ECM, a recurring and important theme in this special

issue. Particularly notable is the emphasis on sex-specificity,

proposed to play a role both on the effects of opioid exposure on

the ECM and on the contribution of ECM molecular signaling

to opioid use disorder.

A novel and intriguing report by Liu et al. provides evidence

for a role of the ECM in insomnia. The authors analyzed

serum samples from patients with insomnia and demonstrated

significant changes impacting several ECM factors, including

matrix metalloproteinase 9 (MMP9) in persons suffering from

insomnia. These findings bring forth a potential role for the

ECM in sleep regulation. The intersection of ECM and immune

factors found to be altered in insomnia offers new avenues for

investigations on sleep deficits and potential therapeutic targets.

We believe that the articles highlighted in this special issue

provide an exciting overview of the current state of research on

the role of the ECM in the regulation of brain processes and

involvement in disease states, and current directions regarding

PNN labeling novel ECM structures. We hope that they will

stimulate further studies the role of ECM in adult brain processes

and psychiatric disorders. A deeper understanding of the role the

ECM in these processes has the potential to allow us to leverage

this system for preventative and therapeutic treatments.
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