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Neuronal expression of the early growth response-1 (EGR-1; NGFI-A/Zif268) transcription
factor has been extensively studied in the adult mammalian brain and linked to aspects of
mature physiological/behavioral function. In contrast, this factor has not been studied in
detail in the embryonic brain. Here, we used a fluorescent protein-encoding Egr-1 transgene
to map the cellular distribution of Egr-1 transcription in embryonic rat brain. We identified
a novel, widely distributed population of GFP+ cells, characterized as a precursor/stem
cell phenotype by co-localization with SOX2/nestin/vimentin/S-100β and exclusion from
other known cellular markers including DCX/BLBP/TBR2/NURR1. At both E18 and E20,
these cells were located across the developing brain but concentrated in the subplate and
intermediate zones. The transgene was also highly expressed in developing (NeuN+) stri-
atal neurons. The authentic expression pattern that we observed for the rEgr-1 transgene
sequence indicates that restriction to neuronal/precursor cells is largely driven by proximal
5

′
sequence. Deletion of conserved Egr-1 silencer (neuron restrictive silencer factor) ele-

ments did not markedly alter transcriptional activity in transfected cells; this is consistent
with a dominant role for positive factors in the control of cell-specific Egr-1 expression.
Induction of Egr-1 in a population of SOX2+ cells indicates a co-incidence of extrinsic
(EGR-1) and cell-intrinsic (SOX2) cellular signals that may form a novel level of progeni-
tor cell regulation. The wide distribution of EGR-1 signaling in SOX2+ cells suggests an
organizational role during late embryonic brain development.
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INTRODUCTION
The early growth response-1 (EGR-1) transcription factor (TF)
is expressed in many regions of the adult brain, providing for
a variety of functional associations and roles, including cogni-
tion (see Poirier et al., 2008). Egr-1 is considered an immediate
early gene (IEG), that is a gene induced independently of prior
protein synthesis and thereby capable of effecting rapid adaptive
changes in cellular function following reception of an extrinsic
signal (Milbrandt, 1987). Our current understanding of these fac-
tors therefore entails cellular activation by an extrinsic stimulus.
In previous studies we have sought to understand the regulation
of brain Egr-1 expression and consequent functional roles via a
transgenic approach in which rat Egr-1 genomic sequences were
used to direct expression of a fluorescent protein reporter in rats
(Man et al., 2007, 2008; Man and Carter, 2008). This experimen-
tal approach has double value because in addition to providing
information on cis-regulatory sequence function, the reporter
molecule (d2EGFP) is not confined to the nucleus (like EGR-1
protein) and therefore enables definitive cell-type identification
in the brain through a combination of morphological defini-
tion and immunohistochemical co-localization with cell process
markers.

Adult brain Egr-1 gene expression is quite extensively docu-
mented but embryonic expression of this factor is poorly under-
stood, and was even discounted in early reviews (Beckmann and

Wilce, 1997). A propensity for embryonic expression is indicated
by Egr-1 induction in both primary neuronal (McKee et al., 2006)
and glial (Brinton et al., 1998) cultures derived from embryonic
brain and also in progenitor-type cell lines (Milbrandt, 1987; Cacci
et al., 2003). In addition, there are reports of Egr-1 mRNA in the
embryonic head region (Watson and Milbrandt, 1990) and E20
rat striatum (Jung and Bennett, 1996). However, the extent of
expression and cellular localization of Egr-1 protein in embry-
onic brain is entirely undefined. We have now sought to address
this deficiency using our transgenic rat model (Man et al., 2007)
in which we are able to localize and identify embryonic cell-
types expressing the Egr-driven transgene. Because we have estab-
lished techniques for immunohistochemical co-localization of
GFP and endogenous (nuclear) EGR-1 protein (Holter et al., 2008)
we can also accurately determine the authenticity of transgene
expression.

Perinatal expression of Egr-1 is of current interest because of
recent evidence of this factor acting in epigenetic programming of
brain organization and behavioral traits, effected through changes
in the methylation status of EGR-1 binding sites in gene promoters
(Weaver et al., 2007; Oberlander et al., 2008; McGowan et al., 2009).
By identifying the distribution of Egr-1 expression in embryonic
brain, it will therefore be possible to gain an understanding of the
cellular substrates of perinatal epigenetic mechanisms involving
this TF.
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MATERIALS AND METHODS
ANIMAL PROCEDURES
Rat models were used under license in accordance with both UK
Home Office regulations, and specifically approved by local ethi-
cal review. Rats were maintained in standard laboratory conditions
(14:10 light:dark cycle, lights on: 05.00 hours; ad libitum access to
food and water). Timed matings between transgenic males (Z27B
and Z16 Egr-1-d2EGFP lines; Man et al., 2007) and wild-type
females were conducted by pairing the animals for a single night
(16.00–09.00 hours) following the detection of a proestrus vaginal
smear. Following mating, the females were housed individually
and for the purposes of this study, where late embryonic develop-
ment was examined, pregnancy was verified by visual inspection.
Embryonic brain samples were taken using the dating system of
Altman and Bayer (1995) where embryonic day 1 (E1), the first
day of gestation, was taken to be the day on which the breeding
pair were separated. On the day of sampling (E18–E20), dams and
fetuses were killed and fetal heads were rapidly dissected prior to
fixation in 4% PFA (24 h, 4˚C) and cryoprotection in 20% sucrose
in 0.1 M phosphate buffer (24 h, 4˚C). Postnatal day 2 (P2) brains
were sampled and fixed similarly. During these procedures, trans-
genic and non-transgenic fetuses were identified by PCR analysis
of extracted tail tips as described (Man et al., 2007). Brains were
stored briefly at −70˚C prior to sectioning.

IMMUNOHISTOCHEMICAL ANALYSIS
Tissues were positioned in embedding medium (Cryo-M-Bed,
Bright Instrument Company Ltd., Huntingdon, UK), and 12 μm
sections were cut using a Leica CM1900 cryostat (Leica Imag-
ing Solutions Ltd., Cambridge, UK) and mounted on glass slides
(SuperFrost Plus, VWR International, Poole, Dorset, UK). Slides
were dried briefly, and stored at −70˚C prior to immunohisto-
chemistry. GFP and various endogenous proteins were detected by
standard fluorescence immunohistochemistry using procedures
and controls established in our laboratory (Man et al., 2007;
Holter et al., 2008). In an initial control experiment for the present
study, we demonstrated absence of GFP antigen in non-transgenic
embryonic rat brain sections (not shown). A total of 20 different
primary antisera were used (Table 1). Each antibody was validated
with respect to accurate antigen detection by verifying appropri-
ate fluorescence distribution at both sub-cellular (e.g., nuclear vs.
whole-cell distribution) and cell population (e.g., restriction to
subplate) levels. Some antibodies have also been validated in both
our previous studies and through previous use as described by the
commercial suppliers (see Table 1). For one antisera (anti-EGR-1,
15F7) that we have used for the first time in the current study,
we confirmed specific detection of the target protein on a western
blot (see Results). In some cases, the tyramide signal amplification
(TSA; PerkinElmer, Waltham, MA, USA) method was employed
as described previously (Man et al., 2007).

The primary antisera were used in combination with the
appropriate species-specific, fluorophore-tagged, secondary anti-
sera: Alexa Fluor 488-conjugated goat anti-rabbit IgG, Molecular
Probes Inc., Eugene, OR, USA; Alexa Fluor 488-conjugated don-
key anti-mouse IgG, Molecular Probes; Cy3-conjugated donkey
anti-mouse IgG, Jackson Immunoresearch Laboratories Inc., West

Table 1 | Source and validation of primary antibodies used in this

study.

Antigen Antibody Source Validation

βIII-Tubulin 5G8 Promega Man et al. (2007)

BLBP ab32423 Abcam IHC: Abcam and current study

DCX (goat) sc-8066 SCBT Geoghegan and Carter (2008)

DCX (rabbit) ab18723 Abcam Geoghegan and Carter (2008)

EGR-1 15F7 CST Western/IHC: current study

GFAP G560A Promega Man et al. (2007)

GFP (mouse) A11120 Invitrogen Man et al. (2007)

GFP (rabbit) A11122 Invitrogen Man et al. (2007)

NeuN MAB377 Millipore Man et al. (2007)

Nestin R401 BD Man et al. (2007)

NURR1 M196 SCBT IHC: current study

OX-42 CD11b Bachem IHC: Bachem

Reelin MAB5364 Millipore Man et al. (2007)

S-100β SH-B1 Sigma IHC: Sigma and current study

Serotonin ab16007 Abcam IHC: current study

SOX2 L1D6A2 CST IHC: CST and current study

SRF sc-335 SCBT IHC: SCBT and current study

TBR2/Eomes ab23345 Abcam IHC, Abcam and current study

Tyrosine hy’lase MAB318 Millipore Man et al. (2007)

Vimentin V9 Sigma Man et al. (2007)

IHC, immunohistochemistry; hy’lase, hydroxylase.

Sources: Abcam (Cambridge, UK); Bachem (Weil am Rhein, Germany); BD (BD

Pharmingen, San Jose, CA, USA); CST (Cell Signaling Technology, Beverly, MA,

USA); Invitrogen (Paisley, UK); Millipore (Temecula, CA, USA); Promega (Madison,

WI, USA); SCBT (Santa Cruz Biotechnology, Santa Cruz, CA, USA); Sigma-Aldrich

(Bournmouth, UK).

Grove, PA, USA; Cy3-conjugated sheep anti-rabbit IgG, Sigma-
Aldrich, UK). Following washing, sections were mounted under
coverslips using Vectashield with DAPI (Vector Laboratories,
Burlingame, CA, USA).

Brain sections were viewed using either an epifluorescence
microscope (Leica DM-LB, Leica) or a laser confocal microscope
(Leica TCS-SP2-AOBS). Images were captured with, respectively,
a Leica DFC-300FX digital camera and Leica QWin software (V3)
or Leica Confocal Software, and montaged in Photoshop (CS2,
Adobe Systems Inc., San Jose, CA, USA). Brain regions were iden-
tified using a rat brain atlas (Altman and Bayer, 1995). The QWin
software was also used to obtain approximations of cell numbers
per unit area by defining rectangles of appropriate size within
particular regions (marginal zone/cortical area 1 [1.5 mm2], cor-
tical plate [5 mm2], subplate [2 mm2]), and then cell counts were
obtained manually, adopting hemocytometer conventions (n = 6
fields/area). Immunohistochemical analyses were conducted on a
minimum of three brain sections each sampled from two different
animals of the Z27B Egr-1-d2EGFP line; the general distribution
of GFP/EGR-1 expression was also confirmed in two animals of
the Z16 Egr-1-d2EGFP line.

WESTERN BLOTTING
Western blotting was conducted in order to validate the new Egr-1
antiserum (#4153, 15F7, Rabbit mAb, Cell Signalling Technology,
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Beverly, MA, USA) using standard laboratory procedures (Holter
et al., 2008). The primary antibody was used at 1:1000 dilution
(overnight incubation, 4˚C) as recommended by the manufac-
turer. A brain tissue extraction procedure was used to provide
relative enrichment of cytoplasmic and nuclear fractions of rat
cerebral cortex as described and validated previously (Humphries
et al., 2004).

EGR-1 PROMOTER CONSTRUCT ANALYSIS
The Egr1 promoter function was investigated in 3T3 cells using
methods established in our laboratory (Davies et al., 2011). The
3T3 cell line was selected on the basis of expressing REST/NRSF
(Ching and Liem, 2009). The promoter constructs used were based
on the Egr-1-d2EGFP transgene (Man et al., 2007); novel plasmids
derived from the transgene sequence were constructed by ligating
rat Egr-1 promoter fragments into the pGL4.11 MCS. These frag-
ments were amplified (Extract N’Amp, Sigma) from transgene
plasmid DNA using the following oligonucleotides as primers for
PCR:

EgrF1: atatgagctcgcgccttggcagtggcggttc
EgrR1:gtataagcttccgtggtggacgcagggctgc
EgrF2: atatgagctctcagctctacgcgcctggcgc
EgrR2: gcataagcttctgcgcgctgggatctctcgc

These oligonucleotides were designed to amplify extended (F1 and
R1; −1380 to +107 bp from the TSS) and truncated promoter
constructs that respectively omit proximal (F1 and R2; −1380
to +5), distal (F2R1; −535 to +107) and both (F2R2; −535 to
+5) REST/NRSF Position Weight Matrix sequences (PWMs; see
Figure 8). Amplified products were cut with SacI and HindIII
and ligated into SacI/HindIII-cut pGl4.11 using T4DNA ligase
(Promega). Transformed bacteria were expanded and plasmids
were extracted using the PureYield kit (Promega). Novel plas-
mid sequences were obtained using standard DNA sequencing
(Prism ready reaction dye-deoxy terminator cycle sequencing kit
(PerkinElmer, Foster City, CA, USA) and an ABI prism automated
DNA sequencer (377, PerkinElmer).

3T3 cells (CRL-1658; LGC Standards, Teddington, Middlesex,
UK) were grown in DMEM (Invitrogen) with 10% calf serum
(Invitrogen) and 1× antibiotic/antimycotic (Invitrogen) at 37˚C
and 5% CO2. Cells were transfected (TransFast protocol, Promega)
with the Egr-1 promoter constructs together with the reference
plasmid pGL4.75[hRluv/CMV ] (50:1 molar ratio; Promega) and
maintained for 30 h. After this time, cells were lysed and both
Firefly and Renilla luciferase assays were conducted according to
the manufacturers protocol (Dual-luciferase reporter assay sys-
tem, Promega). Relative luminescence values were measured on
a Luminometer (Model TD-20/20, Turner Biosystems, Sunnyvale,
CA, USA). Each transfection was replicated eight-fold (four repli-
cates in two transfection experiments). Statistical analysis was
conducted with SPSS16 for Mac using one-way ANOVA together
with a post hoc Tukey’s multiple comparison test. Significance was
accepted for p < 0.05.

BIOINFORMATIC ANALYSIS
Sequence alignment was conducted using ClustalW2 (http://
www.ebi.ac.uk/).

MatInspector analysis (Genomatix Software GmbH, Munich,
Germany; Cartharius et al., 2005) was used to identify conserved
PWMs for different TFs within these sequences. In addition, the
Gene2Promoter software (Genomatix) was used to illustrate the
conservation of serum response factor family (SRFF) and neuron
restrictive silencer factor (NRSF) PWMs across mammalian Egr-1
promoters.

RESULTS
GENERAL
The Egr-1-d2EGFP transgene was abundantly expressed in embry-
onic rat brain (Figures 1A,B). Expression was restricted to specific
categories of cells (detailed below at E18 and E20 time points)
and was found to be similar in two independently derived trans-
genic lines (Z16 and Z27B, see Man et al., 2007). We verified that
transgene expression co-localized with endogenous EGR-1 in dif-
ferent populations of cells (see below) indicating that, in large-part,
transgene-derived GFP is a surrogate for Egr-1 transcriptional
activity at this developmental stage. The results of the current
study also substantiate our previous observation (Man et al., 2007)
that cellular filling by GFP is perhaps the major advantage of our
transgenic approach to mapping TF activity, providing both signal
amplification and morphological detail that transcends (nuclear)
EGR-1 detection methods (e.g., Figures 1C,D). Low magnifica-
tion micrographs (e.g., Figure 1A) provide a compelling overview
of Egr-1 transcription in embryonic brain, revealing what appears
to be a spatially organized distribution of activated cells.

GFP-expression analysis of embryonic brains revealed two
major categories of positive cells: SOX2+ progenitor cells and
NeuN+ developing neurons. Similar cell-types were observed in
both E18 and E20 embryos with differences only in cell numbers;
the detailed results largely refer to E20 data except where indicated
(see Table 1).

SOX2+ PROGENITOR CELLS IN EMBRYONIC BRAIN
These cells can be seen distributed across the brain, from ventricu-
lar zone to marginal zone (Figures 1A,B), and are distinct from the
discrete central group of GFP+ neurons in the striatum that form
the second major category of GFP+ cells (described below). In
other brain sections GFP+/SOX2+cells were also observed in the
developing hippocampus (see below). Although the GFP+ progen-
itor cells share a marker protein phenotype (characterized below),
they exhibit extreme morphological variety that ranges from non-
process-bearing (e.g., Figure 1B), to branched (Figure 1C), and
unbranched radial process-bearing (Figure 1D). Process orienta-
tion is also varied indicating propensity for both tangential (e.g.,
Figure 1C) and radial (e.g., Figure 1D) migration. As can be
seen (Figure 1B) at E20, these cells are more abundant in the
subplate area (6.5 ± 0.6/mm2) compared for example with the cor-
tical plate (2.1 ± 0.1/mm2) and marginal zone (4.4 ± 0.4/mm2). At
E18, the GFP+ progenitor cells are similarly distributed although
less abundant, and generally less ornate than at E20.

The phenotype of the GFP+ progenitor cells was established
in multiple co-localization experiments (Figures 2–4; Table 2).
As noted above, cellular filling with transgene GFP permitted co-
localization with process markers; positive co-localizations were
obtained with the glial/progenitor markers vimentin, S-100β, and
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FIGURE 1 | Distribution of Egr-1-d2EGFP transgene expression in the

embryonic rat brain. Representative fluorescence microscopic images of
E20 brain showing immunohistochemically detected GFP+ cells. (A) One
hemisphere showing two major populations of GFP+ cells: a dense group
of cells in the striatum (st) and secondly, cells distributed across different
regions, from the border of the lateral ventricle (vl) to the pial surface. Scale
bar = 200 μm. (B) Enlargement of boxed region in (A) showing GFP+ cells
(red) in different zones demarcated by DAPI (blue). Scale bar = 100 μm.
(C,D) Examples of GFP+ cells in the cortical plate illustrating the diverse
cellular morphologies that are revealed by transgene GFP cell-filling: (C)

branched processes projecting laterally; (D) single processes projecting to
the pial surface. Arrows are positioned 90˚ to pial surface. Scale
bar = 50 μm. Abbreviations: CP, cortical plate; IZ, intermediate zone; MZ,
marginal zone; SP, subplate; st, striatum; SVZ, sub-ventricular zone; vl,
lateral ventricle; VZ, ventricular zone.

nestin (Figures 2A–C; Table 2). Co-localization with S-100β

was more variable than for vimentin and nestin (Table 2) pos-
sibly reflecting the relatively low level of S-100β immunoreac-
tivity obtained here rather than absence of expression. Only
scarce GFAP+ fibers were observed in E20 brain and these
were not coincident with GFP+ cells. In further experiments

a developing/migratory neuronal phenotype was eliminated by
demonstrating an absence of co-localization with βIII-tubulin
and doublecortin (DCX; Figures 2D,E). The DCX− phenotype
demonstrates that these cells are not neuronal precursors migrat-
ing from the neurogenic SVZ (Dayer et al., 2008). A non-neuronal
phenotype was confirmed by showing that the GFP+ progen-
itor cells were also distinct from NeuN+ immunoreactive cells
(Figure 2F).

We then went on to show that the GFP+ progenitor cells were
distinct from other well-characterized cellular phenotypes. First,
a radial glial phenotype was investigated using BLBP as a marker
(Figures 2G–I). BLBP staining revealed, firstly, a characteristic
population of cells with cell bodies along the walls of the lateral
ventricle and long processes projecting toward the pial surface.
This distribution and morphology were clearly quite distinct from
the GFP+ cell population (Figure 1B). In addition a minor popula-
tion of extra-ventricular BLBP+ immunoreactive cell bodies were
also observed; double IHC with BLBP and mGFP antibodies and
cell counting revealed no overlap in immunoreactivity (Table 2).
The possibility that some of the ornate GFP+ cells may be rep-
resentative of a microglial population was eliminated because the
OX-42 antisera failed to detect significant immunoreactivity in the
embryonic rat brain. Thirdly, we showed that GFP+ cells in the
marginal zone were distinct from reelin+ Cajal Retzius neurons
(not shown, demonstrated previously for a similar cell population
in postnatal (P2) rats; Man et al., 2007). Finally, we found no evi-
dence of serotonin immunoreactivity in the vicinity of GFP+ cells
(not shown).

The phenotype of the GFP+/vimentin+/nestin+/S-100β+
progenitor cells was more fully characterized using antisera to
cell-type-specific TFs (Figures 3 and 4). First, we determined
the distribution of two major populations of progenitor cells
in embryonic rat brain as defined by SOX2 and TBR2 staining
(Figure 3). As anticipated from mouse data (e.g., Englund et al.,
2005), SOX2 expression defined a major population of progen-
itor cells in the ventricular zone whereas TBR2 defined a more
medial population of (intermediate progenitor) cells in the SVZ
(Figure 3A). Interestingly, we observed that a small population
of SOX2+ cells extended, not only out of the VZ and beyond the
TBR2+ zone (Figure 3B), but also out into the developing cortical
area (Figure 3). This phenomenon was observed to be more exten-
sive for SOX2+, compared with TBR2+ cells that were more tightly
restricted to the SVZ area (Figures 3C–E). The extra-ventricular
population of SOX2+ cells clearly showed some similarities to
the GFP+ population and therefore co-localization studies were
performed (Figure 4; Table 2). First, in the SVZ/IZ, we demon-
strated a 100% (E18) or near 100% (E20) co-localization between
GFP and SOX2 (Figures 4A–C, Table 2). These findings were
then replicated for SOX2/EGR-1 (Figures 4D–F; Table 2). The
cellular co-expression of GFP/EGR-1 and SOX2 was confirmed
by high-resolution confocal microscopic analysis. GFP and SOX2
were also co-localized in process-bearing GFP+ cells of the cortical
plate (Figures 4G,H; Table 2). At the same time, there were large
numbers of GFP−/EGR-1−/SOX2+ cells across the brain (e.g.,
Figures 4D–F) indicating that the Egr-1 gene is activated in a sub-
population of these scattered SOX2+ cells. In further experiments,
we demonstrated, firstly, that the GFP+ cell population in the
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FIGURE 2 | Phenotypic characterization of GFP+ cells in embryonic rat

brain. Representative fluorescence microscopic images of E20 brain showing
immunohistochemically detected GFP+ cells in the context of known cellular
marker proteins and DAPI (blue). (A–C) Note co-localization (yellow) of GFP
with vimentin, S-100β, and nestin. (D–F) Note absence of co-localization of

GFP with βIII-tubulin, DCX, and NeuN. (G) Note BLBP+ processes coursing
through the IZ. (H) Note a single GFP+ cell in the IZ. (I) Note absence of
co-localization of GFP with BLBP. Scale bars = 20 μm. Abbreviations: BLBP,
brain lipid-binding protein; DCX, doublecortin; GFP, green fluorescent protein;
IZ, intermediate zone.

SVZ/IZ area was distinct from TBR2+ cells (Figure 4I; Table 2),
and secondly, that GFP+ cells in the subplate area are distinct from
the band of highly immunoreactive NURR1+ developing neurons
in this location (Arimatsu et al., 2003; Figures 4J–L; Table 2).

NeuN+ DEVELOPING NEURONS IN EMBRYONIC BRAIN
The second major population of GFP+/Egr-1+ cells in E18 and
E20 rat brain are striatal neurons (Figure 5). This population
of cells is coincident with abundant TH immunoreactive fibers
(Figure 5A) that are involved in the development of this neuronal
population (Jung and Bennett, 1996). In this location where GFP+
cells are closely packed, it is possible to clearly visualize the reca-
pitulation of EGR-1 expression by the egr-1-d2EGFP transgene
(compare Figures 5C,D). EGR-1 expression was detected using
an antiserum that detected a single, 78 kDa, nuclear-concentrated
band in Western blots of brain tissue (Figure 5B). The abundant
striatal GFP+ cells were shown to co-localize with NeuN indi-
cating a neuronal phenotype (Figures 5E–G) and not co-localize
with SOX2 (not shown). It should be noted, however, that we also
observed a minority of NeuN−/GFP+/SOX2+ progenitor-like cells
in this location.

SOX2+ PROGENITOR CELLS IN POSTNATAL BRAIN
We also examined brains from postnatal animals in order to
determine whether SOX2 was also expressed in GFP+/EGR-1+
cells at this developmental stage. In fact, SOX2 is still abun-
dantly expressed in extra-ventricular cells in P2 brain. GFP+
cells in the cortical plate and developing cortical layer V and
VI areas were observed to be 100% SOX2+ (Table 2). At the
same time there was an abundance of SOX+/GFP− cells. Inter-
estingly, in the P2 Insular cortex, we observed some apposition
of SOX2+/GFP+ precursor cells and SOX2−/lowGFP+ neurons
(Figure 6). As in E18 and E20 brain, the major population
of ventricular BLBP+ radial glia did not correspond with the
SOX2+/GFP+ precursor cells (not shown). An additional minor
population of extra-ventricular BLBP+ soma were also evident
in P2 brains and a minority of these cells were, in fact, GFP+
(Table 2). Notably, this minor population of GFP+/BLBP+ cells
in P2 brain were in “low” BLBP(“low”)-expressing cells that con-
trasted with a second population of BLBP+(“high”)/GFP− cells.
Therefore, in P2 brain, the Egr-1-d2EGFP transgene is expressed
in a minority of cells with characteristics of extra-ventricular
radial glia. However, this population of cells is largely distinct
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Table 2 | Quantitative analysis of protein co-localization in SOX2+

progenitor cells.

Cellular marker Cell counts (number

per GFP+ cells)

Cell counts (number

per EGR-1+ cells)

BLBP-E20 0/40 –

BLBP-P2 4/40 –

DCX 0/40 –

EGR-1 36/40 N/A

GFAP 1 1

GFP N/A 36/40

Nestin 40/40 –

NeuN 0/40 –

NURR1 0/40 2 –

OX-42 3 3

Reelin Mz: 0/40 –

S-100β 30/40 –

SOX2-E18 SVZ/IZ: 40/40 CP: 20/20 SVZ/IZ: 37/40 CP: 20/20

SOX2-E20 SVZ/IZ: 38/40 CP: 20/20 SVZ/IZ: 40/40 CP: 20/20

SOX2-P2 LV-VI: 40/40 CP: 20/20 LV-VI: 37/40 CP: 18/20

βIII-Tubulin 0/40 –

TBR2-E18 SVZ/IZ: 0/40 SVZ/IZ: 0/20

TBR2-E20 SVZ/IZ: 0/40 SVZ/IZ: 0/20

Vimentin 39/40 –

Counts were conducted over the cortical plate (CP)/subplate zone

(SP)/intermediate zone (IZ) area of E20 brains unless otherwise stated.

Either 2 × 20 (total of 40) or 2 × 10 (total of 20) cells were counted from two

separate brains.

1 Scarce E20 GFAP fibers are not coincident with location of GFP+ cells.

2 Highly NURR1-immunoreactive subplate cells.

3 Expression of OX-42 immunoreactivity in E18 and E20 brain is not clearly

defined.

from SOX2+/GFP+ precursors that we have characterized here
in embryonic and postnatal brain: this observation is best illus-
trated in the postnatal hippocampal field (Figures 6E–H) where
an organized and widespread distribution of GFP+ cells con-
trasts with BLBP immunoreactivity that is concentrated only in
the subicular area. Finally, we showed that (as E20 brain) the
sparse GFAP+ fibers did not overlap with the GFP+ cell population
(not shown).

Egr-1 PROMOTER ANALYSIS
Our finding that Egr-1 expression is, in fact, restricted to neu-
ronal and progenitor cells in embryonic and neonatal rat brain,
and largely excludes radial glial/mature glial phenotypes, demands
a consideration of the molecular mechanisms that underlie this
expression pattern. Our transgenic paradigm argues that proxi-
mal 5

′
sequence is involved. In order to investigate this hypothesis,

we conducted in silico sequence analysis followed by transient
transfection studies with rat Egr-1 gene constructs.

Multiple sequence alignment combined with MatInspector
analysis identified a number of conserved PWMs in the region
−1400 to +100 in the Egr-1 promoter. Amongst these are the
well-documented SRF sites, but we have made the novel obser-
vation of conserved NRSF/REST elements (starting at positions

FIGURE 3 | Distribution of SOX2 andTBR2 in embryonic rat brain.

Representative fluorescence microscopic images of E18 brain showing
immunohistochemically detected SOX2+ and TBR2+ cells in the context of
total cells [DAPI, blue, (A,B) only]. (A) Note the abundance of SOX2+ and
TBR2+ cells in the VZ and SVZ respectively. Scale bar = 200 μm. (B) Detail
of image (A) showing extra-ventricular SOX2+ cells (arrowheads) in the IZ.
Scale bar = 20 μm. (C–E) Relative distribution of SOX2+ and TBR2+ cells in
the IZ. Note that extra-ventricular SOX2+ cells (arrowheads) are distributed
across the IZ (and beyond, see text) whereas TBR2+ cells (arrows) are
restricted to the inner IZ. Scale bar = 50 μm. Abbreviations: IZ, intermediate
zone; SVZ, sub-ventricular zone; VZ, ventricular zone.

−633 and −9 relative to TSS in the rat promoter sequence). Con-
servation of these sites (and the previously characterized SRF sites,
see Discussion) is illustrated is Figure 7. Based on this in silico evi-
dence of potential “neuronal restrictive” sites, we investigated the
regulatory function of these sites in transfected NIH3T3 cells.

Functional analysis of rat Egr-1 promoter constructs showed
that all of the constructs were highly expressed compared with
the empty pGL4.11 plasmid (Figure 8). Although sequence trun-
cation to remove the distal NRSF/REST sequences did result in
a significant increase in expression levels, this was only elevated
two-fold (Figure 8). Further removal of the proximal NRSF/REST
sequence did not significantly affect expression (Figure 8). This
result indicates that the NRSF/REST sequences appear to play only
a minor role in dictating cellular expression of Egr-1 and that other
sequences (likely including SRF) dominate. An antibody was used
to detect SRF expression in E18 and E20 rat brain but we found no
evidence of enhanced expression levels in the GFP+ cell popula-
tions (not shown) indicating that other SRF-related proteins may
confer cell-specific expression of Egr-1 in the brain.
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FIGURE 4 | GFP/EGR-1 co-localizes with SOX2+ cells in embryonic

rat brain. Representative fluorescence microscopic images of E18 (A–F,I)

and E20 (G,H,J–L) brain showing immunohistochemically detected
GFP+/EGR-1+ cells in the context of total cells (DAPI, blue) and specific
transcription factor proteins. (A–C) GFP is expressed in a sub-set of SOX2+

cells. (D–F) EGR-1 is expressed in a sub-set (arrowheads) of SOX2+ cells.
(G–H) Nuclear SOX2 protein within a process-bearing GFP+ cell. (I) GFP+

cells are distinct from TBR2+ cells. (J–L) GFP+ cells are distinct from
NURR-1+ cells in the subplate. Scale bars = 20 μm. Abbreviations: SP,
subplate.

DISCUSSION
Our study describes for the first time the precise cellular location of
Egr-1 transcription in the embryonic rat brain. A previous large-
scale mapping project (Allen Brain Atlas) and one report (Jung
and Bennett, 1996) have localized Egr-1 transcript to the striatum
of embryonic mouse and rat brain but the limited cellular resolu-
tion of these in situ hybridization (ISH) studies does not permit
cellular identification. In particular, non-aggregated cellular pop-
ulations like the SOX2+/EGR-1+ cells are not visualized by ISH at
this resolution and have not been observed previously. Our iden-
tification of the novel progenitor cell population is interesting and
raises questions about the fate of these cells and the functional
interactions that induce Egr-1 expression.

PROGENITOR CELL IDENTITY
We have identified a novel EGR-1-expressing cellular population
in the embryonic rat brain and have characterized these cells by
anatomical location, morphology and expression of known cellu-
lar markers. Much of our protein co-localization data argues for
a radial glial cell identity, the major class of neurogenic precursor
cells in the brain (Anthony and Heintz, 2008). However, radial glial
stem cells have a well-characterized location and morphology that
is not shared by the GFP-filled cell population and we have also
found no evidence of BLBP co-expression. Our previous assump-
tion (Man et al., 2007) that vimentin+/nestin+/GFP+ cells in P2–4
brain were of a known glial progenitor phenotype is also not borne
out by additional studies reported here in which we co-localized

Frontiers in Molecular Neuroscience www.frontiersin.org May 2011 | Volume 4 | Article 6 | 7

www.frontiersin.org
http://www.frontiersin.org/molecular_neuroscience/archive
http://www.frontiersin.org/Molecular_Neuroscience/


Wells et al. Egr-1 expression in embryonic brain

FIGURE 5 | GFP/EGR-1 is highly expressed in NeuN+ neurons of the

embryonic rat striatum. Representative fluorescence microscopic images of
E20 brain showing immunohistochemically detected GFP+ cells in the context
of cellular proteins and DAPI (blue). (A) Densely packed GFP+ cells in the
lateral striatum. The cells are associated with an extensive striatal TH
innervation. Scale bar = 50 μm. (B) Representative chemiluminescent image
of immunoblot analysis of cytoplasmic (CYT) and nuclear (NUC) protein

extracts (25 μg) probed with an antibody to EGR-1. Note that the antibody
primarily detects a single, approximately 80 kDa, nuclear protein band. (C,D)

Analysis of adjacent brain sections showing the similar distributions of GFP+

and EGR-1+ cells; packed in the lateral striatum and scattered in the medial
striatum. Scale bars = 50 μm. Abbreviations: st, striatum; TH, tyrosine
hydroxylase. (E–G) GFP is primarily localized in NeuN+ neurons of the lateral
striatum. Scale bar = 20 μm.

GFP with SOX2, but not BLBP/GFAP in this postnatal population,
indicating the P2 cells are also a distinct progenitor population. A
recent study (Hansen et al., 2010) has identified a population of
non-ventricular radial glia-like cells in human outer SVZ. These
cells lack an apical process to the ventricular surface but the pres-
ence of a long, pial-oriented process in this human cell population
indicates that perhaps only a minority of the GFP+/ SOX2+ cells
identified here may represent a similar phenotype.

Early growth response-1 has not previously been observed in a
stem/progenitor cell population. Regulation of Egr-1 gene expres-
sion has been demonstrated in primary neural cell cultures (Luo
et al., 2005; Simó et al., 2007; Stritt and Knöll, 2010) and one study
(Luo et al., 2005) using a stromal cell derived factor-1 (SDF-1)
stimulus provided an indication that Egr-1 may be expressed in
chemokine (C-X-C motif) receptor 4 (CXCR4+) neuronal pre-
cursors. However, the GFP+/EGR-1+ population identified here
are clearly not CXCR4+ cells because most of the latter population
co-localizes with DCX in developing rat brain (Stumm et al.,2007).

REGULATION AND ROLE OF EGR-1 IN SOX2+ PROGENITOR CELLS
The presence of EGR-1 in a scattered sub-population of SOX2+
cells is consistent with a stochastic pattern of cellular activation.
Currently, the signals that may activate Egr-1 in these cells are
unknown but may include neurotransmitters (LoTurco et al.,
1995). There has been a recent report of serotonin acting on
progenitor cells (Cheng et al., 2010) but in the current study we
have found no evidence of a selective association between 5-HT
immunoreactivity and the GFP+/SOX+ cells. Two recent studies
have shown that reelin stimulates Egr-1 expression in primary neu-
ronal cultures (Simó et al., 2007; Stritt and Knöll, 2010) and this
factor may be relevant for MZ Egr-1 expression because MZ GFP+
cells closely appose reelin+ Cajal Retzius neurons (present study,
Man et al., 2007).

The full functional context of EGR-1 expression in SOX2+
progenitor cells cannot be ascertained form the current studies.
Clearly, a potential role in intermediate (Ben-Ari and Spitzer,
2010) or terminal differentiation (Sharma and Cline, 2010)
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FIGURE 6 |The Egr-1-d2EGFP transgene is expressed in SOX2+ cells in

postnatal rat brain. Representative fluorescence microscopic images of
P2 rat brain showing immunohistochemically detected GFP+ cells in the
context of cellular proteins and DAPI+ cells (blue/white). (A–D)

Representative cells in insular cortex. Note that GFP is expressed in two
cellular populations: SOX2+ (“bright” GFP) and SOX2− (“dim” GFP). Scale
bars = 10 μm. (E–H) Distribution of GFP+ cells in the hippocampal field
relative to DAPI and BLBP. Note the widespread, ordered distribution of
GFP+ cells relative to the sparse distribution of BLBP+ cells. Scale
bars = 100 μm.

is indicated and this would be consistent with the original
identification of EGR-1 as a factor induced by NGF (hence
NGFI-A) in PC12 cells (Milbrandt, 1987). Prima facie, the SOX2
and EGR-1 TFs would appear to serve opposing demands; SOX2
maintaining an undifferentiated, progenitor/stem state (Bani-
Yaghoub et al., 2006) and EGR-1 supporting differentiation
(Lanoix et al., 1998; Salani et al., 2009; Passiatore et al., 2010). How-
ever, there is evidence that SOX2 can be required for differentiation
(Cavallaro et al., 2008) and is even expressed in limited populations
of differentiated neurons (see Episkopou, 2005); therefore these

FIGURE 7 | Genomatix™-derived promoter alignments showing the

position of predicted NRSF (upper, pink) and SRF (lower, purple)

elements within seven mammalian promoters (−770 to +100 bp

relative toTSS). Red arrows represent transcriptional start sites (NB. >1
predicted in some species).

FIGURE 8 | Functional analysis of Egr-1 promoter activity in

transfected cells: role of NRSF sites. DNA constructs derived from rat
Egr-1-d2EGFP transgene were cloned into pGL4.11 and transfected into 3T3
cells. Levels of expression were determined by luciferase (Luc) assays and
corrected against a co-transfected renilla luciferase construct. Histogram
shows expression levels of the different constructs relative to empty
pGL4.11 (Mean ± SE, n = 8; *p < 0.05 vs. Egr-1-642 and Egr-1-540 groups,
ANOVA and Tukey’s multiple comparison test; df = 3, F = 57.28). The
position of the predicted NRSF and SRF elements (see text) are indicated
by filled and unfilled ovals respectively.

two factors may exhibit prolonged co-expression. Conversely, it
may be that EGR-1 is induced in SOX2+ progenitors which then
rapidly terminate SOX2 expression. The Egr-1-d2EGFP transgenic
rats may provide one model in which the temporal dynam-
ics of these TFs in neural cells can be followed, and functional
relationships identified.

EXPRESSION IN DEVELOPING STRIATAL NeuN+ NEURONS
Our demonstration that EGR-1 (and Egr-1-d2EGFP transgene)
are highly expressed in embryonic striatum confirms not only con-
firms previous studies (Jung and Bennett, 1996), but also accords
with our finding of postnatal striatal transgene expression in these
transgenic lines (Man et al., 2007). Here, we have characterized
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the embryonic cells as largely neuronal and our results therefore
attest to a role for a prolonged transcriptional EGR-1 drive in the
development and maintenance of neuronal gene expression in the
striatum (Jung and Bennett, 1996).

RESTRICTION OF EGR-1 EXPRESSION
Although the Egr-1 gene is abundantly expressed in embryonic
rat brain, expression is restricted to particular classes of neurons
and progenitor cells. In agreement with our previous study (Man
et al., 2007), we have found no evidence of expression in mature
glia. Previous studies report EGR-1 in cultured astrocytes (Hu and
Levin, 1994; Biesiada et al., 1996; Mayer et al., 2009) but not in
adult brain with the exception of one study (Beck et al., 2008) that
reported EGR-1 immunoreactivity in a minority of GFAP+ cells
in the adult mouse brain. However, expression in the latter study
was primarily in and around the brain ventricles and is there-
fore not representative of a mature glial population. Overall, it is
apparent that molecular mechanisms restrict brain Egr-1 expres-
sion to neurons and progenitor cells. Our transgenic approach has
been useful in showing the cell restrictive mechanisms are largely,
if not wholly, mediated at the level of proximal 5

′
Egr-1 genomic

sequence.
In the current study, we have investigated the hypothesis

that conserved, NRSF/RE-1 sites play a role in silencing Egr-1
expression.

This was based on our bioinformatic identification of Egr-1
NRSF sites (Figure 7), and also on recent studies that have indi-
cated roles for NRSF/REST in neuronal differentiation (Gupta
et al., 2009) and glial specification (Abrajano et al., 2009). Our
results (obtained in a REST-expressing fibroblast cell line) show
that only the relatively distal NRSF site (−633 in rat Egr-1 pro-
moter) could potentially make a contribution to transcriptional
control; however, other sequences are clearly paramount in deter-
mining a high level of Egr-1 transcription. This result is in line
with genome-wide analysis of REST targets that exclude Egr-1
(albeit in Jurkat cells; Johnson et al., 2007) and, indeed, Egr-1 is
widely expressed in peripheral tissues (Su et al., 2004). Accordingly,
although the NRSF sites exhibit conservation and may contribute
to transcriptional regulation, it can be seen (Figure 7) that the

Egr-1 SRF sites are very highly conserved and are therefore poten-
tially dominant (positive) regulators of Egr-1 transcription as
demonstrated in other paradigms (Changelian et al., 1989; Bernal-
Mizrachi et al., 2000; Ramanan et al., 2005; Tyan et al., 2008;
Parkitna et al., 2010). In support of the latter contention, SRF
exhibits neuronal specificity (Knöll and Nordheim, 2009) and is
up-regulated postnatally (Stringer et al., 2002) in a parallel manner
with EGR-1 (Man et al., 2007). However, in the current study we
found no evidence of a selective association of SRF protein with
the EGR-1+ progenitors and expression is low at this develop-
mental stage (see Stringer et al., 2002). Consequently, cell-specific
expression other TFs including the SRF-associated factor ELK-1
(Chen et al., 2004; Hasan and Schafer, 2008; Boros et al., 2009)
may be involved in specifying EGR-1 expression.

CONCLUSION
In conclusion, we have characterized embryonic brain Egr-1
expression using a fluorescent transgene approach and have iden-
tified a novel population of SOX2+ progenitor cells in which Egr-1
has been induced. Induction of Egr-1 implies cellular activation by
an extrinsic stimulus and the apparent co-incidence of extrinsic
(Egr-1) and intrinsic (SOX2) cellular signals appears to form a
novel paradigm for progenitor cell development. The wide dis-
tribution of “activated” EGR-1+/SOX2+ cells suggests a general
role for EGR-1 in cellular regulation during late embryonic/early
postnatal brain development. In defining this cell population, we
have also provided an additional cellular substrate for epigenetic
modification of EGR-1 targets (Weaver et al., 2007; Oberlander
et al., 2008; McGowan et al., 2009) during the perinatal period.
Further studies are also required to understand the role of the
extra-ventricular SOX2+ cells; these may form a reserve of migrat-
ing stem cells that can be directed to particular phenotypes by
spatial/temporal-specific inputs. Studies are also required to define
both the genomic targets of the EGR-1 TF in embryonic brain and
the full temporal and spatial expression pattern across brain devel-
opment. Egr-1 may be similarly induced during human brain cell
development and could be involved in mediating extrinsic influ-
ences during pregnancy, for example to addictive (Jouvert et al.,
2002; Lee et al., 2010) or therapeutic drugs (Pawluski et al., 2009).
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