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Glycogen synthase kinase-3 (GSK-3) is ubiquitously expressed and unusually active in
resting, non-stimulated cells. In mammals, at least three proteins (α, β1, and β2), gen-
erated from two different genes, gsk-3α and gsk-3β, are widely expressed at both the
RNA and protein levels although some tissues show preferential expression of some of
the three proteins. Control of GSK-3 activity occurs by complex mechanisms that depend
on specific signaling pathways, often controlling the inhibition of the kinase activity. GSK-3
appears to integrate different signaling pathways from a wide selection of cellular stimuli.
The unique position of GSK-3 in modulating the function of a diverse series of proteins
and its association with a wide variety of human disorders has attracted significant atten-
tion as a therapeutic target and as a means to understand the molecular basis of brain
disorders. Different neurodegenerative diseases including frontotemporal dementia, pro-
gressive supranuclear palsy, and Alzheimer’s disease, present prominent tau pathology
such as tau hyperphosphorylation and aggregation and are collectively referred to as
tauopathies. GSK-3 has also been associated to different neuropsychiatric disorders, like
schizophrenia and bipolar disorder. GSK-3β is the major kinase to phosphorylate tau both
in vitro and in vivo and has been proposed as a target for therapeutic intervention. The
first therapeutic strategy to modulate GSK-3 activity was the direct inhibition of its kinase
activity. This review will focus on the signaling pathways involved in the control of GSK-3
activity and its pathological deregulation. We will highlight different alternatives of GSK-3
modulation including the direct pharmacological inhibition as compared to the modulation
by upstream regulators.
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TAU HYPERPHOSPHORYLATION AS A COMMON MARKER IN
TAU PATHOLOGIES
A number of neurodegenerative disorders present intraneu-
ronal proteinaceous aggregates, denoted as neurofibrillary tangles
(NFT), as common markers of disease. NFT are made up of
hyperphosphorylated, aggregated tau. Thus, they are collectively
referred as tauopathies, and include disorders such as frontotem-
poral dementia (FTP), progressive supranuclear palsy (PSP), and
Alzheimer’s disease (AD), among others.

The mechanisms responsible for tau aggregation are still
unknown. Therefore, understanding how tau is regulated may
be essential to identify the origin of tau aggregate formation.
The regulation of tau takes place predominantly through post-
translational modifications where tau phosphorylation has been
suggested to play a central role in tau aggregation. It is gener-
ally accepted that an increase in tau phosphorylation reduces
its affinity for microtubules, resulting in neuronal cytoskeleton
instability. Even though abnormal tau phosphorylation occurs in
many of the tau pathologies mentioned above, tau phosphoryla-
tion appears not to be sufficient to induce tau aggregation (Buee
et al., 2000; Hernandez et al., 2009). There are at least 85 putative
phosphorylation sites in tau, 45 serines, and 35 threonines. It has

been shown that tau phosphorylation is regulated by many dif-
ferent kinases, including GSK-3β, CDK5, MAPKs, PKA, PKB/Akt,
PKC, PKN, and CaMKII (Hanger et al., 1992; Harr et al., 1996;
Yu et al., 2009). The precise role of some of these kinases is still
under investigation with particular interest on glycogen synthase
kinase-3 (GSK-3). However, we do not discard the important role
of other kinases such as CDK5, p38, etc. In fact, the role of CDK5 in
tau phosphorylation and NFT formation has been clearly estab-
lished in transgenic mice (Noble et al., 2003; Piedrahita et al.,
2010).

Tau hyperphosphorylation could result from the inhibition
of phosphatases. Indeed, earlier work indicates that phosphatase
activity is decreased in AD brains (Gong et al., 1993; Rahman et al.,
2005). In summary, a combination of kinases and phosphatases
may be postulated to play a central role in tauopathies.

ROLE AND REGULATION OF GSK-3 ACTIVITY
Glycogen synthase kinase-3 is a serine/threonine protein kinase
initially described to phosphorylate and inhibit glycogen syn-
thase (Rylatt et al., 1980). GSK-3 has been evolutionary con-
served and homolog genes have been identified in practically every
eukaryotic genome examined including Xenopus laevis, Drosophila
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melanogaster, and Dictyostelium discoideum (Ruel et al., 1993; Itoh
et al., 1995; Kim et al., 1999).

In mammals, GSK-3 is encoded by two genes known as gsk-
3α and gsk-3β (Woodgett, 1990; Frame and Cohen, 2001; Grimes
and Jope, 2001) that encode three different proteins, GSK-3α and
two GSK-3β proteins (β1 and β2; Mukai et al., 2002; Schaffer et al.,
2003). These isoforms are almost identical (98%) but differ in their
N- and C-terminal domains (Woodgett, 1990). It has been exten-
sively established that GSK-3 plays an important role in various
essential physiological processes, including cell cycle or survival-
apoptosis (Pap and Cooper, 1998; Lucas et al., 2001a; Ferkey and
Kimelman, 2002). It is well known that GSK-3 has a plethora of
substrates, identified in many cell types and in all cellular compart-
ments; i.e., metabolic proteins (Alessi et al., 1996), cytoskeletal
proteins (Hanger et al., 1992), as well as transduction (Cohen,
1999) and transcription factors (Hart et al., 1998).

Glycogen synthase kinase-3 is a kinase differentially regulated
by tyrosine and serine/threonine phosphorylation (Wang et al.,
1994). One of the main characteristics of GSK-3 is that its activity
is relatively high in resting, non-stimulated cells. For many years,
it was believed to be a constitutively active kinase. However, it has
become apparent that the activity of GSK-3 may be regulated by a
variety of signals (Sayas et al., 2002) and many extracellular signals
may induce a rapid and reversible decrease in enzymatic activity.
Moreover, the regulation of GSK-3 activity has turned out to be
much more complex than originally thought (Medina and Wan-
dosell, 2011). The regulatory mechanisms of GSK-3 activity may
be classified as follows.

REGULATION BY PHOSPHORYLATION
Two general mechanism are involved in the regulation of GSK-
3 activity, Ser/Thr phosphorylation of GSK-3 specific residues
by other kinases, and Tyr phosphorylation, through auto-
phosphorylation (Frame and Cohen, 2001; Harwood, 2001). Dif-
ferent regions can be identified in the GSK-3 structure that can
be modified by phosphorylation: the first one corresponds to the
amino-terminal domain and contains a serine residue at positions
21 in GSK-3α and 9 in GSK-3β. It has been undoubtedly demon-
strated that phosphorylation of serine 21 or 9, correlates with
inhibition of the kinase activity (Sutherland et al., 1993; Stambolic
and Woodgett, 1994; Frame et al., 2001). Many protein kinases
including Akt, ILK, PKA, p90Rsk are competent at phosphorylat-
ing GSK-3 at residues 21 and 9 in vitro and in vivo (Cross et al.,
1995; Delcommenne et al., 1998; Fang et al., 2000).

Two other regulatory sites have been described: threonine 43,
only present in the GSK-3β isoform, may be phosphorylated by
Erk (Ding et al., 2005) whereas p38 MAPK phosphorylates serine
389 and threonine 390 present in GSK-3β (Thornton et al., 2008).
In both cases, the data suggests that these phosphorylations may
facilitate the competence of serine 9 to be phosphorylated rather
than support a direct GSK-3 inhibition.

Conversely, an increase in tyrosine phosphorylation at residues
216 (GSK-3β) or 279 (GSK-3α) is in clear correlation with an
increase on GSK-3 activity in neuronal cells, following exposure to
lysophosphatidic acid (LPA; Sayas et al., 1999) or after neurotoxic
insults such as β-amyloid or PrP (Munoz-Montano et al., 1997;
Takashima et al., 1998; Perez et al., 2003b). Different candidates

have been reported to phosphorylate GSK-3 on tyrosine 216/279
including Pyk-2 and Fyn kinases in vitro or MEK1/2 in fibroblasts
(Lesort et al., 1999; Hartigan et al., 2001). These data are in contrast
with those reported in D. discoideum where there is convincing
evidence demonstrating that ZAK 1 (Kim et al., 1999, 2002) is the
kinase responsible for this tyrosine phosphorylation of GSK-3.
However, no homolog of ZAK1 has been found in mammals.

More recently, an alternative hypothesis has been proposed for
the regulation of GSK-3 tyrosine phosphorylation. This hypothesis
suggests that phosphotyrosine 279/216 in GSK-3 corresponds to
an intra-molecular auto-phosphorylation event (Cole et al., 2004).
However, this hypothesis still lacks a cellular demonstration. Data
generated in our laboratory indicated that not all pharmacological
inhibitors of GSK-3 decrease the level of phosphotyrosine (Simon
et al., 2008). Thus, in view of the tantalizing autoregulatory sys-
tem proposed and taken all data together, we hypothesize that
some as-yet-unidentified tyrosine kinases and phosphatases may
also regulate GSK-3 activity.

REGULATION BY PROTEIN COMPLEX ASSOCIATION
It is well known that GSK-3 forms part of a multiprotein complex
formed by axin and adenomatous polyposis coli (APC) among
others. This protein complex is the core of the canonical Wnt
signaling (for review see Moon et al., 2004). In the absence of lig-
and, β-catenin is phosphorylated by GSK-3 in this multiprotein
complex and targeted for proteasome degradation (Aberle et al.,
1997). In addition, different GSK-3-binding proteins have been
described.

The first GSK-3-binding protein was denoted as FRAT (Li et al.,
1999; Fraser et al., 2002) and three different FRATs have been
characterized since then. Surprisingly, FRAT1 appears to act as
an inhibitory system, whereas FRAT2 appears to increase GSK-3
activity (Yost et al., 1998; Stoothoff et al., 2005). More recently, a
GSK-3 interacting protein symbolized by GSKIP, has been cloned
and characterized. GSKIP can block phosphorylation of different
substrates and functions as a negative regulator of GSK-3β (Chou
et al., 2006).

REGULATION BY PRIMING/SUBSTRATE SPECIFICITY
As a general rule, the specificity of many kinases is governed by
a consensus sequence of amino acids present in their substrates.
However, the crystal structure of human GSK-3β has provided
a model for the binding of pre-phosphorylated substrates to the
kinase (Dajani et al., 2001; ter Haar et al., 2001; Noble et al., 2005).
It is now evident that some GSK-3 substrates require a previ-
ous (primed) phosphorylation by a priming kinase. This primed
residue (Ser or Thr) is usually located four amino acids, C-terminal
to the Ser or Thr residue to be modified by GSK-3 (Dajani et al.,
2001; ter Haar et al., 2001). Several priming kinases have been
identified, such as cdk-5, PAR-1, casein kinase I, PKC, or PKA (Sen-
gupta et al., 1997; Amit et al., 2002; Liu et al., 2003; Noble et al.,
2003; Nishimura et al., 2004; Alonso Adel et al., 2006). However, is
not completely established whether a second set of “non-primed”
substrates may define a different group of functions (Twomey and
McCarthy, 2006). In addition, different GSK-3 isoforms appear to
exhibit distinct substrate preferences in the brain (Soutar et al.,
2010).
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REGULATION BY SUBCELLULAR LOCALIZATION
The presence of GSK-3 appears to be developmentally regulated
in the brain (Takahashi et al., 1994) and, in fact, the developmental
profile of GSK-3α and GSK-3β is different and the putative differ-
ential role of each isoform has been explored (Garrido et al., 2007).
It is important to indicate that a portion of GSK-3, mostly β, has
been associated with the growth cone. This GSK-3 pool appears
to respond rapidly, being modified by phosphorylation and/or re-
located in the growth cone, by external signals such as semaphorins
(Eickholt et al., 2002) or NGF (Zhou et al., 2004). The presence of
GSK-3α and β in primary neurons have been reported in different
neuronal compartments, like in axon and dendrites, as well as in
the cytoplasm, endoplasmic reticulum (ER; Meares et al., 2011),
nucleus, and the mitochondria (Grimes and Jope, 2001; Watchar-
asit et al., 2002; Bijur and Jope, 2003). With respect to the nuclear
localization, GSK-3 may be involved in phosphorylation of many
transcription factors such as: Cyclin D1, β-catenin, HSF-1, NFAT,
and cAMP-response element-binding protein, among others (for
review see Cohen and Frame, 2001; Harwood, 2001; Xu et al.,
2009). Moreover, the nuclear presence of GSK-3 in the nucleus
may also play a role in alternative splicing (Avila et al., 2004).

REGULATION BY PROTEOLYTIC CLEAVAGE
A new mechanism of GSK-3 regulation has been recently pro-
posed. This regulation involves the removal by calpain of a frag-
ment from the N-terminal region of GSK-3, including the regula-
tory serines 9/21 (Goni-Oliver et al., 2007). Interestingly, GSK-3β

has also been recently shown to be cleaved at the N-terminus (and
subsequently activated) by matrix metallo-proteinase 2 (MMP-2)
in cardiomyoblasts (Kandasamy and Schulz, 2009).

PHYSIOLOGICAL AND PATHOLOGICAL REGULATION OF
GSK-3
GSK-3 PHYSIOLOGY
In neuronal development, GSK-3 has been reported to control
many different aspects of neuronal and glial physiology, like mor-
phogenesis and axonal polarity (Shi et al., 2004; Garrido et al.,
2007), synaptogenesis (Lucas and Salinas, 1997), and cell survival
(Pap and Cooper, 1998; Lucas et al., 2001a). Some of these cel-
lular activities of GSK-3 are regulated by signals orchestrated by
a wide set of extracellular ligands including growth factors, neu-
rotrophic factors, neurotransmitters, and hormones but also by
cell–cell interactions. Most of these extracellular factors trigger
signaling pathways which correlate with the inhibition, or tran-
sient inhibition, of GSK-3 activity. In the case of insulin/IGF1
(Cross et al., 1995; Delcommenne et al., 1998; Fang et al., 2000)
and NGF (Zhou et al., 2004) the regulatory role of Akt and/or ILK
has been reported to be responsible for the increased inhibitory
serine phosphorylation. More recently, we and others have shown
that estradiol may also inhibit GSK-3 by a pathway modulated by
PI3K-Akt (Cardona-Gomez et al., 2004; Mendez et al., 2005; Varea
et al., 2009).

An alternative system of GSK-3 regulation is represented by the
Wnt signaling pathway in which, in the absence of ligand, GSK-
3β phosphorylates β-catenin, as a part of a degradation signal (for
review see, i.e., Moon et al., 2004; Rosso et al., 2005). When Wnt (at
least some Wnt’s) binds the Wnt receptor frizzled (fz), disheveled

(Dsh) inhibits the activity of GSK-3β in a manner that is not fully
understood. This system appears to be specific to GSK-3β as no
counterpart has been described for GSK-3α to date. Some recent
data suggests that this complex may be specific for the GSK-3β2
isoform (Castaño et al., 2010).

In addition, Reelin and Netrin signaling have been shown
to regulate GSK-3 activity even though the exact mechanism is
far from being fully elucidated. The binding of Reelin appears
to induce signals which may activate GSK-3 (Gonzalez-Billault
et al., 2005). In this pathway, the function of GSK-3 appears to
be associated with CDK5, however, the specific system that con-
trols GSK-3 activity has yet to be defined (Gonzalez-Billault et al.,
2005). Similarly, Netrin 1 regulates, both in vivo and in vitro, the
phosphorylation of neuronal MAP’s, in a signaling pathway that
depends essentially on the kinases GSK-3 and CDK5 (Del Rio et al.,
2004).

As mentioned, GSK-3 is regulated by a plethora of membrane
receptors, some of which show a specific subcellular localization
in neurons. Among these receptors, some purinergic ATP/ADP
receptors, such as P2 × 7, P2Y1, or P2Y13, show a localized sub-
cellular expression in neurons (Diaz-Hernandez et al., 2008; del
Puerto et al., 2011). Purinergic receptors are expressed in glial
and neuronal cells in the central and peripheral nervous system
and are activated by purines and pyrimidines. The ATP-gated
P2 × 7 ionotropic receptor is expressed in the distal region of
the axon of hippocampal neurons during development (Diaz-
Hernandez et al., 2008) and has been identified in presynaptic
terminals in adult brain. Inhibition of P2 × 7 with brilliant blue G
(BBG) increases GSK-3 phosphorylation, reducing its activity, and
favors axonal elongation and branching in cortical and hippocam-
pal neurons (Diaz-Hernandez et al., 2008), similarly to activation
of P2Y1-ADP receptors (del Puerto et al., 2011). Inhibition of
GSK-3 decreases PHF-I levels (phosphorylated Tau) and increases
Tau-1 levels (dephosphorylated Tau). Moreover, this effect is also
produced by GSK-3 inhibition with AR-A014418 (Garrido et al.,
2007), which can counteract the action of ATP activation of the
P2 × 7 receptor (Diaz-Hernandez et al., 2008).

Conversely, some ligands such as LPA may trigger GSK-3 kinase
activity. LPA is a bioactive lipid that can act as a growth factor
and binds to specific G-protein-coupled seven transmembrane
domain receptors (GPCR; Chun et al., 2002). In neurons, LPA has
been shown to promote growth cone collapse and neurite retrac-
tion (Tigyi et al., 1996; Sayas et al., 1999). We have demonstrated
this LPA-induced GSK-3 activation event, not only inferred from
hyperphosphorylation of tau, but also directly measured from
neuronal cell extracts (Sayas et al., 2002). Similarly, semaphorin
3A (Sema 3A), a molecule that inhibits axonal growth or neu-
rite retraction, activates GSK-3 at the leading edge of neuronal
growth cones. The inhibition of GSK-3 activity can prevent the
growth cone collapse response induced by Sema 3A, suggesting
that GSK-3 activity might play a role in coupling Sema 3A signal-
ing to changes in cell motility, axonal growth and/or maintenance
of axonal extension (Eickholt et al., 2002).

Other membrane receptors that regulate GSK-3 function are
only expressed in brain regions associated to specific brain dis-
eases. For example, D2 dopamine receptors are mainly expressed
in striatum and can also regulate the activity of GSK-3. Activation
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of D2-like receptors inhibits the phosphorylation of Akt, leading
to activation (dephosphorylation) of GSK-3 through a G protein-
independent mechanism involving a complex of Akt:PP2A scaf-
folded by β-arrestin-2. Lithium inhibits the behavioral actions of
dopamine via disruption of the D2 receptor-mediated complex
of Akt:βArr2:PP2A (Pawlak and Kerr, 2008). Similarly, other neu-
ropeptide receptors, such as those of serotonin, regulate GSK-3
activity. Two serotonin receptors, 5-HT1A and 5-HT2A, appear to
play antagonistic roles in regulating GSK-3β activity. Administra-
tion of a 5-HT1A agonist or a 5-HT2A antagonist to mice results in
increased brain GSK-3β phosphorylation (Beaulieu et al., 2009).
Moreover, drugs acting on 5-HT neurotransmission such as the
selective serotonin reuptake inhibitors (SSRIs), monoamine oxi-
dase (MAO) inhibitors, and tricyclic antidepressants have been
shown to inhibit GSK-3β in many brain regions, including the
frontal cortex, hippocampus, and striatum of normal mice.

The acetylcholinesterase inhibitor physostigmine, the mus-
carinic agonist pilocarpine, and the N -methyl-d-aspartate
(NMDA) receptors antagonist memantine, also modulate the
phosphorylation state of the two isoforms of GSK-3 in mouse hip-
pocampus, cerebral cortex, and striatum (De Sarno et al., 2006).
Metabotropic glutamate receptor 5 (mGluR5) can modulate the
PI3K/Akt/GSK-3 pathway in the hippocampus, and that modu-
lation of this signaling pathway can reverse β-amyloid-induced
neuronal toxicity (Liu et al., 2005).

Glycogen synthase kinase-3 or GSK-3-upstream elements can
be selectively regulated in specific neuronal domains, such as the
pre- or post-synaptic domains or the axon initial segment (place
of neuronal action potential generation), in order to maintain
or generate changes in neuronal function. For example, pro-
longed stimulation of neurons by depolarization results in GSK-3
phosphorylation and inactivation. Thus, GSK-3 activity could be
acutely regulated by action potential stimulation (Smillie and
Cousin, 2011). In conclusion, it is of great interest to identify
proteins specifically located in domains that can regulate GSK-3
activity and the generation of selective pharmacological inhibitors
to control GSK-3 activity at the subcellular level. Dendritic spines
express GSK-3 regulated through NMDA receptors by two dif-
ferent stimuli (LTP stimulus or LTD stimulus), that, in turn, can
activate or inhibit GSK-3 activity (Peineau et al., 2007).

IS DEREGULATION OR DYSFUNCTION OF GSK-3 THE CAUSE
NEURODEGENERATIVE DISEASES?
Aberrantly phosphorylated tau is a common factor in tauopathies
but the pathological mechanisms responsible may be diverse (Tro-
janowski and Lee, 2005). The presence of a FTDP-17 mutation in
tau may result in altered splicing or may correspond with mis-
sense mutations that modify the microtubule binding capacity
and subsequently the phosphorylation/dephosphorylation kinet-
ics (Ballatore et al., 2007; Hernandez and Avila, 2008). In fact,
early tau-related deficits could be the result of synaptic abnor-
malities caused by the accumulation of hyperphosphorylated tau
within intact dendritic spines (Hoover et al., 2010). Indeed, alter-
ations in the expression and/or the activity of tau kinases (i.e.,
GSK-3β; Pei et al., 1997; Swatton et al., 2004; Hye et al., 2005)
have been reported in affected brains, suggesting that one or sev-
eral kinases could be involved in tau hyperphosphorylation (for

review see, i.e., Hernandez and Avila, 2008). In addition, in trans-
genic mice the over-expression of some kinases such as GSK-3
increase tau phosphorylation and neurodegeneration (Lucas et al.,
2001b). Conversely, inhibition of GSK-3β reduces tau phospho-
rylation and neurodegeneration and may block NFT formation
(Nakashima et al., 2005; Noble et al., 2005; Engel et al., 2006b).
Without excluding that more than one kinase may be important
in the pathological phosphorylation of tau, these data suggests that
inhibition of GSK-3 is probably an excellent therapeutic strategy
for the treatment of tauopathies.

Interestingly, the P2 × 7 receptor has also been related to
Alzheimer’s disease and β-amyloid production or involved in the
regulation of a β-amyloid effect (Sanz et al., 2009). The puriner-
gic receptor P2 × 7 triggers α-secretase-dependent processing of
the amyloid precursor protein (APP; Delarasse et al., 2010). BBG
treatment is also able to reduce inflammation after spinal cord
injury in rats, reduce neuronal death, and it is a promising drug
for axonal regeneration (Wang et al., 2004).

As mentioned, blockade of the mGluR5-mediated pathways
inhibits GSK-3. The NMDA receptor antagonist memantine con-
fers neuroprotection to Aβ peptides (Liu et al., 2005). Moreover,
memantine, physostigmine, or pilocarpine, have been used as ther-
apeutic agents in AD due to their capacity to regulate GSK-3
activity (De Sarno et al., 2006). When using GSK-3 inhibitors,
one may also need to consider the different cell types involved in
GSK-3 associated diseases. In some tauopathies glial cells and/or
neuronal cells are an essential component. Thus, inhibition of
GSK-3 through cell specific receptors may help avoid alteration of
GSK-3 in other cell types.

Besides its association with AD (Ishiguro et al., 1993; Lovestone
et al., 1994) GSK-3 dysfunction has also been associated with dif-
ferent pathological conditions or brain damage; such as Ischemia
(Bhat et al., 2000), prion neurotoxicity (Perez et al., 2003b), or with
some psychiatric disorders such as schizophrenia (Beaulieu et al.,
2009). In fact in Disrupted in schizophrenia 1 mutant (DISC1)
neuronal progenitor proliferation is altered and the inhibition of
GSK-3 restore this proliferation (Mao et al., 2009). Thus, GSK-3 is
emerging as a promising therapeutic target in several neurologic
disorders.

THERAPEUTIC APPROACHES: DIRECT INHIBITION VERSUS
PHARMACOLOGICAL DOWN-REGULATION
As mentioned above, GSK-3 unique position in modulating the
function of a diverse series of proteins in combination with its
association with a wide variety of human disorders has attracted
significant attention to the protein both as a therapeutic target
and as a tool to understand the molecular bases of these disorders.
Furthermore, GSK-3 appears to be a cellular nexus, integrating
several signaling systems, including numerous second messengers
and a wide selection of cellular stimulants.

If we consider GSK-3 as an example of a kinase associated
with tauopathies, two different approaches would be considered
as therapeutic strategies: direct inhibition of GSK-3 activity or
a more generic modulation of GSK-3 acting upstream of the
kinase. The first strategy, has been widely considered and indeed,
some general inhibitors such as lithium have been tested in sev-
eral AD animal models (Engel et al., 2008). A second approach
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is the search for candidates taking into account that neurode-
generation may reflect “pleiotropic” neuronal cell dysfunction.
Accordingly, we have considered here some of the pathways that
may control neural morphogenesis and survival including the
PI3K-Akt, PKA, and Wnt pathways and their implication in neu-
rodegeneration. Also, we propose alternative and complementary
“non-target-based” approaches, that may also be useful for the
study of neurodegeneration (Simon et al., 2011). Using cellular
based assays we may identify molecules that regardless of their
ability to cross the cellular membrane may be identified by a
cellular/neuronal modification downstream of a selected kinase,
i.e., the tau phosphorylation level. Activation of serotonergic 5-
HT4 receptors have been shown to improve memory processes in
preclinical cognition models, mainly through the stimulation of
cholinergic neurotransmission (Lezoualc’h, 2007).

For many years, the mood stabilizing drug lithium has been
considered as the reference GSK-3 inhibitor. Lithium ions directly
inhibit GSK-3 (Klein and Melton, 1996), most likely by compet-
ing with magnesium but it also inhibits at least four phospho-
monoesterases (including inositol monophosphatase; York et al.,
1995), and phosphoglucomutase (Ray et al., 1978; Stambolic and
Woodgett, 1994). Although the mechanism of action by which
lithium exerts its therapeutic effects is unknown, GSK-3 is signifi-
cantly inhibited at therapeutic lithium concentrations (Shaldubina
et al., 2001; Gould and Manji, 2002; Phiel et al., 2003). It has been
generally assumed that a significant proportion of the therapeutic
action of lithium in bipolar disorders results from the inhibition
of GSK-3 (Li et al., 2002; Rowe et al., 2007).

Inhibition of GSK-3 by lithium prevents Aβ-induced neurode-
generation of cortical and hippocampal primary cultures (Alvarez
et al., 1999). With regards to tau metabolism, lithium is able to pre-
vent tau phosphorylation in several mouse models of tauopathies
(Perez et al., 2003a; Nakashima et al., 2005; Noble et al., 2005;
Engel et al., 2006a; Caccamo et al., 2007). In AD models, lithium
has been shown to block the accumulation of Aβ peptides in mice
that overproduce human APP (Phiel et al., 2003). Furthermore, it
has been suggested that lithium could also be effective in a mouse
model of FTDP-17 (Perez et al., 2003a).

Only a few observational studies have attempted to address
the clinical effect of lithium in patients with AD. A retrospective
study with a large sample of patients with dementia resulted in
an increased risk of AD in patients who had been treated with
lithium within 4 years prior to diagnosis (Ayuso-Mateos et al.,
2001). This effect might be partially accounted for by the increased
occurrence of depression associated with AD. Moreover, a single
case study reported in a dementia patient showed that lithium
treatment alleviated symptoms of aggression and agitation, while
cognition persisted after 1.5 years of treatment (Havens and Cole,
1982). Furthermore, a significantly increased global cognitive abil-
ity, as measured by MMSE in non-demented patients, appears to
be associated with lithium intake (Terao et al., 2006). However, the
study design and low sample size precludes drawing any causative
conclusion from these studies.

In addition, some pilot studies have been carried out to directly
address the effect of lithium treatment in AD patients. An open
label feasibility and tolerability study with a small cohort of 22
subjects receiving a low dose of lithium was carried out in the

UK and reported a high discontinuation rate despite few, rela-
tively mild, and reversible side effects (Macdonald et al., 2008).
A second randomized, single-blind, placebo-controlled, paral-
lel group, multicenter 10-week study was carried out in Ger-
many as a proof-of-principle (Hampel et al., 2009). A total of
71 patients with mild AD (MMSE scores between 21 and 26)
were treated with lithium or placebo for 10 weeks after which
neuropsychological and neuropsychiatric assessment was per-
formed together with some biomarker determinations in plasma
(Aβ1-42), lymphocytes (GSK-3 activity), and CSF (total tau,
phospho-tau, and Aβ1-42). In spite of the fact that lithium
plasma levels were within the therapeutic range, no treatment
effect was observed in any of the cognition assessment scales
or the selected biomarkers used. Given the short time of treat-
ment of this study, the possibility that lithium has long-term
effects on cognition or any other biomarker in AD remains to
be tested.

Very recently, a randomized, double-blind, placebo-controlled
study on 45 people with amnestic mild cognitive impairment
(aMCI) treated with lithium for 12 months was reported (Forleza
et al., 2011). Lithium treatment was associated with a significant
decrease in CSF concentrations of pTau and with a better perfor-
mance in cognitive tasks, strongly suggesting that lithium (most
likely through GSK-3 inhibition) might have disease-modifying
properties in AD and perhaps other tauopathies.

Use of lithium in clinical practice is problematic since it has
a narrow therapeutic window (blood serum levels 0.6–1.2 mM)
above which side effects are intolerable requiring titration. An
overdose can lead to severe neurological dysfunction and in
some cases death. Non-CNS side effects of lithium (common
within therapeutic levels) include tremor, polyuria, polydipsia,
nausea, and weight gain. Moreover, lithium can have adverse
reactions with other drug classes including diuretics, NSAIDS,
and other drugs that alter kidney function (Gould and Manji,
2006).

The unique position of GSK-3 as a pivotal and central player
in the pathogenesis of both sporadic and familial forms of AD
has attracted significant attention to this enzyme as a therapeutic
target and has led to the synthesis of a high number of GSK-3
inhibitors, some of which are currently being tested in phase II
proof-of-concept clinical trials (Mangialasche et al., 2010; Medina
and Avila, 2010). Inhibition of GSK-3 with small-molecules would
be expected to slow down progression of neurodegeneration in AD
and perhaps other tauopathies as well.

A number of novel potent and relatively selective small-
molecule inhibitors of GSK-3 activity from different chemical
families have been recently described, including hymenialdisine,
indirubins, paullones, maleimides, amino pyrazoles, thiazoles,
and 2,4-disubstituted thiadiazolidinones (TDZD; reviewed in
Medina and Castro, 2008). Most of them are ATP-competitive
inhibitors, although more recently, new small-molecule deriva-
tives that exhibit substrate competitive inhibition activity toward
GSK-3 have been shown. Since different GSK-3 isoforms display a
high degree of homology within the ATP-binding site, inhibitors
are unable to exhibit isoform selectivity, as they all show sim-
ilar potencies toward purified GSK-3α and GSK-3β. Thus, the
development of isoform-specific inhibitors or the inhibition of
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Table 1 | Selected GSK-3 kinase inhibitor drugs in clinical development for the treatment of tauopathies.

Drug Company Mechanism of action Development phase Indication

Tideglusib (NP-12) Noscira GSK-3 inhibitor Phase II Alzheimer’s disease, PSP

Lithium University of Sao Paulo GSK-3 inhibitor Phase II Alzheimer’s disease

Valproic acid Nantes University Hospital GSK-3 inhibitor Phase II PSP

AZD-1080 AstraZeneca GSK-3 inhibitor Discontinued Alzheimer’s disease

signaling pathways specific for one of the isoforms is necessary
to selectively target the different substrates involved in different
neurodegenerative diseases. Although ATP-competitive inhibitors
occupy the general area of the highly conserved ATP-binding site,
they also explore other available nearby space, depending on their
structure. Thus, it may be possible to identify selective inhibitors by
taking advantage of the small differences in primary sequence that
exist between the different kinases. The crystal structures of GSK-
3β complexed with a variety of ligands (ter Haar, 2006), together
with molecular modeling approaches (Gadakar et al., 2007), pro-
vide the necessary clues for enhancing selectivity toward GSK-3
(ter Haar et al., 2001; Patel et al., 2007).

Besides small-molecule inhibitors, some physiological pep-
tides act as GSK-3 inhibitors, including GBP, a maternal Xeno-
pus GSK-3-binding protein homologous to a mammalian T
cell proto-oncogene (Yost et al., 1998) and p24, a heat resis-
tant GSK-3-binding protein (Martin et al., 2002). That find-
ing led to a synthetic strategy to develop new inhibitors, such
as L803-mts, a peptidic inhibitor that binds to the substrate
site (Plotkin et al., 2003). L803-mts has been more recently
used to examine the impact of long-term in vivo inhibition of
GSK-3 and its effects in specific tissues (Kaidanovich-Beilin and
Eldar-Finkelman, 2006).

The last few years have seen the synthesis of quite a number of
relatively selective, potent GSK-3 inhibitors with relative efficacy
in vivo in a diverse array of animal models of human diseases,
including AD. Despite the challenges faced by this approach with
respect to safety and specificity, a number of efforts are under-
way to develop kinase inhibitors and, in fact, Noscira’s tideglusib
(NP-12; see Table 1), is already in phase II clinical trials for the
treatment of both AD and PSP, a tauopathy (Medina and Castro,
2008).

In summary, there is a significant effort being made to validate
a number of tau-related targets and to develop novel alternatives
for the treatment of tauopathies such as AD or PSP (reviewed
in Medina and Wandosell, 2011) including GSK-3 inhibition. We
hope that future clinical trials will reveal the safety and efficacy of
potential treatment strategies that are being tested in translational
laboratories across the world.

CONCLUSION
Three decades after its discovery as a protein kinase involved in
glycogen metabolism, GSK-3 has revealed itself as a common link,
integrating several signaling systems, including second messen-
gers and a wide selection of cellular stimulants. Modulation of
its activity has also turned out to be much more complex than
originally thought, as GSK-3 regulation occurs by complex mecha-
nisms that are dependent on specific signaling pathways, including

post-translational modifications, protein complex formation, and
subcellular localization. Although there seems to be a good degree
of functional overlapping between different isoforms, some tissue-
and isoform-specific functions and substrates are beginning to
emerge. Thus, new data will open the possibility to design better
and more specific inhibitors.

Deregulation or abnormal GSK-3 activity appears to be asso-
ciated with various relevant pathologies, including AD and other
tauopathies, as the enzyme is uniquely positioned as central player
in AD pathogenesis. GSK-3 plays a critical role in key events such
as tau phosphorylation, Aβ formation, and neurotoxicity, micro-
tubule dynamics, synaptic plasticity, neuritic dystrophy, cognition,
neuronal survival, and neurodegeneration.

In the last two decades, drug discovery and development efforts
for AD have primarily focused on targets defined by the amy-
loid cascade hypothesis with disappointing results, underscoring
the need for novel therapeutic targets. In contrast, tau-based
approaches have received little attention until recently, despite the
fact that tau pathology is paramount in all tauopathies including
AD (Medina and Wandosell, 2011). A significant effort has being
made in the last few years to synthesize a high number of relatively
selective and potent GSK-3 inhibitors, while some of them have
shown in vivo efficacy in various animal models of AD. Some of the
known drug discovery and development challenges should be met,
including: lack of good predictive animal models, the need for val-
idated biomarkers of disease progression, appropriate clinical trial
design, early diagnosis, and treatment, definition of target pop-
ulations, difficulties in demonstrating disease-modifying effects,
etc. Despite the challenges faced by this approach with respect
to safety and specificity, a number of efforts are underway to
develop GSK-3 inhibitors as potential drugs for the treatment
of AD. Some agents have already reached phase II clinical tri-
als and some proof-of-concept studies are currently ongoing or
planned.
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