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Unraveling the complexities of learning and the formation of memory requires identifi-
cation of the cellular and molecular processes through which neural plasticity arises as
well as recognition of the conditions or factors through which those processes are mod-
ulated. With its relatively simple nervous system, the marine mollusk Aplysia californica
has proven an outstanding model system for studies of memory formation and identifi-
cation of the molecular mechanisms underlying learned behaviors, including classical and
operant associative learning paradigms and non-associative behaviors. In vivo behavioral
studies in Aplysia have significantly furthered our understanding of how the endogenous
circadian clock modulates memory formation. Sensitization of the tail-siphon withdrawal
reflex represents a defensive non-associative learned behavior for which the circadian
clock strongly modulates intermediate and long-term memory formation. Likewise, Aplysia
exhibit circadian rhythms in long-term memory, but not short-term memory, for an operant
associative learning paradigm. This review focuses on circadian modulation of intermedi-
ate and long-term memory and the putative mechanisms through which this modulation
occurs. Additionally, potential functions and the adaptive advantages of time of day pres-
sure on memory formation are considered.The influence of the circadian clock on learning
and memory crosses distant phylogeny highlighting the evolutionary importance of the
circadian clock on metabolic, physiological, and behavioral processes. Thus, studies in a
simple invertebrate model system have and will continue to provide critical mechanistic
insights to complementary processes in higher organisms.
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APLYSIA AS A MODEL FOR CIRCADIAN RESEARCH
Although less familiar to current students of circadian biol-
ogy, Aplysia californica represents one of the earliest models
used to systematically study the circadian clock. Members of
the genus Aplysia, frequently referred to as sea hares due to the
appearance of the upward projecting rhinophores, are marine
mollusks from the family Aplysiidae (class: Gastropoda, order:
Opisthobranchia). While the fossil record for Aplysia species
is limited, the genus Akera, a sister taxon to Aplysiidae rep-
resenting the primitive sea hare, appears in the fossil record
as early as 165 mya (reviewed in Medina and Walsh, 2000;
Medina et al., 2001). Aplysia species likely diverged consider-
ably later, perhaps as recently as 25 mya during the Miocene
period (reviewed in Medina and Walsh, 2000; Medina et al.,
2001). Aplysia are found throughout the world generally in
warm waters with the diurnal A. californica (northeast Pacific),
nocturnal A. fasciata (Mediterranean) and A. kurodai (north-
western Pacific), commonly used in neuroscience. Aplysia are
hermaphroditic animals, although not self-fertilizing, that bud-
get their time for reproductive, feeding, and exploratory activities
(Susswein et al., 1983; Carefoot, 1989; Ziv et al., 1991a,b). Feeding
on algae, Aplysia inhabit the photic zone, primarily the inter-
tidal and sub-littoral zones commonly at depths less than 20 m
(Kandel, 1979), and are influenced by daily light–dark cycles.
Aplysia exhibit robust circadian rhythms in locomotor activity

(Strumwasser, 1973) and feeding behavior (Kupfermann, 1974;
Levenson et al., 1999).

Groundbreaking research determined that the isolated Aplysia
eye (<1 mm in size) contained all necessary components of a cir-
cadian system: entrainment, oscillator, and outputs (Jacklet, 1969;
Eskin, 1971). Isolated eyes demonstrate free-running circadian
rhythms in optic nerve impulses that can be entrained and phase-
shifted (Jacklet, 1969; Eskin, 1971). Ocular circadian rhythms can
also be recorded in vivo (Block, 1981). Numerous studies in Aplysia
outlined the necessity of transcription (Raju et al., 1991; Koume-
nis et al., 1996) and translation (Rothman and Strumwasser, 1976,
1977; Jacklet, 1977; Lotshaw and Jacklet, 1986; Yeung and Eskin,
1987) for circadian oscillator function. Early studies using the iso-
lated eye system identified second messenger signaling and the
effectiveness of neurotransmitters in phase-shifting the oscillator
(Corrent and Eskin, 1982; Corrent et al., 1982; Eskin et al., 1982;
Eskin and Takahashi, 1983; Colwell et al., 1992) as well as the neces-
sity of protein synthesis for phase-shifts (Eskin et al., 1984; Raju
et al., 1990).

Despite a half-century of circadian research in Aplysia, the
molecular circuitry of the Aplysia circadian system has not been
fully elucidated. The Aplysia central nervous system consists of
about 20,000 neurons organized into discrete ganglia. Circa-
dian oscillatory neurons localizing to the base of the eye likely
serve as central pacemakers with the eyes also serving in primary
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photoentrainment. Ocular oscillators send afferent fibers via the
optic nerve to central nervous system ganglia excluding the buc-
cal ganglia (Herman and Strumwasser, 1984; Olson and Jacklet,
1985). Extraocular photoreceptors present in rhinophores and
anterior tentacles can affect circadian locomotor activity (Block
and Lickey, 1973; Roberts and Block, 1982). The cerebral ganglion
also contains photoreceptors and may serve as a point of con-
vergence for photic information (Eskin, 1971; Block and Smith,
1973; Roberts and Block, 1982). As the molecular components
of the oscillator remain unknown, potentially peripheral circa-
dian oscillators contain light sensitive molecules that function in
entrainment as observed in Drosophila and zebrafish (Plautz et al.,
1997; Whitmore et al., 2000).

In the intact animal, ocular circadian oscillatory neurons
strongly influence circadian locomotor activity with removal of
the eyes resulting in arrhythmicity in most animals (Strumwasser,
1973; Lickey et al., 1976, 1977, 1983). However, the eyes are
not strictly necessary for circadian activity as some eyeless ani-
mals continue to demonstrate rhythmic locomotor activity (Block
and Lickey, 1973; Strumwasser, 1973; Lickey et al., 1977) sug-
gesting the existence of extraocular pacemakers in addition to
extraocular photoreceptors. Little progress has been made in iden-
tifying pacemakers in central nervous system ganglia. Although
the abdominal ganglion is unnecessary for circadian activity
rhythms (Strumwasser et al., 1972), early research described
abdominal neuron R15 as a candidate for a circadian pacemaker
(Strumwasser, 1965) entrained by light–dark cycles (Lickey, 1969)
with diurnal and circadian rhythms in spiking activity (Audesirk
and Strumwasser, 1975; Woodson and Schlapfer, 1979). However,
sustained firing rhythms appear absent under prolonged constant
conditions (Lickey et al., 1976). The cerebral ganglion appears a
likely location for central nervous system circadian pacemaker
neurons with its integration of multiple photic inputs and numer-
ous connections to other ganglia (Weiss et al., 1978; Rosen et al.,
1991; Wright et al., 1995). Moreover, cerebral ganglion neurons
send efferent connections to ocular pacemaker neurons (Olson
and Jacklet, 1985; Takahashi et al., 1989) potentially providing a
mechanism for central nervous system feedback.

Although the components of the core circadian oscillator in
Aplysia remain unknown, the circadian gene period has been
cloned in the closely related mollusk Bulla (Constance et al., 2002).
Unusually bPer mRNA and protein levels were shown to cycle
only in light–dark cycles in retinal pacemakers with no oscilla-
tions observed in constant conditions (Constance et al., 2002).
The only identified Aplysia gene for which rhythmic expression
has been shown is the immediate early gene ApC/EBP, a leucine β-
Zip transcription factor, which shows significantly higher mRNA
and protein levels during the night (Hattar et al., 2002; Lyons et al.,
2006b). Whilst ApC/EBP appears unlikely to function in the core
oscillator, circadian rhythms in protein abundance in cerebral and
pleural ganglia indicate that the circadian clock impacts the central
nervous system.

CIRCADIAN MODULATION OF LEARNING AND MEMORY
The circadian clock imparts a powerful adaptive advantage to
organisms through the coordination of metabolic and physiolog-
ical events in anticipation of regular environmental occurrences.

Aplysia represents an excellent system for investigating circadian
modulation of memory given the simplicity of its neuronal orga-
nization combined with numerous in vivo and in vitro learning
paradigms that have made Aplysia a favorite model organism for
neuroscientists. The most well-studied learning paradigms con-
centrate on defensive withdrawal reflexes using non-associative
sensitization and habituation, and classical conditioning of with-
drawal reflexes (reviewed in Bailey et al., 2008). In addition to
defensive reflexes, the neural circuitry of the feeding system
exhibits a high degree of plasticity and is frequently studied using
operant and classical conditioning paradigms (reviewed in Elliott
and Susswein, 2002; Baxter and Byrne, 2006).

Initial research in Aplysia examining circadian modulation
of memory investigated sensitization of the siphon-withdrawal
reflex, non-associative learning in which application of a nox-
ious stimulus enhances subsequent responses to a mild stimulus.
In light–dark cycles and constant conditions, animals exhibited
robust long-term memory when training was administered during
the (subjective) day (Fernandez et al., 2003; Lyons et al., 2006b).
However, when training was performed at night, little long-
term sensitization was observed. Potentially, circadian regulation
of memory formation occurs through gating sensory perception
during initial reception or transmission of sensory stimuli. Pre-
training baseline responses in the threshold stimulus necessary to
elicit siphon withdrawal and withdrawal duration were not cir-
cadianly regulated suggesting that the circadian clock modulated
memory rather than sensory perception. In later studies, diurnal
and circadian rhythms also were observed for intermediate-term
sensitization (Lyons et al., 2008), a form of memory dependent
upon protein synthesis but not transcription (Sutton et al., 2001;
Sutton and Carew, 2002).

Circadian modulation of memory has also been investigated
using a more complex operant learning paradigm, learning that
food is inedible (LFI). In this paradigm, the animal is presented
with netted seaweed that cannot be swallowed to which the animal
responds with repeated cycles of biting, swallowing attempts, and
rejection of the netted food (Susswein and Schwarz, 1983; Schwarz
and Susswein, 1986). An association is formed between the fail-
ure of swallowing attempts for feeding and the specific seaweed
(Susswein et al., 1986; Michel et al., 2011a). As with sensitization,
long-term LFI memory appears strongly regulated by the circa-
dian clock. Animals that are trained during the (subjective) day
demonstrate robust memory 24 h later, whereas animals trained
at night display virtually no long-term memory with responses
similar to naïve animals (Lyons et al., 2005, 2006a). Thus, the cir-
cadian clock strongly modulates non-associative and associative
long-term memory in Aplysia.

For long-term sensitization and LFI memory, circadian mod-
ulation targets memory formation rather than recall. Animals
trained during the day demonstrated robust memory even when
tested 30–36 h later during the following night (Fernandez et al.,
2003; Lyons et al., 2005). However, animals trained during the
night showed little long-term memory at any time point. These
results stand in contrast to hippocampal dependent contex-
tual fear conditioning in which the strength of memory recall
appears to be regulated by the circadian clock (Chaudhury and
Colwell, 2002).
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Where are the oscillators responsible for modulation of mem-
ory? As with locomotor activity, pacemaker neurons located in
the eyes do not appear necessary for entrainment or mainte-
nance of circadian modulation of memory in Aplysia. Eyeless
animals exhibit circadian rhythms in long-term memory for sen-
sitization and LFI (Lyons et al., 2006a). Furthermore, animals
re-entrained after eye removal to a new light–dark cycle exhib-
ited significant circadian rhythms in long-term memory in phase
with the re-entrained cycle (Lyons et al., 2006a). These experi-
ments support the hypothesis that central nervous system ganglia
contain independent circadian oscillators that can be entrained
through extraocular photoreceptors. While the neurons respon-
sible for memory may not be oscillators themselves, mechanisms
exist through which hypothetical pacemaker cells located in the
cerebral ganglion could modulate the activity of neurons involved
in sensitization and LFI memory circuits.

POSSIBLE MECHANISMS OF MODULATION
Learning and memory can be diagrammed linearly with sensory
perception, learning, memory formation, and recall occurring
sequentially. Memory formation encompasses all molecular and
cellular changes necessary to maintain learned behavior (Sweatt,
2010) and can be subdivided into induction, molecular consoli-
dation involving transcription and translation, and maintenance.
For Aplysia, it appears that memory formation rather than sen-
sory perception or recall is the primary process modulated by the
circadian clock as time of training appears to be the determinant
factor. However, short-term memory for sensitization and LFI is
independent of the circadian cycle (Fernandez et al., 2003; Lyons
et al., 2005) suggesting that early steps common to short, inter-
mediate, and long-term memory may not be primary targets for
circadian regulation.

What are potential mechanisms through which the circadian
clock modulates memory formation? Sensitization and LFI mem-
ory involve distinct neural and molecular circuits (Cleary et al.,
1998; Elliott and Susswein, 2002; Bristol et al., 2004; Cropper
et al., 2004; Bailey and Kandel, 2008). During sensitization, sero-
tonin release by cerebral ganglion facilitatory neurons initiates a
sequence of events resulting in pre-synaptic facilitation of pleural
sensory neurons and post-synaptic changes in pedal motor neu-
rons (Villareal et al., 2007; Bailey et al., 2008; Cai et al., 2008). Early
induction steps include amplification of adenylyl cyclase activity,
increased cAMP levels and PKA activation (Kandel, 2001; Reiss-
ner et al., 2006). Sensitization training induces serotonin release
into the hemolymph with increased training resulting in greater
levels of serotonin (Marinesco and Carew, 2002; Marinesco et al.,
2004). Serotonin release following sensitization training is circa-
dianly regulated (Lyons et al., 2006b) providing one mechanism
through which the circadian clock modulates intermediate and
long-term sensitization. Although serotonin induced activation of
cAMP–PKA signaling is common to short and long-term mem-
ory, potentially circadian regulation of persistent PKA activity and
subsequent CREB-dependent transcription occurs for long-term
memory. During long-term facilitation, an in vitro correlate for
sensitization, persistent PKA activity and CREB activation induce
necessary expression of ApC/EBP (Alberini et al., 1994; Muller
and Carew, 1998). The circadian clock regulates training-induced

ApC/EBP expression with sensitization training during the day,
but not the night, resulting in multi-fold increases in protein
abundance (Lyons et al., 2006b). Persistent PKA activation also
is necessary for long-term LFI memory and LFI training results in
increased ApC/EBP mRNA and protein abundance in the buccal
ganglia (Levitan et al., 2008; Michel et al., 2011a). Potentially, cir-
cadian modulation of LFI memory also occurs through regulation
of the cAMP–PKA–CREB pathway.

There appear to be distinct processes in separate neuronal
clusters modulated by the circadian clock during sensitization.
Circadian modulation of sensitization also occurs downstream
of serotonin release from facilitatory neurons. In experiments
in which in vivo sensitization was induced using serotonin, ani-
mals exhibited long-term sensitization with a robust circadian
rhythm similar in phase and amplitude to previous studies (Lyons
et al., 2006b). This suggests that circadian modulation occurs
either pre-synaptically or post-synaptically through a mechanism
independent of rhythmic serotonin release.

The MAPK signaling cascade appears a likely target for circa-
dian modulation in sensitization and potentially for LFI memory
as MAPK also acts as an integrator of neuronal inputs. Interme-
diate and long-term sensitization, but not short-term memory,
are dependent upon training-induced MAPK activation and pro-
longed MAPK signaling (Martin et al., 1997; Michael et al., 1998;
Sharma et al., 2003; Sharma and Carew, 2004). Overall basal
MAPK activity in pleural and cerebral ganglia does not appear
to be rhythmically regulated. Following sensitization training
during the (subjective) day, but not the night, levels of phospho-
MAPK are greatly increased in pleural ganglia (Lyons et al.,
2006b). While the circadian induction of MAPK activation has
not been examined for LFI memory, a prolonged MAPK signal-
ing phase in the buccal ganglia appears necessary for long-term,
but not short-term, LFI memory (Michel et al., 2011b). The dual
circadian modulation of learning-induced activation of MAPK
and ApC/EBP expression may be sufficient to explain circadian
modulation of long-term sensitization and LFI memory.

Just as the mechanisms involved in memory formation occur
through a network of interconnected signaling pathways, it seems
unlikely that circadian modulation of memory occurs through
simple linear connections. More realistically, circadian modula-
tion affects a network of signaling pathways resulting in dynamic
regulation of behavior. Although the extent of circadian regu-
lation of gene expression or signaling has not been investigated
in Aplysia, genome wide expression studies in other organisms
suggests that a considerable portion of the genome is under cir-
cadian regulation (reviewed in Doherty and Kay, 2010). Given
the disparate anatomical and molecular circuitry for sensitization
and LFI memory, humoral factors may also serve as a means for
circadian regulation of multiple neural circuits.

FUNCTION OF CIRCADIAN MODULATION OF MEMORY
From an evolutionary perspective, if no function or selective
advantage to circadian modulation of memory existed then
one would predict considerable laxity in regulation. The obser-
vance of circadian influences on memory across phylogeny and
apparent multiple levels of regulation as observed in Aplysia
suggest specific functions for circadian modulation. Alternatively,
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the synchronized phase regulation of memory could occur as
a byproduct of broader circadian regulation of cellular and
metabolic processes.

Given the relatively small number of neurons in the central
nervous system in Aplysia, wide-ranging circadian regulation of
transcription, translation, or kinase signaling pathways seems
feasible. Potentially, regulation of memory occurs alongside func-
tional regulation of other processes and behaviors. If cellular
processes for feeding or locomotion are circadianly regulated and
these same signaling pathways or neurons are involved in learning,
memory formation may be coincidentally modulated. Several lines
of evidence suggest that circadian modulation of memory is not
a consequence of general circadian regulation, although this does
not preclude functional coordination of behavior and memory
through cooperative regulatory mechanisms. (1) Signaling path-
ways involved in memory do not appear to exhibit widespread
basal circadian activity, at least for MAPK activity in whole ganglia.
If circadian regulation of memory was due to coincident regulation
of MAPK signaling, one would expect basal MAPK activity levels
to be circadianly regulated. (2) Multiple neuron types and distinct
pathways appear targeted by circadian regulation during sensiti-
zation. (3) Circadian dysfunction induces decrements in memory
formation in animal models and humans (Cho et al., 2000; Cho,
2001; Ruby et al., 2008; Loh et al., 2010). Thus, circadian mod-
ulation of memory appears to represent purposeful regulation
that may be phase coordinated with behavioral activities as for
A. californica. One would expect a nocturnal Aplysia species to
demonstrate greater memory during the night. This is indeed the
case as observed for long-term LFI memory in the nocturnal A.
fasciata (Lyons et al., 2005).

Intermediate and long-term memory exact a metabolic energy
cost through requirements for persistent kinase activity, pro-
tein synthesis, and gene expression. Coordination of memory
formation with an animal’s activity allows for the orchestrated
circadian downregulation of neuronal activity during periods of
rest. Sleep has been postulated as functioning in synaptic home-
ostasis by reducing synaptic strength to baseline levels enabling
energy savings (Tononi and Cirelli, 2006; Hanlon et al., 2011).

Sleep dependent reductions in synaptic markers, synaptic strength,
synaptic branching, and gene expression were recently shown in
Drosophila (Cirelli et al., 2005; Gilestro et al., 2009; Bushey et al.,
2011). While A. californica sleep has not been examined, circadian
interactions between regulation and the homeostatic need for rest
are likely. Intermediate and long-term memory formation at night
with associated energy demands would be contraindicated with
the synaptic homeostasis hypothesis. However, the coordination
of intermediate and long-term memory formation with behavioral
activities does not preclude the animal’s response to immediate
crises or dire situations. Short-term memory in Aplysia is not cir-
cadianly regulated allowing for increased defenses in response to
predators or differentiation between edible and inedible foods to
meet an immediate feeding need.

FUTURE DIRECTIONS
Across phylogeny most studies of circadian modulation of mem-
ory employ negatively reinforced learning paradigms such as fear
conditioning (Valentinuzzi et al., 2001; Chaudhury and Colwell,
2002), conditioned taste aversion (Manrique et al., 2004; Gomez-
Serrano et al., 2009), conditioned place avoidance (Rawashdeh
et al., 2007), and olfactory conditioning (Lyons and Roman, 2009).
Negatively reinforced paradigms produce robust learning with a
greater dynamic range in memory strength possible compared to
positively reinforced paradigms allowing for increased sensitiv-
ity in quantifying modulation. Understanding the function(s) of
circadian modulation of memory will require a broader perspec-
tive with additional research investigating positively reinforced
learning paradigms. The detailed neurocircuitry and reductionist
approaches available in Aplysia suggest future research will pro-
vide continuing mechanistic insight into circadian modulation of
memory validating the usefulness of simple invertebrate models
for understanding evolutionarily conserved system interactions.
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