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Alcohol use disorders, like all drug addictions, involve a constellation of adaptive changes
throughout the brain. Neural activity underlying changes in the rewarding properties of
alcohol reflect changes in dopamine transmission in mesolimbic and nigrostriatal pathways
and these effects are modulated by endogenous opioids such as β-Endorphin. In order to
study the role of β-Endorphin in the development of locomotor sensitization to repeated
EtOH exposure, we tested transgenic mice that vary in their capacity to synthesize this
peptide as a result of constitutive modification of the Pomc gene. Our results indicate
that mice deficient in β-Endorphin show attenuated locomotor activation following an
acute injection of EtOH (2.0 g/kg) and, in contrast to wildtype mice, fail to demonstrate
locomotor sensitization after 12 days of repeated EtOH injections. These data support the
idea that β-Endorphin modulates the locomotor effects of EtOH and contributes to the
neuroadaptive changes associated with chronic use.
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INTRODUCTION
Alcohol use disorders are a worldwide concern, devastating the
health of individuals, families, and communities. Like virtually all
disorders involving behavior, alcoholism results from a rich inter-
action of environmental influences expressed through genetic
propensities, which makes it difficult to understand particular
causal mechanisms. One strategy frequently employed by those
seeking to elucidate biological substrates of complex traits is to
utilize animal models in which simpler components of the phe-
notype are isolated and explored in a controlled laboratory setting
(Crabbe, 2012).

One consequence of exposure to all addictive drugs is the
ability to activate neural substrates involved in reward. At the
heart of these circuits is the mesolimbic pathway which, when
stimulated, leads to dopamine release in the nucleus accum-
bens. This pathway conveys information about stimulus salience.
Another major dopaminergic circuit mediates locomotion, and
all addictive drugs also stimulate movement. Thus, dopamine
activity alerts an organism to important stimuli and motivates
behavior; these pathways are both turned on by addictive sub-
stances (Robinson and Berridge, 1993; Kalivas and Volkow, 2005;
Sanchis-Segura and Spanagel, 2006).

While the depressant effects of alcohol (EtOH) are widely
appreciated, administration of lower doses, or analysis during the
absorptive phase of blood-EtOH curve produce reliable stimulant
effects, particularly in individuals susceptible to abuse and addic-
tion (e.g., Wise, 1987; Phillips and Shen, 1996). Furthermore,
chronic exposure to EtOH can result in sensitization to these
changes, defined as an increase in behavioral stimulation fol-
lowing repeated administration, and this is also heritable. For
instance, some inbred strains of mice are more prone to locomo-
tor activation and sensitization than others (Phillips et al., 1995).
Other strains of mice have been selectively bred to model these

effects (Phillips et al., 1991; Crabbe et al., 1992). Moreover, stud-
ies have found genetic correlations between effects of EtOH on
locomotor activity and measures of EtOH reinforcement (Malila,
1978; Phillips et al., 1998; Ponomarev and Crabbe, 2002).

At least one way that EtOH activates the neural pathways
involved in reward and movement is through its ability to stimu-
late the synthesis and release of the opioid peptide β-Endorphin
(β-E; Schulz et al., 1980; Gianoulakis, 1990, 2009; Scanlon
et al., 1992; Przewlocka et al., 1994; Froehlich et al., 2000).
β-Endorphin modulates dopamine activity in the mesolimbic
pathway (Widdowson and Holman, 1992; Oswald and Wand,
2004; Zapata and Shippenberg, 2006; Jarjour et al., 2009) as well as
in the nigrostriatal pathway (Willis, 1987; Boyadjieva and Sarkar,
1994; Sanchis-Segura and Aragon, 2002; Jarjour et al., 2009; Lam
et al., 2010). Genetic differences in these opioid circuits correlate
with a liability for alcohol use disorders in humans (i.e., Topel,
1988; Gianoulakis et al., 1989, 1996; Froehlich et al., 2000). In
a series of studies, Sanchis-Segura and colleagues have made a
strong case that β-E in the arcuate nucleus of the hypothalamus
mediates EtOH induced locomotor activation and we and others
have shown that low opioid activity compromises the reinforcing
effects of EtOH (Grisel et al., 1999; Roberts et al., 2000; Racz et al.,
2008).

Though the particular alleles and gene products contributing
to EtOH induced locomotor changes remain obscure (Phillips
et al., 1995), opioid peptides have been implicated (Prunell et al.,
1987; Kuribara et al., 1991; Sanchis-Segura and Aragon, 2002;
Sanchis-Segura et al., 2005). In this study we evaluated the effect
of β-E on the development of locomotor sensitization to repeated
EtOH exposure using transgenic mice that vary in their capac-
ity to synthesize the peptide. “Knockout” (KO) mice have a
premature stop codon inserted into their Pomc gene and there-
fore fail to produce β-E. These mice are fully backcrossed onto the
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C57BL/6J strain, which provide a useful comparison along with
heterozygote (HET) mice that have 50% of control levels of the
endogenous opioid.

MATERIALS AND METHODS
SUBJECTS
Subjects were adult naïve male and female wildtype controls
(C57BL/6J; B6), β-E deficient (B6.129S2-Pomctm1Low/J; KO), and
heterozygous (HT) mice. Transgenic mice were developed over
a decade ago in the laboratory of Malcolm Low (Rubinstein
et al., 1996) by insertion of a premature stop codon into the
Pomc gene and have been fully backcrossed onto the B6 genome.
Homozygotes (KO) cannot synthesize β-E, though all other Pomc
products show normal expression. Opioid receptor expression
also remains unchanged (Rubinstein et al., 1996). HT mice pro-
duce 50% of B6 levels of β-E.

Mice for these studies were bred from isogenic pairs derived in-
house from HT progenitors purchased from Jackson Laboratories
(Bar Harbor, ME, USA). The gene mutation has been fully back-
crossed to the C57BL/6J strain (>20 generations). Mice were
group housed by sex with 4–5 per Plexiglas cage following wean-
ing at 20–21 days and maintained in a at 21 ± 2◦C colony room
on a reverse 12:12 light:dark cycle with lights on at 7 PM. Water
and food were available ad libitum.

EXPERIMENTAL PROTOCOL
We followed the method developed in Tamara Phillips’ lab
(Lessov et al., 2001) in which C57BL/6J mice evince robust loco-
motor sensitization following repeated administration of EtOH,
although these investigators suggests that at least some of the
increased locomotor activity on test day may reflect a “novelty
response” (Meyer et al., 2005) since in this paradigm the mice
have not been in the test chamber for several days before the
sensitization measure is taken.

On Days 1–3 and 14 of the two-week protocol, mice were
assayed during the dark phase of their light/dark cycle in a
Plexiglas open field arena (50 cm3) equipped with infrared sen-
sors and coupled to Tru Scan software (Coulbourn Instuments,
Whitehall, PA). Horizontal distance traveled and the number of
rears (two front feet off the ground) was assessed for each mouse
during the 10 min test period on Day 1–3 and 14. The cage floor
was thoroughly cleaned between experimental subjects with non-
toxic, low-odor solution, and testing order was randomized across
genotypes.

On Days 1–3 animals received injections and were placed in
the testing arena for 10 min. On Day 1 and Day 2 all animals
received saline but on Day 3, two groups of animals—designated
chronic or acute EtOH (CE or AE) received 2.0 g/kg EtOH instead
of saline. Days 4-13, animals were injected and then immediately
placed back in their home cages; there was no measurement of
locomotor activity. The CE group got 2.5 g/kg EtOH each of these
days, and the AE and chronic saline (CS) groups got equivol-
ume saline. On Day 14, all animals received 2.0 g/kg EtOH and
locomotor activity was evaluated for 10 min. All injections were
delivered intraperitoneally (i.p.) and EtOH was administered in a
20% (vol:vol) solution in saline. All procedures were carried out
in accordance with the National Institutes of Health guidelines

and approved by the Animal Care and Use Committee of Furman
University.

STATISTICAL ANALYSIS
Data were analyzed using a three factor ANOVA with genotype
(three levels: B6, HT, and KO), experimental condition (AE, CE,
and CS), and sex for main effects, on days 1–3 and 14 sepa-
rately. In addition, a repeated measure ANOVA was conducted
across days by strain and condition (excluding sex). Significant
interactions were further examined using Fisher’s least signifi-
cant difference (LSD) test. Statistical analyses were performed
using SPSS Statistics 17.0. The criterion for significance was set
at p ≤ 0.05.

RESULTS
There were main effects of sex on virtually every measure, as
females are well known to have more locomotor activity under
basal conditions as well as following EtOH administration (e.g.,
Lynn and Brown, 2009; Tayyabkhan et al., 2002). However, in this
overall analysis, there were no significant interactions involving
sex and genotype—i.e., the strain differences were not depen-
dent upon sex, and therefore data were collapsed across sex for
analysis.

In the repeated measures ANOVA there was a main effect
of strain on horizontal distance traveled [F(2, 91) = 7.265, p <

0.001] but no main effect of experimental condition [F(2, 91) =
2.25, p > 0.05] or interaction between these two variables
[F(4, 91) = 1.002, p > 0.05]. There was also a main effect of test
day F(3, 273) = 94.306, p < 0.001, interactions between strain and
day F(6, 273) = 10.584, p < 0.001, and strain and experimental
condition F(6, 273) = 3.634, p < 0.01 as well as a triple interac-
tion between strain, day and drug condition F(12, 273) = 2.061,
p < 0.05. While B6 mice in the CE condition (both sexes) showed
sensitization, neither of the β-endorphin deficient groups did
(Figure 1).

There was no difference in distance traveled or rears on Day 1
across either lines or drug groups (though all received saline on
Day 1) and no interactions. With one exception the results were
the same on Day 2 as on Day 1: there was no difference in distance
traveled across genotypes or experimental groups and no interac-
tions. However, there was a significant effect of genotype on rears
on Day 2 in that KO did not habituate as readily as either B6 or
HT mice [F(2, 91) = 7.911, p < 0.01; data not shown].

On Day 3, there was a significant effect of genotype on
distance traveled [F(2, 91) = 6.377, p < 0.01], evincing a direct
relationship between β-E levels and horizontal distance traveled,
but in this Two-Way ANOVA with 3 treatment groups and 3
genetic lines, there was no main effect of treatment or interac-
tion between treatment and genotype. However, because the AE
and CE groups were treated identically and injected with 2.0 g/kg
EtOH, they were collapsed into a general “EtOH” group and com-
pared to saline-treated subjects in a separate 2-factor ANOVA
(this time with only two levels of treatment) evaluating locomo-
tion on Day 3 (horizontal distance in cm). As shown in Figure 2,
B6 tended to be stimulated by EtOH, while KOs were sedated
by EtOH and HTs were intermediate. This is substantiated in
the statistical results in which there was a main effect of strain:
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FIGURE 1 | Locomotor activity in miceduring four,10 min test periodson

Days1–3and 14ofa2-week experimentalprotocol.OnDays1 and 2 allmice
received intraperitoneal saline injections,on Day 3 the chronic saline (CS)group
receivedsalineagain,but all othersubjects received 2.0 g/kgEtOH.OnDays
4–13,halfof thesewereadministered2.5 g/kgEtOH(ChronicEtOH—CE)andthe
remainderwasgivenequivolume saline (Acute EtOH—AE,and CS)andallwere
placedintheirhomecages immediately followinginjection.OnDay14,allanimals

wereadministered2.0 g/kgEtOHandevaluated in theactivitychambers.The
leftpanel showsthehorizontal distance traveled in cm (data show mean±SE)
ofadultmaleandfemaleC57BL/6Jmice,demonstrating the developmentof
locomotorsensitization inCE-treatedsubjects. Themiddle panel shows
analogousexperimental groups of heterozygote (HT)mice and the right panel
showsthesamedatainβ-Edeficient (KO)mice.Neitheroftheselatter twogroups
developed locomotorsensitization.

FIGURE 2 | Horizontal distance traveled in mice of each genotype on

Day 3 of the experimental protocol. Mice were either given 2.0 g/kg
EtOH by intraperitoneal injection or equivolume saline immediately before
10 min evaluation (see text for experimental detail). Data represent group
means ± SE.

[F(2, 91) = 3.750, p < 0.05], but not of drug [F(1, 91) = 0.593,
p > 0.05] but there was an interaction between strain and drug
[F(2, 91) = 3.750, p < 0.05]. While there was no effect of geno-
type on rears, there was an effect of EtOH [F(2, 91) = 166.636,
p < 0.001] in which the drug generally decreased rearing activity,
but this measure on Day 3 did not depend upon strain.

On Day 14 there were differences between genotype in the dis-
tance traveled [F(2, 91) = 20.356, p < 0.001], differences across
treatment groups [F(2, 91) = 4.222, p < 0.05], and a significant
interaction between genotype and treatment group [F(4, 91) =
2.961, p < 0.05]: post-hoc analysis indicated sensitization only in
B6 mice (in the CE group; see Figure 1). There were no differences
in rears between strain or treatment groups and no significant
interaction between these two measures on Day 14.

In order to directly compare the magnitude of locomotor sen-
sitization that developed across the experimental period while
taking into account the genotypic differences on Day 3 (see
above) we conducted a 2-way (strain and sex) planned compar-
ison within the CE treatment groups, using a difference score
that was calculated by subtracting horizontal activity on Day 3,

FIGURE 3 | The difference in horizontal locomotor activity between the

first and last exposure to EtOH in chronically treated mice across the

three genotypes and both sexes (see text for experimental detail).

Data represent group means ± SE.

after the first exposure to EtOH, from Day 14 activity, following
the chronic regimen. Here, the effect of genotype was significant
with F(2, 29) = 9.260, p < 0.001, indicative of a positive correla-
tion between β-E levels and locomotor activity on Day 14. The
post-hoc test revealed that B6 mice differed from either of the β-E
deficient lines. There was, as in the overall analysis, a main effect
of sex [F(1, 29) = 8.726, p < 0.01], but also, a (just) significant
interaction between strain and sex [F(2, 29) = 3.312, p = 0.051].
These change scores are depicted separately by strain and sex in
Figure 3, where evidence of locomotor plasticity is more evident
in wildtype females than in all other groups.

DISCUSSION
Mice deficient in β-Endorphin demonstrate a blunted locomo-
tor response to acute alcohol, and also fail to develop locomotor
sensitization after 12 days of daily drug administration. Though
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there were no observable differences in activity under base-
line conditions (following injection with saline) 2.0 g/kg EtOH
moderately stimulated locomotor activity in C57BL/6J mice but
depressed it in mice lacking β-E. Furthermore, while repeated
injections of EtOH led to locomotor sensitization in C57BL/6J
mice, transgenics with either low or absent β-E showed no
evidence of this plasticity. These data replicate findings by oth-
ers showing the development of sensitization in this inbred
strain (e.g., Lessov et al., 2001; Tarragón et al., 2012) and
extend them by suggesting that β-E plays a critical role in this
change as transgenic subjects unable to synthesize β-E, but oth-
erwise virtually identical to controls, fail to demonstrate this
plasticity.

Drug sensitization is thought to underlie changes associated
with alterations in the reward pathway such as drug-induced
conditioned place preference, operant self-administration and
other forms of drug seeking (Vezina, 2004). Indeed, a empirical
evidence and theoretical explorations link the neural plasticity
underlying locomotor sensitization to the behavioral character-
istics of drug abuse including drug seeking, compulsive use,
and relapse (Robinson and Berridge, 1993, 2008; Kalivas et al.,
2005). Thus, many have argued that behavioral sensitization
to the locomotor effects of drugs provides an index of neural
changes mediating the dependent state (Robinson and Berridge,
1993; Kalivas and Volkow, 2005; Sanchis-Segura and Spanagel,
2006). The present findings support the contention that the opi-
oid peptide β-E plays a critical role in the neural substrates of
alcohol reinforcement and addiction. Along this line, EtOH self-
administration in animals depends upon this peptide (Grisel
et al., 1999; Williams et al., 2007; Racz et al., 2008; but also see
Grahame et al., 1998) and clinical studies have associated β-E lev-
els with liability toward alcohol use disorders (Gianoulakis et al.,
1989; Wand et al., 2001; Zalewska-Kaszubska and Czarnecka,
2004).

As with all behavior, the neural mechanisms of sensiti-
zation are complex and multidimensional. Though the cur-
rent study, along with previous reports (Camarini et al., 2000;
Pastor and Aragon, 2006; Abrahao et al., 2008; Tarragón et al.,
2012) strongly implicates endorphins, these peptides are surely
not acting alone. For instance, both endorphins and endo-
morphins are highly efficacious agonists at μ receptors, and
though these receptors appear to be unchanged in trans-
genic mice (Rubinstein et al., 1996), other opioids may also
contribute. Moreover, evidence supports the involvement of
various other neurotransmitters including amino acids (i.e.,
γ-aminobturic acid and glutamate) and monoamines, in this
plasticity (Broadbent et al., 1995; Chester and Cunningham,
1999; Meyer and Phillips, 2007; Carrara-Nascimento et al.,
2011). Repeated EtOH administration has also been linked
to activation of the Hypothalamic Pituitary Adrenal (HPA)
axis and shown to be dependent upon the neuroendocrine
response to stress (Roberts et al., 1995; Pastor et al., 2008,
2012).

β-E is involved in a wide array of behaviors, including many of
those associated with analgesia, reward, attachment, and stress.
While activation of the stress (HPA) axis leads to synthesis
and release of β-E, this peptide plays a role in endocrine and

behavioral allostasis. Exposure to a stressor induces the hypotha-
lamus to secrete corticotropin releasing hormone (CRH) in the
adenohypophysis, mounting a neuroendocrine response, and
leading to activation of the sympathetic nervous system and
behavior. Upon stimulation by CRH, the anterior pituitary turns
on POMC transcription to stimulate synthesis of adrenocorti-
cotrophin hormone (ACTH) and β-E (among others). ACTH
leads to the synthesis and release of glucocorticoids from the
adrenal gland but may also inhibit POMC activity (Suda et al.,
1988, 1993). Negative feedback is typical in the stress response,
and virtually every stress-induced chemical change subsequently
contributes to dampening further HPA activation. For exam-
ple, corticosterone (in rodents) or cortisol (in humans), through
interaction with a dense population of glucocorticoid receptors
in the brain, suppresses HPA activity. Blockade or deletion of
either CRH or glucocorticoids prevents the acquisition of EtOH-
induced locomotor sensitization (Roberts et al., 1995; Pastor
et al., 2008, 2012) suggesting that an intact neuroendocrine
response to stress is necessary to exhibit locomotor sensitization
to EtOH.

These data are somewhat contradictory because, although
synthesized and released in response to stress, β-E inhibits the
stress axis by counteracting CRH synthesis in the paraventric-
ular nucleus of the hypothalamus (Buckingham, 1986; Plotsky,
1991; Hunt and Zakhari, 1995; Janssen and Arntz, 2001; Amat
et al., 2005; Ribeiro et al., 2005). Thus, low or absent β-E is associ-
ated with exaggerated neuroendocrine and behavioral responses
to stress (Buckingham, 1986; Grisel et al., 2008; Barfield et al.,
2010) and disruptions in coping behavior (Hunt and Zakhari,
1995; Gianoulakis, 1998; Barry and Grisel, 2012). We have shown,
i.e., an inverse relationship between β-E levels and anxious behav-
ior, as well as adrenal weight, in these mice (Grisel et al., 2008).
Since low β-E compromises the ability to manage stressful stim-
uli (Gianoulakis, 1998; Sarkar et al., 2007; Barfield et al., 2010)
one might expect augmented, rather than attenuated, locomotor
sensitization in β-E deficient mice. However, because CRH medi-
ates the EtOH-induced increase in β-E (Gianoulakis, 1998; Lam
and Gianoulakis, 2011) perhaps the low CRH activity indirectly
affects sensitization, through a consequent blunting of the β-E
surge following EtOH administration.

It is well documented that acute exposure to EtOH, like
exposure to stressors, causes the synthesis and release of β-E.
The relationship between opioids and EtOH-induced locomo-
tor changes has been extensively studied by Carlos Aragon and
his colleagues, in over two decades of research. Early stud-
ies implicated the opioid system in the effects of stress and
EtOH on movement (Aragon et al., 1990; Trudeau et al., 1991).
Fifteen minutes of restraint stress decreased locomotor activity,
but this effect of stress was blocked (in an opioid-dependent
manner) by EtOH pre-treatment. These data fit with the recent
findings (Pastor et al., 2012) that CRH and corticosterone are
necessary to evince EtOH-induced locomotor changes in mice.
However, this group also showed that either pharmacologic
antagonism of μ-opioid receptors or lesioning endorphinergic
neurons in the hypothalamus prevents EtOH-induced increases
in locomotor activity and other forms of adaptation includ-
ing conditioned place preference (Sanchis-Segura et al., 2000;
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Sanchis-Segura and Aragon, 2002; Pastor et al., 2004, 2005;
Pastor and Aragon, 2008). The endogenous opioid system has
been implicated in several aspects of the rewarding and addic-
tive actions of ethanol. Modulation of the mesolimbic dopamine
system by β-E contributes to positive reinforcement following
drug administration (see Roth-Deri et al., 2008 for review).
Individual variation in the β-E response to EtOH has been used
to explain differences in the liability toward high consumption
and abuse (Gianoulakis, 1996, 1998; Froehlich et al., 2000; Dai
et al., 2002, 2005). The current study, demonstrating a failure to

develop locomotor sensitization in an animal model of endorphin
deficiency, adds to the growing body of pre-clinical research sug-
gesting that β-E modulates the neuroplasticity underlying chronic
changes in behavior associated with the development of alcohol
addiction.
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