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Micro RNAs (miRNAs) constitute an
18–25 nucleotide (nt), highly conserved,
non-coding, single stranded RNA (ssRNA)
family that are the smallest known carri-
ers of highly selective genetic regulatory
information in plants and animals (Lukiw
et al., 1992, 2008, 2012; Ambros, 2004;
Lukiw, 2007, 2012a; Mehler and Mattick,
2007; Bartel, 2009; Guo et al., 2010; Taft
et al., 2010; Witkos et al., 2011). Similarly,
viroids are non-coding, un-encapsulated,
autonomously infectious circular ssRNA
plant pathogens ranging in size from
246 to 401 nt and, possessing the high-
est in vivo mutation rate among all
known nucleic acids, are the smallest
known pathogens in all of biology (Diener,
2003; Wang and Ding, 2010). Analogous
to mature miRNAs, viroid-mediated bio-
logical actions and pathogenic activi-
ties are associated with the appearance
of small viroid-specific ssRNA (vsRNA),
21–24 nt in size, processed by Dicer-like
proteins from a dsRNA pre-viroid precur-
sor (Diener, 1991, 2003; Arteaga-Vazquez
et al., 2006; Ding, 2009; Adams and
Carstens, 2012; Hammann and Steger,
2012). While miRNAs regulate messen-
ger RNA (mRNA) translation and decay
and hence gene expression, viroids are the
smallest infectious nucleic acids known
that can self-replicate and transmit disease.
Importantly, viroids are not only of evo-
lutionary, genetic, and biological interest
but are also of agricultural and economic
concern since viroid infections reduce the
yield of many important food crops world-
wide. These include the developmental

stunting of the common potato plant
Solanum tuberosum, and pomaceous fruit
trees which produce the common apple
Malus domestica (Diener, 2003; Sano et al.,
2010; Wang and Ding, 2010).

We summarize here that from evolu-
tionary, structural, and mechanistic per-
spectives, at least 18 interdependent lines
of evidence currently support the idea
that miRNAs and viroids have com-
mon and distinguishing genetic features,
and share overlapping regulatory and
pathogenic mechanisms with intrinsic
potential to promote systemic disease.
These include the observations that: (i)
each miRNA or viroid dsRNA precursor
is generated, utilizing exclusively, host-
encoded nuclear transcription compo-
nents and mechanisms (Diener, 2003;
Ritchie et al., 2007; Sethi and Lukiw,
2009; Wang and Ding, 2010; Adams
and Carstens, 2012); (ii) from the pri-
mary parent-miRNA or viroid-precursor
RNA PolII-generated transcript, intra-
molecular hydrogen bonding generates
a highly structured dsRNA “intermedi-
ate” precursor (Ritchie et al., 2007; Ding,
2009; Lukiw, 2012b; Navarro et al., 2012;
Perkel, 2013); (iii) secondary structures
are at least as important as primary
sequences in infectivity and pathogenic-
ity (Rocheleau and Pelchat, 2006; Sethi
and Lukiw, 2009; Perkel, 2013); (iv)
mature miRNAs or viroids are always
excised from a larger, highly structured
dsRNA precursor (Figure 1; Diener, 2003;
Ambros, 2004; Ritchie et al., 2007; Bartel,
2009; Ding, 2009; Hammann and Steger,

2012); (v) the RNaseIII-like enzymes like
Drosha and Dicer in concert process
dsRNA precursors into small 18–25 nt
mature ssRNAs (i.e., mature miRNA or
vsRNA) (Hedges, 2002; Diener, 2003;
Ambros, 2004; Bartel, 2009; Ding, 2009;
Hammann and Steger, 2012); (vi) mature
miRNA or vsRNA are transported out
of the nucleus via Exportin-5 or highly-
related transport mechanisms (Diener,
2003; Krol and Krzyzosiak, 2006); (vii)
mature miRNAs or vsRNAs both appear,
in part, to direct RNA-induced silenc-
ing complexes to degrade target mRNAs
(Ambros, 2004; Mehler and Mattick, 2007;
Bartel, 2009; Ding, 2009; Hammann and
Steger, 2012; Lukiw, 2012b); (viii) both
miRNA and viroid ssRNA and their pre-
cursors have evolved complex secondary
and/or tertiary structures designed to
minimize their own degradation (Chen
and Shyu, 1995; Mehler and Mattick,
2007; Navarro et al., 2012); (ix) their
small size (∼18–25 nt) may protect mature
miRNA or vsRNA against further cleav-
age by Drosha, Dicer, and other RNAseIII
enzyme systems (Bartel, 2009; Ding, 2009;
Diermann et al., 2010; Hammann and
Steger, 2012); (x) unique ssRNA sequences
of 22 nt, a common size for miRNAs and
viroids, would occur only once per human
genome which may have bearing on why
these ssRNAs are highly enriched in par-
ticular cell types (Mehler and Mattick,
2007; Ding, 2009); (xi) neither miRNA
or viroids encode proteins; their biologi-
cal effects are accomplished only through
highly selective RNA-RNA interactions
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FIGURE 1 | Similarities in miRNA and viroid structure and function. Highly schematicized figure
underscoring remarkable similarities in the structure and function of miRNA and viroids; (A) a
typical 75–110 nucleotide (nt) primary micro RNA (pri-miRNA) “hairpin” containing an endogenous
18–25 nt miRNA that yields a mature miRNA (red bar) after Drosha- and Dicer-mediated excision
and processing; the mature miRNA next associates with a cytoplasmic RNA-induced silencing
complex (RISC) and a target mRNA-3′-UTR to degrade and down-regulate expression of that target
mRNA, with subsequent effects on the expression of genes involved in homeostasis, development
and disease; (B) similarly a ∼246–401 nt closed circular viroid, also containing extensive intra-strand
base pairings and stem-loop structure(s), typically contains a 21–24 nt viroid-specific RNA (vsRNA;
red bar) that after host Drosha/Dicer-based processing yields a mature vsRNA; as is the case for
miRNAs this vsRNA subsequently targets the RISC and mRNA-3′-UTR complex, down-regulating
gene expression to induce disease in plants (Krol and Krzyzosiak, 2006; Ritchie et al., 2007; Ding,
2009; Triboulet and Gregory, 2010). In both cases larger miRNA or vsRNA precursors are processed
by an RNase III of the family of Dicer-like proteins to generate smaller ssRNA species; these sizes
are similar to endogenous small interfering RNA (as mature vsRNA or miRNA) to alter the
viroid-dependent gene expression in the host plant by viroids, or of miRNA-mRNA processing in
animal species including humans (Arteaga-Vazquez et al., 2006; Krol and Krzyzosiak, 2006; Ritchie
et al., 2007; Ding, 2009; Kosik, 2009; Triboulet and Gregory, 2010; Hammann and Steger, 2012;
Navarro et al., 2012). While naked, mature RNAs such as miRNAs and vsRNAs have relatively short
half-lives in vitro (for example human neuronal miRNAs appear to be highly labile; Sethi and Lukiw,
2009; Krol et al., 2010), stabilities may be greatly extended by single- or double-stranded
RNA-binding proteins, by complex secondary structures, by RNA circularization, by containment in
protease- and RNase-resistant vesicles, or by combinations of these and other factors (Chen and
Shyu, 1995; Cui et al., 2005; Sethi and Lukiw, 2009; Krol et al., 2010). Interestingly, viroids, at about
twice the size of typical miRNAs, are the smallest known self-replicating pathogens of all living
species, and both the plant and animal kingdoms have adopted similar ssRNA strategies to store
and transmit only the most essential genetic regulatory information in the propagation of either
homeostatic of pathological signals. The potential for interaction between vsRNA and miRNA in
their hosts, if any, amongst diverse plant and animal species is currently not known.

(Rocheleau and Pelchat, 2006; Saetrom
et al., 2006; Sano et al., 2010; Perkel, 2013);
(xii) both mature miRNAs and vsRNA
are highly soluble and mobile genetic-
information carrying elements (Diener,
2003; Cui et al., 2005; Ding, 2009; Lukiw
et al., 2010, 2012; Lukiw, 2012c); (xiii)
mature ssRNAs are highly abundant exte-
rior to the cells from which they originate,
including high abundance in circulatory
fluids like the cerebrospinal fluid (CSF)
and blood serum (Ding, 2009; Alexandrov
et al., 2012; Lukiw et al., 2012); (xiv) vsR-
NAs or miRNAs are abundant and remark-
ably bioactive in all species so far examined
(Diener, 2003; Ambros, 2004; Wang and
Ding, 2010; Lukiw, 2012b); (xv) both

mature miRNAs and viroids, but not their
precursors, are potentially pathogenic,
and capable of inducing disease in the
same cells, tissues, and species in which
they were originally generated (Saetrom
et al., 2006; Lukiw and Pogue, 2007; Pogue
et al., 2010); (xvi) these diseases range
from stunting diseases of plants to cancers
and neurodegenerative disorders of Homo
sapiens, representing a highly similar RNA-
based pathological disease mechanism
conserved over at least 1.5 × 109 years
(Diener, 2003; Lukiw et al., 2008; Ding,
2009; Wang and Ding, 2010); (xvii) the
genomes and genetic mechanisms of both
DNA- and RNA-based “helper” viruses
may enhance the pathogenicity of both

miRNA- and viroid-mediated infections
(Hill et al., 2009; Pogue et al., 2010; Wang
and Ding, 2010; Navarro et al., 2012; Ball
et al., 2013), and (xviii) both miRNA and
viroid nucleic acid sequences continue
to rapidly evolve, impacting highly spe-
cific genotypic and phenotypic aspects
of development, homeostasis and disease
in multiple species (Diener, 2003; Kosik,
2009; Wang and Ding, 2010).

These intriguing similarities between
the structure and function of miRNAs
and viroids underscore the idea that once
nature has found and tested a success-
ful molecular design for information
transfer it is highly preserved, and this
design is used repeatedly over evolution
in diverse biological applications across
multiple forms of life. Indeed, much of
viroid biology appears to be reiterated in
the genetic mechanism of miRNA actions
throughout the plant and animal king-
doms. These commonalities are based in
the intrinsic molecular-genetic mecha-
nism of miRNA and viroid RNA sequence
structure and complementarity-mediated
ssRNA-mRNA recognition based on
hydrogen bonding. Intriguingly, small
non-coding ssRNA, miRNA, and viroid
ribonucleotide sequences contain finger-
prints for conservation across multiple
species, and these fingerprints represent
some of the most highly conserved nucleic
acid sequences known (Arteaga-Vazquez
et al., 2006; Shi et al., 2012). Interestingly,
it has been recently demonstrated that
infection of human brain cells in pri-
mary culture with a particularly virulent
strain of the dsDNA herpes simplex-1
virus (HSV-1) induces, and then uti-
lizes a host-specific pro-inflammatory
miRNA-146a to support and propagate
its invasiveness and successful infection
(Hill et al., 2009; Lukiw et al., 2010; Ball
et al., 2013). It will certainly be inter-
esting to understand if other RNA- or
DNA-based “helper viruses” promote or
intensify the actions of miRNA or viroids
in vivo, if miRNA effects can be moderated
by vsRNA or other ssRNA or dsRNA, if
miRNA and viroid activities are equally
affected by the presence of natural circu-
lar RNAs (circRNAs), and what potential
roles other environmental and epigenetic
factors may play in miRNA- or vsRNA-
mediated gene activity and pathogenicity
as disease moderators in the CNS (Krol
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and Krzyzosiak, 2006; Lukiw, 2012a, 2013;
Hansen et al., 2013; Memczak et al., 2013).
Importantly, the potential for spreading of
miRNA and viroid information-carrying
signals from cell to cell, tissue to tissue and
perhaps even between species has a enor-
mous bearing on our understanding on
the complex genetic interactions between
diverse forms of life in both the plant and
animal kingdoms, and their potential for
symbiotic exchanges of genetic informa-
tion in natural environments (Orgel, 1968;
Hedges, 2002; Arteaga-Vazquez et al.,
2006; Ding, 2009; Wang and Ding, 2010;
Alexandrov et al., 2012; Hammann and
Steger, 2012; Bhattacharjee and Lukiw,
2013; Sarkies and Miska, 2013; Perkel,
2013).
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