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INTRODUCTION
Li et al. (2013) studied ThVGdKO mice
produced by genetic elimination of the
genes for both vesicular transporters
Vglut-1 and Vglut-2. In these mice tha-
lamocortical glutamate neurotransmission
in somatosensory cortex (but not in
visual or auditory cortex) is silenced
or knocked-out, thereby disabling the
release of glutamate from synaptic vesi-
cles. This resulted in a failure to con-
struct barrel cortex columns, and induced
severe defects in both cortical layer 4
lamination and in the morphology of
spiny stellate cells. The authors explain
this finding as follows: “We favor a
model in which stellate neurons modu-
late activity and direct the local migra-
tion of neurons into barrels, modify
gene expression, and influence cell mor-
phologic development.” Li et al. (2013)
present an hypothesis to explain their
results: see also the preview of this
paper by Barth and Kuhlman (2013).
They suggest that it is possible that, by
binding to its NMDA or metabotropic
receptors, glutamate would stimulate sec-
ond messenger chains that terminate
by activating the appropriate transcrip-
tion factors. We accept their hypothe-
sis as a partial explanation, but we sug-
gest that there may be other factors
involved that they have not considered.
To explain these more fully we add two
additional hypotheses. These hypotheses
are not competitive, either with each
other or with the original hypothe-
sis of Li et al. (2013), but constitute
additions.

HYPOTHESIS 1. THE ROLE OF
EXOSOMES
The first factor is the exosome. There is
now abundant evidence that almost all
cells, neurons included, bud-off exosomes
that are, in essence, cargo-carrying vesi-
cles. Exosomes transport genetic material
between cells, including protein transcrip-
tion factors, various types of RNA (includ-
ing microRNAs), and segments of DNA
that may induce phenotypic changes in
recipient neurons (Ratajczak et al., 2006;
Valadi et al., 2007; Lee et al., 2012;
O’Loughlin et al., 2012; Tetta et al., 2012;
Turola et al., 2012). The INSERM research
group at the University of Grenoble (Fauré
et al., 2006; Lachenal et al., 2011; Chivet
et al., 2012) has suggested that exosomes
may have a regulatory function at synapses
and thus may offer an ideal mechanism
for the interneuronal transfer of informa-
tion. Smalheiser (2007) has suggested that
exosomes are greatly involved with trans
synaptic activity, and that exosomal secre-
tion of proteins and RNAs may play a fun-
damental role in communication within
the nervous system.

These researchers limited their
hypotheses of the function of the exosome
system to local retrograde activity at the
synapses on which the exosomes attach
(save a brief mention by Von Bartheld
et al., 1996). We have suggested that
the function of exosomes that cross the
synapse may include anterograde activ-
ity in the entire postsynaptic neuron and
beyond (Smythies and Edelstein, 2013a,b;
Okuno et al., 2014). There is evidence
that, from the host cytoplasm, a system of

carrier molecules delivers exosomes and
their cargoes to the rest of the postsynaptic
neuron. Tian et al. (2010) isolated exo-
somes from PC12 cells, labeled them with
a lipophilic dye and an amino-reactive
fluorophore. The exosomes were then
incubated with these PC12 cells. Live-cell
microscopy revealed that the exosomes
were endocytosed, enclosed in vesicles
and transported to the perinuclear region.
This transport may have been medi-
ated by the cytoskeleton. Using a specific
technique involving terminal deoxynu-
cleotidyl transferase (TDT) polymerase,
Waldenström et al. (2012) identified 343
different chromosomal DNA sequences in
the microvesicles/exosomes from cultured
cardiomyocytes. Microvesicular/exosomal
DNA was observed to transfer into target
fibroblasts, where exosomes stained for
DNA were seen in the fibroblast cytosol
and in the nuclei themselves.

There is now considerable evidence to
indicate that microRNAs modulate a num-
ber of neuronal functions. For example:

— spine numbers and synapse formation
are controlled in an activity-regulated
manner by miR-485 (Cohen et al.,
2011).

— transcription of the microRNA
miP335 is promoted by naturally
evoked synaptic activity at the climb-
ing fiber-Purkinje cell synapse in the
mouse cerebellar flocculus (Barmack
et al., 2010).

— neuronal activity regulates spine
formation, in part, by increasing
miR132 transcription, which in turn
activates a Rac1-protein activated
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kinase (Rac1-Pak) actin remodeling
pathway (Impey et al., 2010).

— microR-181a activity in primary neu-
rons, induced by dopamine signaling,
is a negative posttranscriptional regu-
lator of GluA2 expression (Saba et al.,
2012).

— utilizing a mouse line with a con-
ditional neuronal deletion of Dgcr8
(a microRNA biogenesis protein pre-
dicted to process microRNAs exclu-
sively) Hsu et al. (2012) produced
evidence that some microRNAs govern
essential aspects of inhibitory trans-
mission and interneuron development
in the mammalian nervous system.

— Gennebäck et al. (2013) and de
Jong et al. (2012) show that particu-
lar modes of stimulation of parental
cells by platelet-derived growth fac-
tor (PDGF and hypoxia respectively)
induce changes in the transcriptional
contents of secreted exosomes. This
offers new mechanisms of modulation
of computational activities in neurons
by exosomal payloads.

— MiRNA-124a is carried by exosomes
from neurons to astrocytes and
increases levels of excitatory amino
acid transporter (EAAT2) therein
(Morel et al., 2013).

The designs of most studies of neu-
ronal microRNA have concentrated on the
effects of these agents on the processes
within the same neuron that produced
them. However, the evidence now sug-
gests that it is possible that microRNAs,
as well as other signaling agents, may be
exported from a presynaptic neuron by
synaptic or perisynaptic transfer via the
exosome system, to induce extensive struc-
tural and functional changes in the entire
postsynaptic neuron.

The relevance of exosomes to the ques-
tion of the mechanism of action of gluta-
mate deletion is that the INSERM research
group at the University of Grenoble report
that exosomal release is regulated by
K+-induced depolarization. Furthermore,
exosome release from neurons in cul-
ture is “massively increased” by the
introduction of GABA antagonists. This
increase is inhibited by both AMPA and
NMDA antagonists, indicating that exo-
some secretion is activated by glutamate
activity at both the NMDA and AMPA
receptors (Frühbeis et al., 2013). Thus, it

would appear likely that, in the geneti-
cally engineered glutamate-silenced mice
of Li et al. (2013), the release of exo-
somes is severely reduced. This would
suspend a major source of epigenetic fac-
tors controlling the structure and function
of the postsynaptic neuron. Another link
between glutamate activity and exosomes
is provided by Frühbeis et al. (2013). They
showed that activity-dependent release
of the neurotransmitter glutamate trig-
gers oligodendroglial exosome secretion
mediated by Ca2+entry through oligoden-
droglial NMDA and AMPA receptors. In
turn, neurons internalize the released exo-
somes by endocytosis. This renders sup-
port to the neuron.

It is possible that the roamer type
of volume transmission can participate,
possibly involving shedding vesicles but
mainly exosomes (Agnati and Fuxe,
in preparation). They likely play a sig-
nificant role in the current experiments,
and the firing can operate in the case of
thalamocortical glutamate neurons in this
transgenic model, but without release of
glutamate since glutamate is no longer
stored in the synaptic vesicles in view of
the deletion of the vesicular glutamate
transporters. Thus, exosomes with their
multiple types of biomolecules (proteins,
receptors, mRNA, microRNA, transcrip-
tion factors, etc.) can be released and
internalized into cortical neurons and glia.
However, the transcriptional and trans-
lational actions of these biomolecules
are not sufficient to organize the corti-
cal networks when the multiple glutamate
subtypes are not activated by glutamate.
It may be that under these conditions the
exosomes are not effectively internalized
and/or that synergy between the actions of
the internalized molecules and the glu-
tamate activated intracellular cascades
is necessary for the column and cortical
organization.

HYPOTHESIS 2. THE ROLE OF OTX2
It is possible that another part of the mech-
anism responsible may be a homeoprotein
such as Otx2 that is carried from the
thalamus to the cortex, via the glutamater-
gic input (Sugiyama et al., 2008; Beurdeley
et al., 2012; Carlier et al., 2013; Spatazza
et al., 2013). After eye opening, Otx2 starts
to be synthesized by the bipolar cells of the
retina and is then exported up the visual
pathway via retinal ganglion cells, the optic

nerve, LGN and optic radiations to target
parvalbumin (PV)-expressing GABAergic
interneurons (PV cells) in the primary
visual cortex. When a critical concentra-
tion of Otx2 is reached, plasticity develops
in that part of the cortex in order that
the circuitry necessary for binocular vision
can be established. All during this period,
Otx2 is exported from the eye to the cor-
tex, with levels continuing to rise. After a
period of time (20 days in mice), Otx2 lev-
els reach another threshold, and plasticity
is switched off in order that the cortex can
maintain its adult circuitry. However, this
maintenance requires continuous transfer
of Otx2 from the eye to the cortex. If
it is cut-off by deafferentation, plasticity
returns.

The activity of Otx2, and of possi-
ble related molecules in other modali-
ties of sensory cortex, depends on the
continuous activity of the glutamater-
gic neuron. Therefore, in the absence
of glutamate, the supply of homeopro-
tein may be disrupted. Moreover, in the
experiments reported by Li et al. (2013),
the glutamate system was never active.
Thus, the homeoprotein required for con-
structing and maintaining PV-expressing
GABAergic interneurons was never avail-
able. This may well have contributed to
the disorganization of the barrels, layer 4
lamination and morphologic reconfigura-
tion observed. Indeed, it is entirely possi-
ble that all three mechanism are involved.
Further experiments are needed to explore
this matter further.

Otx2 may still be released and inter-
nalized by the surrounding neurons and
glia in this transgenic model, but cannot
induce its transcriptional actions and reg-
ulation of local protein synthesis in the
absence of continuously released gluta-
mate activating multiple glutamate recep-
tor subtypes with their signaling cascades
to the nucleus.

It may be proposed that the hypo-
thetical homeoprotein inter alia increases
the synthesis of certain types of receptor
tyrosine kinases (RTKs), which can
increase the signaling of discrete trophic
factors like fibroblast-derived growth
factor (FGF2) or brain-derived neu-
rotrophic factor (BDNF). However, to
obtain the necessary synergistic activation
to produce the barrel and lamina organi-
zation of the cortex, it may be necessary
to form inter alia receptor tyrosine kinase
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(RTK)-NMDAR and RTK-classI mGluR
heteroreceptor complexes in the plasma
membrane, which may demand con-
tinuously activated glutamate receptors
(Borroto-Escuela et al., 2013). Such
molecular events may help lead to the epi-
genetic changes necessary to produce the
barrels, etc. and the exosomally derived
biomolecules may contribute when the
above circuits are in place.
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