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Protein misfolding and aggregation is a common hallmark in neurodegenerative disorders,
including Alzheimer’s disease (AD), Parkinson’s disease (PD), and fronto-temporal
dementia (FTD). In these disorders, the misfolding and aggregation of specific proteins
occurs alongside neuronal degeneration in somewhat specific brain areas, depending on
the disorder and the stage of the disease. However, we still do not fully understand the
mechanisms governing protein aggregation, and whether this constitutes a protective
or detrimental process. In PD, alpha-synuclein (aSyn) forms protein aggregates, known
as Lewy bodies, and is phosphorylated at serine 129. Other residues have also
been shown to be phosphorylated, but the significance of phosphorylation in the
biology and pathophysiology of the protein is still controversial. In AD and in FTD,
hyperphosphorylation of tau protein causes its misfolding and aggregation. Again, our
understanding of the precise consequences of tau phosphorylation in the biology and
pathophysiology of the protein is still limited. Through the use of a variety of model
organisms and technical approaches, we are now gaining stronger insight into the effects
of phosphorylation in the behavior of these proteins. In this review, we cover recent
findings in the field and discuss how targeting phosphorylation events might be used
for therapeutic intervention in these devastating diseases of the nervous system.
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NEURODEGENERATIVE DISORDERS AS PROTEIN
AGGREGOPATHIES
Neurodegenerative disorders, such as Parkinson’s disease (PD),
Alzheimer’s disease (AD) and frontotemporal dementia (FTD),
result from the progressive loss of specific neuronal populations
leading to the progressive appearance of the clinical symptoms
that are characteristic of each disorder. Current treatments for
these disorders are palliative rather than curative and their effec-
tiveness is still far from satisfactory. Thus, tremendous efforts are
underway to elucidate the causes underlying these disorders and
to find a cure. From a molecular perspective, the common hall-
mark of neurodegenerative disorders is the misfolding and aber-
rant aggregation of proteins in amyloid-like beta-sheet filaments.
This feature is not only characteristic of classic neurodegenera-
tive disorders but also of prion disorders and other amyloidosis
inside and outside the central nervous system, suggesting that
neurodegenerative disorders are part of a much greater superfam-
ily of protein misfolding disorders, or aggregopathies (Frost and
Diamond, 2010).

While it is clear that protein misfolding and aggregation are
pathological hallmarks of neurodegenerative disorders, the pre-
cise mechanisms linking protein aggregation and neurotoxicity
are largely unknown. Protein aggregates are dynamic structures,
allowing small soluble species to detach or attach from or to
larger protein inclusions relatively easily (Kim et al., 2002). As a

result of this dynamism, protein inclusions have variable solubil-
ity, stability and size. Big, insoluble protein inclusions inside or
outside neurons were initially thought to be neurotoxic. However,
current evidence indicates that they might be rather neuropro-
tective (Arrasate et al., 2004; Bodner et al., 2006), and that the
smaller, more soluble oligomers are the ones that exert neuro-
toxicity. A consensus in this matter remains to be reached but,
regardless of the nature of the toxic and non-toxic species, unrav-
eling the mechanisms determining protein aggregation is abso-
lutely necessary for the understanding, diagnosis and treatment
of neurodegenerative disorders.

POSTTRANSLATIONAL MODIFICATIONS AS MODULATORS
OF PROTEIN FATE
Protein aggregation can be regulated by various cellular events
including different types of stress, molecular crowding, or the
local micro-environment. In addition, diverse posttranslational
modifications (PTMs), such as phosphorylation, ubiquitination
or sumoylation, which alter the conformation and/or biolog-
ical function of proteins, can also affect protein folding and
aggregation, and thereby play a critical role in neurodegenera-
tive disorders. For example, ubiquitination can direct proteins
for either degradation by the proteasome or to certain subcel-
lular compartments, and glycosylation is related to the secretion
of proteins to the extracellular medium. Both processes could
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therefore influence protein concentration, folding, localization
and, ultimately, aggregation. Phosphorylation can also affect pro-
tein conformation, function and fate in many different ways: it
may be required for proper protein folding; it may induce confor-
mational changes that can result in lower or higher catalytic activ-
ity; it may precede or function as a recognition signal for further
modifications, such as ubiquitination; it may alter the subcellu-
lar localization of the protein; and it may modify protein-protein
interactions (Salazar and Hofer, 2009). In the particular case of
neurodegenerative and protein misfolding diseases, phosphory-
lation has been shown to be involved in both protein aggregation
and toxicity, as illustrated by the paradigmatic examples described
below (Figure 1).

PHOSPHORYLATION IN PARKINSON’S DISEASE AND OTHER
SYNUCLEINOPATHIES
Alpha-synuclein (aSyn) is the main protein component of Lewy
bodies (LBs), the typical pathological hallmarks of PD and
other disorders collectively known as synucleinopathies. The vast
majority of PD cases are sporadic, multiplications and missense
mutations in the gene encoding for aSyn have been associated
with familial forms of PD (Polymeropoulos et al., 1997; Kruger
et al., 1998; Singleton et al., 2003; Chartier-Harlin et al., 2004;
Zarranz et al., 2004; Appel-Cresswell et al., 2013; Kiely et al., 2013;
Lesage et al., 2013).

Several PTMs have already been identified in aSyn. These
include ubiquitination (Shimura et al., 2001), phosphorylation at
S129 (Fujiwara et al., 2002), a C-terminal truncation (Li et al.,
2005), nitration on tyrosine residues (Giasson et al., 2000), gly-
cosylation, and SUMO modification (Dorval and Fraser, 2006).
However, most attention was devoted to phosphorylation at
S129 (pS129). While only 4% of the soluble, monomeric aSyn
appears phosphorylated under physiological conditions in vivo,
approximately 90% is phosphorylated in LB lesions (Fujiwara
et al., 2002; Anderson et al., 2006), suggesting a close relation-
ship between aSyn phosphorylation at S129 and its aggrega-
tion. In particular, pS129 aSyn is found in LBs occurring and
other pathogenic inclusions found in substantia nigra of PD
patients (Fujiwara et al., 2002; Saito et al., 2003; Anderson et al.,
2006) as well as in different brain regions of patients suffer-
ing from other synucleinopathies, such as dementia with LBs
(DLB), multiple system atrophy (Fujiwara et al., 2002; Kahle
et al., 2002; Saito et al., 2003; Nishie et al., 2004; Waxman
and Giasson, 2008), Hallervorden-Spatz disease (Fujiwara et al.,
2002), pure autonomic failure (Arai et al., 2000b), and LB vari-
ant of AD (LBVAD) (Waxman and Giasson, 2008). In addi-
tion, aSyn was found to be phosphorylated on S129 in trans-
genic mice expressing human mutant A30P, A53T, or WT aSyn
(Kahle et al., 2002; Freichel et al., 2007; Wakamatsu et al.,
2007).

In addition to S129, other three serine, four tyrosine and
ten threonine residues are putative sites of phosphorylation
(Figure 2). These residues are mostly localized in the C-terminal
region of the protein, with the exception of Y39 and S87.
Increased levels of phosphorylated S87 (pS87) were also reported
in synucleinopathies (Paleologou et al., 2010). Phosphorylation
aSyn on tyrosine 39 (pY39) and 125 (pY125) was also reported

in human brains but no correlation was established between
increased levels of phosphorylation in these residues and the
pathological condition (Chen et al., 2009; Mahul-Mellier et al.,
2014). Other residues were found to be phosphorylated in vitro
but it is unknown if their phosphorylation also occurs in vivo,
even if in small extension.

THE ROLE OF PHOSPHORYLATION ON aSyn CYTOTOXICITY AND
AGGREGATION
The phosphorylation status of aSyn clearly influences its aggrega-
tion and toxicity, but it is still unclear whether phosphorylation
promotes or prevents aggregation and toxicity. To better under-
stand this trinomial relation, would also be important to clearly
establish what are the toxic forms of aggregated aSyn, although
recent studies suggest that the soluble oligomeric/protofibrillar
species may be more toxic than larger aggregated forms of aSyn
(Spillantini et al., 1997; Conway et al., 2001; El-Agnaf et al., 2003;
Outeiro et al., 2007; Diogenes et al., 2012).

In vitro and in vivo studies, correlating phosphorylation of
aSyn in several residues to its aggregation and/or toxicity, resulted
in conflicting results (Table 1). Several of these studies employed
S129A and S129D/E mutants, to block and mimic phosphory-
lation, respectively. Other studies modulated the levels of phos-
phorylation of aSyn by either co-expressing specific kinases or
phosphatases, or by using kinase inhibitors (Table 1). Moreover,
these studies included three types of assays: (i) in vitro biochem-
ical studies; (ii) single cell models (yeast and mammalian cells);
and (iii) animal models of PD (mice or rat models). In these stud-
ies the relation between toxicity and aggregation was not always
explored (Table 1).

The genetic mutant that attempts to mimic pS129 (S129D)
aSyn was initially associated with pathology in a transgenic
Drosophila model (Chen and Feany, 2005; Chen et al., 2009) while
aSyn hyperphosphorylation and insolubility were correlated with
the disease in transgenic mouse models of PD (Kahle et al., 2002;
Freichel et al., 2007). However, opposite results were obtained
in yeast, rat and Caenorhabditis elegans models of PD. Namely,
S129E had no effect while the mutation S129A increased aSyn tox-
icity in budding yeast (Fiske et al., 2011; Sancenon et al., 2012).
Moreover, in rat models using retrovirus-mediated expression
of aSyn in neurons of the substantia nigra, the S129A variant
also showed toxicity while the results for S129D were variable,
showing either protecting (Gorbatyuk et al., 2008) or no effect
(Azeredo Da Silveira et al., 2009). In C. elegans models, S129D
aSyn was also protective, reducing neuronal dysfunction, while
S129A expression resulted in severe motor dysfunction, growth
retardation, and synaptic abnormality by lowering its membrane
interaction (Kuwahara et al., 2012).

Similarly, while some reports suggest that pS129 promotes
inclusion formation (Fujiwara et al., 2002; Smith et al., 2005;
Arawaka et al., 2006; Takahashi et al., 2007; Gorbatyuk et al.,
2008; Kragh et al., 2009; Wu et al., 2011a), others suggest that
phosphorylation prevents or has no effect on inclusion formation
(Lee et al., 2004a; Chen and Feany, 2005; Paleologou et al., 2008;
Waxman and Giasson, 2008; Azeredo Da Silveira et al., 2009;
Chau et al., 2009; Chen et al., 2009; Fiske et al., 2011; Sancenon
et al., 2012) (Table 1).
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FIGURE 1 | Model of aSyn and tau misfolding and aggregation, and

the involvement of kinases and phosphatases on their

phosphorylation/dephosphorylation. Under pathological conditions, due
to genetic or environmental factors such as exposure to pesticides, normal
highly soluble aSyn and tau misfold and are converted into pathological
oligomers and larger species that fibrillize and deposit into inclusion bodies

as LBs and Lewy neurites and into PHFs and NFTs. In this situation the
normal cellular quality-control systems (molecular chaperones, ubiquitin
proteasome system (UPS), phagosome/lysosome system) are not able to
counteract and prevent or reverse protein misfolding or eliminate proteins
that have misfolded or assembled into pathological aggregates and amyloid
fibrils.

FIGURE 2 | Schematic representation illustrating the various residues

in aSyn that can be phosphorylated in vivo (represented in blue)

and in vitro (represented in green). The mutations associated with
familial PD are shown in red. The N-terminal amphipathic region of the
protein is represented in blue, the hydrophobic central region that

contains the non-amyloid-β component (NAC) domain is represented in
purple and the highly acidic C-terminal is represented in green. The
imperfect KTKEGV repeats are represented in yellow. The kinases
described as being able to phosphorylate each of the indicated residues
are also indicated.

In vitro biochemical studies also lead to conflicting results
regarding the correlation between pS129 and fibrillization of
aSyn. While S129 aSyn phosphorylated by casein kinase (CK)2
was found to form fibrils more readily than unphosphorylated
aSyn in vitro (Fujiwara et al., 2002), different studies observed
that fibrillization of aSyn is inhibited in purified pS129 S87A
aSyn (where phosphorylation at S87 is blocked) (Paleologou et al.,
2008; Waxman and Giasson, 2008), while a more recent study
reposted that pS129 aSyn by polo-like kinase (PLK) 2 displays
comparable fibrillization kinetics to the WT protein in vitro
(Schreurs et al., 2014).

Studies performed in different cell and animal models are also
not consensual regarding the correlation between aSyn pS129
and aggregation. Most studies performed in cell lines asso-
ciate aSyn pS129 with increased formation of soluble oligomers
(Arawaka et al., 2006; Kragh et al., 2009), cytoplasmic and nuclei
aggregates (Arawaka et al., 2006; Wu et al., 2011a), and cyto-
plasmic inclusions (Smith et al., 2005; Takahashi et al., 2007)
(Table 1). Toxicity was evaluated only in some of these stud-
ies and was interrelated with increased aggregation in one study
(Kragh et al., 2009) but was found to be protective in another
(Wu et al., 2011a).
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Table 1 | aSyn phosphorylation sites and effects.

aSyn

residue

Kinase Model Cytotoxicity Aggregation References

Y39 c-Abl In vitro biochemical
assay/M17 neuroblastoma
cell lines/ primary cultures of
mouse cortical neurons /
mThy1 aSyn transgenic mice
/ Rat model involving viral
delivery

c-Abl inhibition increases
aSyn degradation by
proteasome and autophagy
pathways

– Mahul-Mellier et al.,
2014

S87 CK1 In vitro biochemical
assay/K293 and PC12 cells

– – Okochi et al., 2000

Dyrk1A In vitro biochemical
assay/SH-SY5Y and H19-7
cells

Increased pS87 increases
citotoxicity

Increased pS87 increases
aSyn aggregation in cultured
cells

Kim et al., 2006

CK1 In vitro biochemical
assay/SH-SY5Y cells/
transgenic mice M20 and
M83

– pS87 reduce recombinant
aSyn fibril formation

Waxman and
Giasson, 2008

CK1 In vitro biochemical assay/
transgenic mouse models of
PD/LBD and MSA

– S87E or pS87 blocks aSyn
fibrillization

Paleologou et al.,
2010

– Rat model involving viral
delivery of WT, S87A, and
S87E aSyn

S87E protects against aSyn
induced toxicity by reducing
dystrophic fibers, and motor
impairment

S87E inhibits aSyn
aggregation

Oueslati et al., 2012

Y125 Fyn In vitro biochemical
assay/COS7 cells

– – Nakamura et al., 2001

Src, Fyn In vitro biochemical
assay/HEK293T cells

– – Ellis et al., 2001

Src-family kinases COS7 cells – – Nakamura et al., 2001

Syk, Lyn, Fgr In vitro biochemical
assay/SH-N-BE and CHO cells

– Syk-mediated aSyn
phosphorylation decreases
oligomerization

Negro et al., 2002

kinase shark (Syk
Drosophila
homolog)

Drosophila Increased pY125 is
protective; Y125F is toxic

Increased pY125 decreases
aSyn oligomerization while
Y125F increases it

Chau et al., 2009

Fyn In vitro biochemical assay – in vitro pY125 fibrillate
similarly to WT aSyn while
Y125F or Y125E fibrillate
significantly slower than WT
aSyn

Schreurs et al., 2014

c-Abl In vitro biochemical
assay/M17 neuroblastoma
cell lines/ primary cultures of
mouse cortical neurons /
mThy1 aSyn transgenic mice
/ Rat model involving viral
delivery

c-Abl inhibition increases
aSyn degradation by
proteasome and autophagy
pathways

– Mahul-Mellier et al.,
2014

S129 CK1, CK2 In vitro biochemical
assay/K293 cells

– – Okochi et al., 2000

CK1, CK2, Grk2,
Grk5

In vitro biochemical
assay/COS-1 cells

– – Pronin et al., 2000

CK2 In vitro biochemical assay – pS129 increases aSyn
fibrillization in vitro

Fujiwara et al., 2002

PLK2 In vitro biochemical
assay/HEK293 cells/Mouse

– – Inglis et al., 2009

(Continued)
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Table 1 | Continued

aSyn

residue

Kinase Model Cytotoxicity Aggregation References

CK1, CK2 In vitro biochemical assay – pSer129 inhibits rather than
promotes aSyn fibrillization;
S129A promotes aSyn
aggregation

Paleologou et al.,
2008

PLK2 In vitro biochemical assay – in vitro pS129, S129A or
S129D fibrillate similarly to
WT aSyn

Schreurs et al., 2014

Yck1 and Yck2
yeast CK1 kinases

S. cerevisiae pS129 by plasma membrane
CK1 kinases correlates with
aSyn toxicity

pS129 by plasma membrane
CK1 kinases correlates with
aSyn inclusion formation

Zabrocki et al., 2008

– Schizosaccharomyces pombe
andS. cerevisiae

Neither S129A nor S129D
mutants altered WT aSyn
toxicity

Both S129A and S129D
increased endomembrane
association in S. pombe, but
only S129D decreased
plasma membrane
association in S. cerevisiae

Fischer et al., 2009

CK1 S. cerevisiae Yck1 CK1 yeast ortholog
phosphorylate S129 aSyn and
attenuate aSyn toxicity by an
S129
phosphorylation-independent
mechanism; S129A increases
aSyn toxicity in a yeast
genetic context-dependent
manner

S129A increases aSyn
inclusion formation a in a
yeast genetic
context-dependent manner;

Sancenon et al., 2012

PLK1, PLK2, PLK3,
PLK4

S. cerevisiae, mouse CAD
cathecolaminergic cells and
human H4 neuroglioma cells

PLK2 increased aSyn
cytotoxicity in yeast but by an
S129
phosphorylation-independent
mechanism phosphorylation

PLK2 promotes aSyn
inclusion formation in yeast
and in mammalian cells by an
S129
phosphorylation-independent
mechanism

Basso et al., 2013

– S. cerevisiae S129A increases aSyn toxicity S129A aSyn forms more
inclusions and oligomeric
species with higher molecular
weight than the WT form

Tenreiro et al., 2014

GRK5 HEK293, SH-SY5Y cells and
primary neurons from the
cerebral cortex of fetal mice

– Increased aggregation by
co-expression with GRK5

Arawaka et al., 2006

CK2 293T, PC-12 and NS20Y cells
stably or transiently
transfected with synphilin-1,
aSyn and/or CKII

– S129A mutation does not
influence aSyn aggregation
with synphilin-1

Lee et al., 2004a

– 293T cells stably transfected
with synphilin-1
co-expressing aSyn WT or
S129A

S129A mutation does not
influence aSyn toxicity

S129A mutation does not
influence aSyn aggregation

Tanaka et al., 2004

CK2 SH-SY5Y cells No toxicity detected S129A decreases inclusion
formation while pS129 levels
correlates with inclusion
formation

Smith et al., 2005

CK2 and other
unidentified
kinases

SH-SY5Y cells S129D is toxic; S129A does
not affect aSyn toxicity

increased pS129 was not
attend with increased
insoluble aggregates

Chau et al., 2009

CK2 3D5 neuroblastoma cell line – pS129 promotes aSyn
oligomerization and inclusion
formation

Takahashi et al., 2007

(Continued)
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Table 1 | Continued

aSyn

residue

Kinase Model Cytotoxicity Aggregation References

CK1, CK2 In vitro biochemical
assay/SH-SY5Y cells/
transgenic mice M20 and
M83

– pS129 reduced recombinant
aSyn fibril formation

Waxman and
Giasson, 2008

– Mouse MN9D dopaminergic
cells coexpressing human
aSyn WT or S129D

S129D is protective S129D promotes aSyn fibril or
inclusion formation

Wu et al., 2011a

GRK2, GRK5,
PLK2, PLK3

Human brain neuroglioma H4
cell line

– S129A increases inclusion
formation

Gonçalves and
Outeiro, 2013

CK2 and PLKs Rat oligodendroglial cell line
OLN-93 coexpressing human
p25aand aSyn WT or
S129A/D

pS129 increases microtubule
retraction followed by
apoptosis and cell dead;
S129A is protective while
S129D behaves as WT,
whoever with a smooth
phenotype

pS129 promotes aSyn
oligomers formation while
S129A mutagenesis or CK2
and PLKs kinase inhibitors
prevent it

Kragh et al., 2009

PLK1, PLK2, PLK3 HEK293T/HeLa cells/ primary
rat Neurons/ (Thy1)-h[A30P]
aSyn transgenic mice

– – Mbefo et al., 2010

Gprk2 (Grk2
Drosophila
homolog)

Drosophila Increased pS129 is toxic;
S129D is toxic; S129A is
protective

pS129 increases soluble
oligomers formation but has
no effect on inclusion
formation

Chen and Feany,
2005; Chen et al.,
2009

– SH-SY5Y cells/ transgenicC.
elegans

S129D is protective while
S129A is toxic

No insoluble oligomers or
bigger aggregates were
observed

Kuwahara et al., 2012

– Rat model involving viral
delivery of WT or S129D/A
aSyn

S129A is toxic while S129D is
protective

S129D promotes inclusion
formation while S129A
reduce it

Gorbatyuk et al., 2008

– Rat model involving viral
delivery of WT or A30P aSyn
with S129D/A mutations

S129A is toxic while S129D
has no effect

S129A increases aggregates
formation while S129D forms
fewer but larger aggregates

Azeredo Da Silveira
et al., 2009

CK1, CK2, PLK1,
PLK2, PLK3

In vitro biochemical assay /
QBI293 cells transfected with
WT aSyn and treated with
recombinant aSyn fibrils to
induce the formation of
aggregates, treated with
kinases inhibitors or
co-expressing kinases

– Results obtained with
different kinases suggest that
phosphorylation of aSyn is
independent of aSyn
aggregate formation

Waxman and
Giasson, 2011

PLK2 HEK239T cells co transfected
with aSyn and WT PLK2 or
the kinase dead mutant (DM)
PLK2; treated or not with
PLK2 inhibitor / Rat model
involving viral delivery of aSyn
with either PLK2 WT or KDM

Increased pS129 aSyn by
PLK2 reduces aSyn
accumulation, suppresses
dopaminergic
neurodegeneration, and
reverses hemiparkinsonian
motor impairments by
promoting aSyn autophagic
clearence

– Oueslati et al., 2013

Y133 Syk In vitro biochemical
assay/SH-N-BE and CHO cells

– Syk-mediated aSyn
phosphorylation decreases
oligomerization

Negro et al., 2002

Y136 Syk In vitro biochemical
assay/SH-N-BE and CHO cells

– Syk-mediated aSyn
phosphorylation decreases
oligomerization

Negro et al., 2002
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In yeast cells, S129A aSyn is more toxic and forms more inclu-
sions and oligomeric species of higher molecular weight than
S129E or WT forms of aSyn (Sancenon et al., 2012; Tenreiro
et al., 2014). Consistently, higher toxicity of the S129A variant is
also associated with an increase in the generation of small, more
soluble aggregates in rats (Azeredo Da Silveira et al., 2009).

To explain the discrepancies between the results obtained in
different cell and animal models, several ideas have been put for-
ward. One possibility is that the predominance of pS129 aSyn
in LBs is not caused by its inherent propensity to aggregate but
could be more related to the presence or absence of additional fac-
tors in the different models employed. Namely, the distinct results
obtained in rat models could be eventually associated to dose-
dependent interactions between rat aSyn and virally expressed
mutant human aSyn, altering the aggregation properties of the
protein, as has been demonstrated in vitro for mixtures of mouse
and human aSyn (Rochet et al., 2000). On the other hand, in SH-
SY5Y cells, co-expression of aSyn S129A with synphilin-1, an aSyn
interacting protein that is also present in LBs, resulted in the for-
mation of fewer inclusions than WT aSyn (Smith et al., 2005).
In a Drosophila model, the obvious differences in the complex-
ity of the nervous system and the absence of an aSyn homolog
might explain the differences observed (Goedert, 2001; Hamilton,
2004).

Recently, it was also suggested that the discrepancies observed
in the various studies might be due to different efficiencies of
the different kinases in phosphorylating either S129 or other
residues, as well as their differential pattern of expression in the
different models (Oueslati et al., 2013; Schreurs et al., 2014).
The conflicting results might also be due to differences in the
dephosphorylation machinery involved in the dephosphorylation
of aSyn, a process that is still understudied.

Another hypothesis is that phosphorylation could be an indi-
rect cause of aSyn pathology, namely due to the impairment of the
proteolytic machinery (Azeredo Da Silveira et al., 2009). There
are several examples of proteins where phosphorylation works as
a signal for protein degradation. If this is also the case for aSyn,
then phosphorylated aSyn could accumulate in LBs due to protea-
somal impairment (McNaught and Jenner, 2001; Shimura et al.,
2001; Tanaka et al., 2001; Snyder et al., 2003; Grunblatt et al.,
2004) leading to its accumulation and consequent aggregation.

Phosphorylation of aSyn in inclusions may be partially due
to the intrinsic properties of aggregated aSyn to act as substrate
for kinases but not phosphatases, as indicated by in vitro stud-
ies, suggesting that fibril and inclusion formation occur prior to
phosphorylation and that this modification becomes more pro-
nounced with disease progression (Waxman and Giasson, 2008;
Mbefo et al., 2010; Paleologou et al., 2010; Waxman and Giasson,
2011).

In addition to S129, there are other phosphorylation sites in
aSyn that may be relevant to aggregation and toxicity in synu-
cleinopathies. This could either be due to a direct effect of the
phosphorylation, or due to an effect on the cross-talk that likely
occurs between phosphorylated states of these different residues.
For example, phosphorylation of tyrosine residues Y125, Y133,
and Y136 in the C-terminal segment of aSyn suppresses eosin-
induced oligomerization (Negro et al., 2002). Phosphorylation at

Y125 (pY125) has opposing effects to phosphorylation of S129
on aSyn neurotoxicity and soluble oligomer formation in a trans-
genic Drosophila model (Chen et al., 2009). Although pY125 does
not directly affect the pS129 or vice versa, tyrosine phosphoryla-
tion is possibly acting downstream of pS129, as increasing pY125
levels rescued the neurotoxicity of a phospho-mutant S129D
(Chen et al., 2009). This could be easily explained considering
that different kinases are involved in the two phosphorylation
events, which in turn can have behind completely different regu-
lation pathways and physiological roles. Phosphorylation at Y125
diminishes with aging and is reduced in cortical tissue of DLB
patients indicating a neuroprotective role (Chen et al., 2009).
However, another recent study did not observe any significant
differences in the levels of pY125 between PD brains and con-
trols (Mahul-Mellier et al., 2014). In fact, phosphorylation at
this residue was not detected in LBs of patients with DLB, in
PD patients carrying the A53T mutation, nor in MSA cases
(Anderson et al., 2006). This might be due to an increased sen-
sitivity of Y125 to be dephosphorylated post mortem (Chen et al.,
2009). Additionally, it could not be completely excluded that the
observed effect on reduced oligomerization and concomitant tox-
icity was exclusively due to pY125, as the degree of Y133 and Y136
phosphorylation was not evaluated in this study performed in a
Drosophila PD model (Chen et al., 2009). In fact, studies using
recombinant aSyn demonstrated that the single phosphorylation
of Y125 by Lyn and Fgr kinases does not affect oligomerization
while the phosphorylation of all residues Y125, Y133 and Y136
by Syk prevents it (Negro et al., 2002). Recently, a new residue
was detected as being phosphorylated in human brain tissues,
the Y39, but without significant differences in the levels of pY39
between PD brains and controls (Mahul-Mellier et al., 2014).
Importantly, in this same study, phosphorylation at Y39 and Y125
was found to play an important role in regulating aSyn clearance
through proteasome and autophagy pathways (Mahul-Mellier
et al., 2014).

S87 is, in addition to Y39, the only other residue outside the
C-terminal region reported to undergo phosphorylation (pS87)
in vivo (Paleologou et al., 2010). pS87 was found to be increased
in brains of rat and mice models of synucleinopathies as well as
in human brains from AD, LBD, and MSA patients (Paleologou
et al., 2010) contradicting previous studies where phosphoryla-
tion of aSyn at this residue was not detected in either human
brain samples or a transgenic mouse model of synucleinopathies
(Fujiwara et al., 2002; Anderson et al., 2006; Waxman and
Giasson, 2008). Again, results obtained using different systems
were contradicting. pS87 may promote aSyn inclusion forma-
tion and decrease cell viability in SH-SY5Y and H19-7 cell lines
(Kim et al., 2006). On the other hand, in vitro phosphorylation
at this site inhibits aSyn fibril formation (Waxman and Giasson,
2008; Paleologou et al., 2010). Moreover, immunofluorescence
staining of LBs isolated from fresh human brains using a specific
anti-pS87 antibody allowed its detection and suggested that this
phosphorylation occurs throughout the life span of LB develop-
ment (Paleologou et al., 2010). More recently, S87E was found
to inhibit aggregation and to protect against aSyn induced tox-
icity in vivo, namely by reducing aSyn aggregates, dystrophic
fibers, and motor impairment in a rat model of PD where viral
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delivery was used to overexpress WT, S87A, and S87E aSyn in the
substantia nigra (Oueslati et al., 2012).

Another aspect that might explain the discrepancies observed
in the different studies is the employment of aSyn phosphory-
lation mutants. While several studies reported consistent results
using in parallel genetic or pharmacological methods to alter
aSyn phosphorylation status (Chen and Feany, 2005; Smith
et al., 2005; Chen et al., 2009), other studies indicate that
phospho-mutants may not fully recapitulate the real phosphory-
lation/unphosphorylation states of aSyn (Paleologou et al., 2008;
Schreurs et al., 2014). In particular, it was shown that S129A
and S129D/E mutations themselves could have effects on aSyn
aggregation properties independent of their effects on phospho-
rylation, with the S129A mutation stimulating fibril formation
while S129D/E mutations do not reproduce the effect of phos-
phorylation on the structural and aggregation properties of aSyn
in vitro (Paleologou et al., 2008). However, in yeast we observed
that S129G and S129A mutations, both blocking aSyn phospho-
rylation, were more toxic and resulted in increased inclusion
formation excluding that the observed phenotypes were due to
specific structural consequences of S129A mutation on aSyn
(Tenreiro et al., 2014). Moreover, in this yeast model, S129E aSyn
exhibited the same phenotype of toxicity and inclusion formation
as the WT protein that is strongly phosphorylated on S129 by
endogenous kinases (Tenreiro et al., 2014). Despite the inherent
caveats, the use of aSyn phospho-mutants still remains as a unique
and powerful means to interrogate the effects of phosphorylation.
Regarding the use of phosphomimic mutants of other residues,
S87E was shown to behave as pS87, at least with respect to its
effects on aSyn aggregation, while the S87A mutant exhibited
similar secondary structure and similar membrane binding and
aggregation properties as the WT protein (Waxman and Giasson,
2008; Paleologou et al., 2010; Oueslati et al., 2012).

Mutants that abolish phosphorylation at tyrosine residues of
aSyn (by replacing tyrosine by phenylalanine residues) were used
in several in vitro and in vivo studies (Chen et al., 2009; Mahul-
Mellier et al., 2014). However, there are no mutants that mimic
the phosphorylated state of a tyrosine residue, restricting the use
of mutants that attempt to mimic tyrosine phosphorylation.

PHYSIOLOGICAL AND PATHOLOGICAL IMPLICATIONS OF aSyn
PHOSPHORYLATION
Initial studies suggested aSyn might be predominantly unphos-
phorylated under physiological conditions (Okochi et al., 2000;
Fujiwara et al., 2002). It was hypothesized that changes in aSyn
phosphorylation could represent a response to biochemical events
associated with PD pathogenesis. Among these, mitochondrial
complex I dysfunction, oxidative stress and proteasome dysfunc-
tion are processes that are known to be involved in synucle-
inopathies (Lee and Trojanowski, 2006; Lashuel et al., 2013).
Increased levels of pS129 aSyn were observed upon proteasome
inhibition or oxidative stress in SH-SY5Y cells over-expressing
aSyn. In the case of proteasomal impairment, this seems to result
in pS129 aSyn accumulation through an increase in the activity
of the kinase(s) involved, a decrease in protein turnover and, ulti-
mately, in increased cell death (Waxman and Giasson, 2008; Chau
et al., 2009). The kinases involved were not fully characterized

but CK2 was found to be one of them. On the other hand, it is
known that aggregation of aSyn itself leads to proteasome impair-
ment (Tanaka et al., 2001; Snyder et al., 2003; Lindersson et al.,
2004), which in turn could lead to CK2 activation and eventually
to increased levels of pS129. It is important to note that phospho-
rylation of S129 appears not to be a general response to cellular
stress, as inhibition of complex I had little effect on pS129 aSyn
levels (Waxman and Giasson, 2008; Chau et al., 2009).

The low levels of pS129 aSyn under physiological conditions
as well as the absence of other phosphorylated residues such as
pY39, pS87 and pY125 (Okochi et al., 2000; Fujiwara et al., 2002;
Anderson et al., 2006) could also be related to a faster degradation
of this form under normal conditions. In fact, the phospho-
rylation status of aSyn was recently correlated with clearance
mechanisms (Oueslati et al., 2013; Mahul-Mellier et al., 2014).
Namely, blocking S129 phosphorylation in a yeast model lead to
impaired aSyn clearance by autophagy (Tenreiro et al., 2014). In
line with this observation increased levels of pS129 by overex-
pression of PLK2 suppress dopaminergic neurodegeneration, and
reverse hemiparkinsonian motor impairments in a rat model of
PD by promoting aSyn autophagic degradation (Oueslati et al.,
2013). Moreover, phosphorylation at Y39 and Y125 by c-Abl
kinase protects aSyn against its degradation via the autophagy and
proteasome pathways in cortical neurons (Mahul-Mellier et al.,
2014).

Phosphorylation also seems to alter the subcellular localiza-
tion of aSyn. While pS129 aSyn was found to be preferentially
localized in the nuclei of dopaminergic neurons in rat and mouse
models of synucleinopathy (Yamada et al., 2004; Wakamatsu
et al., 2007), in other studies using PD rat models the phospho-
resistant S129A was found to be localized in the nucleus at
higher levels than the S129D form, and was found to corre-
late with enhanced toxicity (Gorbatyuk et al., 2008; Azeredo Da
Silveira et al., 2009). Our group demonstrated that S129 phos-
phorylation modulates the shuttling of aSyn between nucleus
and cytoplasm in human neuroglioma cells, using photoactivat-
able green fluorescent protein as a reporter. Moreover, we also
found that co-expression of aSyn with different kinases altered the
translocation dynamics of the protein. While G protein-coupled
receptor kinase 5 (GRK5) promotes the nuclear localization of
aSyn, PLK2 and 3 modulate the shuttling of the protein between
the nucleus and cytoplasm (Gonçalves and Outeiro, 2013). This
difference might reflect different aSyn phosphorylation patterns
in S129 and/or other residues, or phosphorylation of other tar-
gets besides aSyn. Very recently, G51D aSyn was found to exhibit
enhanced nuclear localization and to be hyperphosphorylated
on S129 in primary neurons (Fares et al., 2014). Although the
function of aSyn in the nucleus is still unclear, it seems this
is related with a pathological role that is independent of aSyn
aggregation. In particular, nuclear localization of aSyn increases
under oxidative stress conditions (Xu et al., 2006; Monti et al.,
2010; Siddiqui et al., 2012). Nuclear aSyn interacts with histones,
inhibits acetylation and promotes neurotoxicity (Goers et al.,
2003; Kontopoulos et al., 2006). Moreover, aSyn might act as a
transcriptional regulator, binding promoters such as PGC1-alpha,
a master regulator of mitochondrial gene expression (Siddiqui
et al., 2012).

Frontiers in Molecular Neuroscience www.frontiersin.org May 2014 | Volume 7 | Article 42 | 8

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Tenreiro et al. Phosphorylation and neurodegeneration

Phosphorylation at S129 reduces the affinity of aSyn for lipids
(Okochi et al., 2000; Pronin et al., 2000; Fujiwara et al., 2002;
Yamada et al., 2004). Also pS87 was described to significantly
reduce aSyn binding to lipid vesicles (Paleologou et al., 2010).
Therefore, the phosphorylation status of aSyn might regulate its
role in synaptic vesicle dynamics in physiological conditions and
might contribute to its pathological role in abnormal dopamine
neurotransmission (Lundblad et al., 2012; Scott and Roy, 2012).

It was also reported that aSyn inhibits tyrosine hydroxylase
activity, a rate-limiting enzyme in dopamine biosynthesis, in
dopaminergic MN9D cells, while the phosphomimic mutant of
aSyn, S129D, relieves this inhibition and results in an increase
of dopamine content in cells (Wu et al., 2011a). Recently, it
was also observed that membrane-associated aSyn enhances
dopamine uptake capacity in dopaminergic SH-SY5Y cells by the
dopamine transporter through GRKs-mediated S129 phosphory-
lation (Hara et al., 2013).

The phosphorylation status of aSyn could also modulate its
protein-protein interactions. The unphosphorylated form of S129
associates mainly with mitochondrial electron transport proteins
while pS129 associates with cytoskeletal, vesicular trafficking pro-
teins and enzymes involved in protein serine phosphorylation
(McFarland et al., 2008). Phosphorylation also appears to have an
important role in the regulation of aSyn axonal transport as the
S129D mutation significantly reduces its rate of transport in neu-
rons, likely due to the modulation of the interaction of aSyn with
motor and/or accessory proteins involved in this process (Saha
et al., 2004). Moreover, the interplay between the different phos-
phorylated residues could also contribute to increase the diversity
in the possible protein interactors. In fact, several differences
were observed in the set of proteins that were found to inter-
act with S129 or Y125-phosphorylated forms of aSyn (McFarland
et al., 2008). Both, S129 and Y125 residues are localized in the C-
terminal region of aSyn which has been implicated in the majority
of aSyn interactions with proteins (Jensen et al., 1999; Giasson
et al., 2003a; Fernandez et al., 2004) reinforcing the relevance that
phosphorylation in these residues could modulate the biological
role of aSyn.

The C-terminus of the protein was also implicated in aSyn
interactions with metal ions (Paik et al., 1999; Brown, 2007).
These interactions influence the structure and propensity for
aggregation of aSyn in vitro and in cell culture models of synu-
cleinopathies (Paik et al., 1999; Brown, 2007; Wright et al., 2009).
Interestingly, a recent study showed that pY125 and pS129 alter
the binding sites of metal ions and increase the binding affinity
of Cu(II), Pb(II), and Fe(II), but not Fe(III), a feature that could
modulate aSyn function as well as aggregation (Lu et al., 2011).

Phosphorylation at S87 could also modulate protein-protein
interactions, as some proteins were found to interact via the
non-amyloid component (NAC) region, in which this residue
is located. As an example, it is possible that S87 phosphoryla-
tion alters the interaction with phospholipase D (PLD) 2, an
enzyme involved in lipid-mediated signaling cascades and vesicle
trafficking (Outeiro and Lindquist, 2003; Payton et al., 2004).

Fyn and Src kinases are able to phosphorylate aSyn at Y125,
suggesting phosphorylation in this residue might also modu-
late spatial learning and synaptic plasticity, due to the role these

kinases play in these processes (Zhao et al., 2000). On the other
hand, Fyn and Src are non-receptor-type PTKs activated by
extracellular factors like neurotrophic factors and growth factors,
suggesting that the phosphorylation state of aSyn can be regu-
lated by extracellular signaling molecules, such as neurotrophins,
cytokines, and cell adhesion molecules (Nakamura et al., 2001).
Recently, a new connection between tyrosine phosphorylation
of aSyn and synaptic plasticity was established with the identi-
fication of Y39 as the main target of phosphorylation by c-Abl
protein tyrosine kinase (Mahul-Mellier et al., 2014), a kinase
that plays an important role in the development of the central
nervous system (CNS) and in neuronal plasticity (Moresco and
Koleske, 2003; Moresco et al., 2003). Interestingly, c-Abl is upreg-
ulated in PD brains (Ko et al., 2010; Hebron et al., 2013a) as
well as in other neurodegenerative diseases (Schlatterer et al.,
2011). This tyrosine kinase is activated by increased levels of aSyn
and, in turn, increased c-Abl activity leads to aSyn accumulation
(Hebron et al., 2013a,b) by increasing pY39 and, to a lesser extent
pY125, thereby affecting clearance pathways (Mahul-Mellier et al.,
2014). Thus, phosphorylation of aSyn at tyrosine residues could
be relevant in the context of the alterations of synaptic functions
observed in PD and other synucleinopathies.

It remains unclear how familial mutations of aSyn might alter
the phosphorylation of the protein, but it is likely that different
mutations may influence phosphorylation in different residues.
In transgenic mice expressing either E46K or A53T aSyn, inclu-
sions were found to be strongly phosphorylated at S129 (Emmer
et al., 2011). In HEK cells, S129 phosphorylation by GRK6 or
PLK2 is equally efficient in WT or in G51D aSyn, although
pS129 enhanced nuclear localization of G51D compared to WT
aSyn (Fares et al., 2014). Moreover, while the A53T mutant
shows similar phosphorylation levels to WT aSyn in SH-SY5Y
cells (Smith et al., 2005), and slower in vitro phosphorylation
kinetics by CK2 (Ishii et al., 2007), it was observed that detergent-
insoluble aSyn from patients carrying the A53T mutation was
hyper-phosphorylated at S129 (Anderson et al., 2006). In any
case, additional studies on the interplay between aSyn mutations
and phosphorylation are needed.

KINASES INVOLVED IN aSyn PHOSPHORYLATION
Several kinases have been implicated in aSyn phosphorylation
(Table 1). S129 can be phosphorylated by G-protein coupled
receptor kinases (GRK1, GRK2, GRK5 and GRK6) (Pronin et al.,
2000; Arawaka et al., 2006; Sakamoto et al., 2009), casein kinases
1 and 2 (CK1, CK2) (Okochi et al., 2000; Smith et al., 2005;
Ishii et al., 2007; Takahashi et al., 2007; Wakamatsu et al., 2007;
Waxman and Giasson, 2008; Zabrocki et al., 2008), and the polo-
like kinases (PLKs) (Inglis et al., 2009). The leucine-rich repeat
kinase 2 (LRRK2) was also shown to phosphorylate aSyn at S129
(Qing et al., 2009), but this remains highly controversial as no
other studies were able to confirm this, despite the existence of
a clear interaction between the two proteins (Qing et al., 2009;
Guerreiro et al., 2013).

Recent studies revealed that, in addition to phosphorylat-
ing agonist-occupied G protein-coupled receptors (GPCRs),
GRKs may also phosphorylate non-receptor substrates,
including the four members of the synuclein family (aSyn,
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beta-, gamma-synuclein and synoretin) (Pronin et al., 2000).
Overexpression of GRK2 or GRK5 in COS-1 cells showed that
these kinases phosphorylate aSyn at S129 (Pronin et al., 2000).
Phosphorylation of aSyn at S129 by endogenous GRKs was also
demonstrated in HEK293 cells and it was observed that GRK3
and GRK6 play the main role in this modification (Sakamoto
et al., 2009).

GRK5 was found to colocalize with aSyn in the LBs of the sub-
stantia nigra of PD patients, but was not detected in cortical LBs
of DLB, or in the glial cytoplasmic inclusions of MSA (Arawaka
et al., 2006). Overexpression of aSyn increased GRK5 protein
expression in both, SH-SY5Y cells and in brain extracts of trans-
genic mice expressing human aSyn (Liu et al., 2010). A genetic
association study performed in the Japanese population revealed
a haplotypic association of the GRK5 gene with susceptibility to
sporadic PD (Arawaka et al., 2006). However, another genetic
association study performed in Southern Italy failed to correlate
GRK5 polymorphisms with sporadic PD (Tarantino et al., 2011).
The knockdown of endogenous GRK5 in SH-SY5Y cells fails to
suppress phosphorylation of aSyn (Liu et al., 2010) confirming
the involvement of other kinases in this phosphorylation.

CK1 and CK2 also phosphorylate aSyn at S129 in yeast
(Zabrocki et al., 2008), in mammalian cells (Okochi et al., 2000;
Waxman and Giasson, 2008) and in rat primary cortical neurons
(Ishii et al., 2007).

CK1-mediated phosphorylation at S129 may counteract aSyn
toxicity by attenuating vesicular trafficking defects and restor-
ing synaptic transmission in some extension (Sancenon et al.,
2012). However, higher levels of aSyn could result in protein
mislocalization in other compartments, ultimately leading to
defects in synaptic vesicle homeostasis and neurotransmission.
In addition, excess aSyn may form inclusions that sequester
CK1, depleting CK1 activity and exacerbating synaptic defects,
generating a toxic vicious cycle. CK1 was also found to phos-
phorylate aSyn at S87 (Okochi et al., 2000), and to colocal-
ize with pS87 in transgenic mice and in LB-like structures
in LBD/PD diseased brains (Paleologou et al., 2010). β sub-
units of CK2 were also found to colocalize with LBs in PD
brains (Ryu et al., 2008). Interestingly, oxidative stress imposed
by iron overload causes upregulation of CK2 which, in turn,
leads to increased pS129 aSyn with a concomitant increase
in oligomerization and inclusion formation (Takahashi et al.,
2007). In SH-SY5Y cells, the increase in aSyn phosphoryla-
tion under oxidative stress is mediated by CK2 and corre-
lates with enhancement of inclusion formation (Smith et al.,
2005).

In vitro studies, employing kinase assays, showed that PLK1,
PLK2 and PLK3 are also capable of phosphorylating aSyn at
S129 (Inglis et al., 2009; Mbefo et al., 2010). The PLKs comprise
a family of conserved Ser/Thr protein kinases that are known
to play critical roles on cell cycle regulation, cellular response
to stress and carcinogenesis (Ng et al., 2006). PLK2 and PLK3
are expressed in response to synaptic activation and appear to
be involved in synaptic plasticity, remodeling and homeostasis
(Kauselmann et al., 1999; Seeburg et al., 2005, 2008), suggesting
these kinases could be important actors in modulating the normal
physiology of aSyn.

PLK2 and PLK3 partially colocalize with pS129 aSyn in
primary hippocampal neurons as well as in cortical brain areas
of aSyn transgenic mice, reinforcing the idea that S129 phospho-
rylation by the PLKs might also occur in human brain (Mbefo
et al., 2010). Consistently, PLK2 levels are elevated in brains of
patients with AD and DLB, and correlate with the increased levels
of pS129 aSyn, further supporting a role for this kinase in disease
(Mbefo et al., 2010). PLK2 is also involved in the phosphoryla-
tion of aggregated aSyn in vitro (Mbefo et al., 2010) and in cell
culture (Waxman and Giasson, 2011). A prominent role of PLK2
as a regulator of aSyn turnover was recently described (Oueslati
et al., 2013). Importantly, PLK2-mediated pphosphorylation at
S129 of aSyn is protective in a rat model of PD, by promoting aSyn
autophagic degradation (Oueslati et al., 2013). Recently, we also
described that PLK2 mediates aSyn inclusion formation in yeast
and in mammalian cells by a S129 phosphorylation-independent
mechanism (Basso et al., 2013).

Only CK1 and the dual specificity tyrosine regulated kinase 1A
(Dyrk1A) were found to phosphorylate aSyn at S87, and this was
based on in vitro kinase assays and cells culture models (Okochi
et al., 2000; Waxman and Giasson, 2008). CK1 colocalizes with
pS87 in neuronal inclusions in a PD mouse model and in LB-like
structures in LBD/PD diseased brains (Paleologou et al., 2010).

Several tyrosine kinases phosphorylate aSyn. The Y125 residue
is target of phosphorylation by Fyn (Nakamura et al., 2001),
Syk (Negro et al., 2002), Lyn (Negro et al., 2002), c-Frg (Negro
et al., 2002), Src (Ellis et al., 2001) and c-Abl (Mahul-Mellier
et al., 2014). Syk also phosphorylates Y133 and Y136 (Negro et al.,
2002), and c-Abl also phosphorylates Y39 aSyn (Mahul-Mellier
et al., 2014).

An emerging concept is that certain phosphorylation events
might promote or prevent subsequent phosphorylation events in
other residues (Negro et al., 2002; Mbefo et al., 2010). In fact, the
double mutation of Y133 and Y136 to phenylalanines, designed
to prevent phosphorylation in these residues, augments Y125
phosphorylation by Lyn (Negro et al., 2002). Phosphorylation or
binding of c-Abl at Y125 was also found to decrease the propen-
sity of this kinase to phosphorylate aSyn at Y39 (Mahul-Mellier
et al., 2014).

TAU PHOSPHORYLATION IN ALZHEIMER’S DISEASE AND
OTHER TAUOPATHIES
The “amyloid cascade hypothesis” was formulated after an amy-
loid precursor protein (APP) mutation was reported in a family
with AD-typical histology and proposes that accumulation of an
APP cleavage product, beta amyloid (Aβ), induces the biochemi-
cal, histologic, and clinical changes AD patients manifest (Hardy
and Higgins, 1992). Later, Aβ oligomers were suggested to trigger
neurotoxicity in AD probably via tau phosphorylation. Glycogen
synthase kinase-3β (GSK-3β) activation was proposed as media-
tor of Aβ42 oligomer-induced effects on tau phosphorylation in
P301L mice (Selenica et al., 2013).

THE ROLE OF PHOSPHORYLATION ON TAU CYTOTOXICITY AND
AGGREGATION
Tau, in its longest isoform, contains 35 threonine, 45 serine, and
5 tyrosine residues meaning that nearly 20% of the tau protein
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has the potential to be phosphorylated. Early studies revealed that
tau is more efficient at promoting microtubules (MT) assembly
in a more unphosphorylated state (Lindwall and Cole, 1984). A
few years later, tau was demonstrated to make up the paired-
helical filaments (PHFs) which form the neurofibrillary tangles
(NFTs) found in AD brain and to be abnormally phosphory-
lated in these structures (Grundke-Iqbal et al., 1986; Goedert
et al., 1988; Kosik et al., 1988; Wischik et al., 1988). Further anal-
yses revealed that PHF-tau is phosphorylated at “pathological”
sites, which was assumed to contribute to pathological processes
in AD. Enhanced immunoreactivity in human AD tissue was
observed with the phosphorylation-dependent antibodies AT8
(epitope pS199/pS202/pT205), PHF-1 (epitope pS396/pS404),
and pS262 (Gu et al., 2013a; Mondragon-Rodriguez et al., 2014).
Hyperphosphorylation of tau was shown to be involved in tau
aggregation and cytotoxicity (Table 2) (Kosik and Shimura, 2005;
Noble et al., 2013).

Abnormal high levels of intracellular tau are frequently
observed in AD patients and may be directly implicated in tau
aggregation, PHF formation, and neuron loss (Gomez-Isla et al.,
1997). It was speculated that the hyperphosphorylation of tau
precedes NFT pathology and, more important, is a key event
for the integration of tau into fibrils (Bancher et al., 1991). The
staging of AD-related neurofibrillary pathology using a silver
stain technique was revised using immunostaining for hyper-
phosphorylated tau at the AT8 epitope (Braak et al., 2006).
Several studies addressed the question whether the pattern of
tau hyperphosphorylation correlates with the progression of neu-
ronal cytopathology and the formation of higher order tau species
in AD. Brain tissue was classified into pre-NFTs, intra-neuronal
NFTs and extra-neuronal NFTs, and was examined regarding the
most prominent staining of phosphorylation-dependent tau anti-
bodies. Epitopes that were associated with pretangle, non-fibrillar
tau include pS199, pS202, pT231, pS262, pT153, and S409.
Intraneuronal fibrillar structures were stained with antibodies
recognizing pS46, pT175/pT181, pT231, pS262/pS356 (12E8 epi-
tope), pS396, pS422, and pS214. Epitopes associated with extra-
cellular filamentous tau include AT8, AT100 (pT212/pS214), and
PHF-1 (Morishima-Kawashima et al., 1995b; Kimura et al., 1996;
Augustinack et al., 2002). Notably, with progression of the dis-
ease, tau is phosphorylated at pathological multiple-site epitopes
(AT8, AT100, AT180, PHF-1, 12E8). Tau inclusions were observed
in other neurodegenerative disorders such as MSA (Giasson et al.,
2003b), familial and sporadic PD (Ishizawa et al., 2003; Rajput
et al., 2006), and in Down syndrome (Flament et al., 1990;
Mondragon-Rodriguez et al., 2014). Elevated levels of AT180
(pT231/pS235)-phosphorylated tau were detected in the cere-
brospinal fluid (CSF) of patients with mild cognitive impairment
who later went on to develop AD (Arai et al., 2000a).

Several animal models were generated to recapitulate hyper-
phosphorylation of tau and the formation of NFTs as key aspects
of tauopathies (Ribeiro et al., 2013). Some studies showed that
the overexpression of human mutant tau in transgenic mice led
to increased phosphorylation of tau and the formation of tau
inclusions, aggregates, and fibrils. Phosphorylation of tau was
detected at the well-known disease-related epitopes S202, T205,
S212, S216, T231, S262, S356, S422, AT100 (Kohler et al., 2013;

Nilsen et al., 2013; Sahara et al., 2013). Likewise, overexpres-
sion of LRRK2 or p25/Cyclin-dependent kinase-5 (Cdk5) in mice
resulted in hyperphosphorylation of tau, tau aggregation into
NFT-like structures, and neuronal death (Cruz et al., 2003; Noble
et al., 2003; Bailey et al., 2013). Other models took advantage
of the co-expression of other disease-associated proteins such as
APP and presenilin 1 (Oddo et al., 2003; Grueninger et al., 2010),
or made use of the injection of Aβ fibrils (Gotz et al., 2001).

Almost all currently available animal models in AD are
based on the over-expression of pathogenic mutant tau forms.
Therefore, it debatable how well these models recapitulate AD
cases where there are no mutations in either tau or APP.
However, the first models of tauopathy, based on the overexpres-
sion of either 3-repeat or 4-repeat human WT tau, presented
tau hyperphosphorylation but no NFT formation. Expression of
tau-P301L, often in conjunction with other disease-associated
proteins, is the most widely used and most successful approach
to recapitulate key aspects of AD such as tau hyperphosphory-
lation, aggregation, and filament formation as well as neuron
death. In these models, it is often not clear what drives tau
hyperphosphorylation. In vitro studies may help to decipher the
impact of specific pathogenic mutations on tau phosphorylation
but existing data are not consistent. The well-known FTDP-17-
associated missense tau mutations R406W, V337M, G272V, and
P301L were shown to make tau a more favorable substrate for
phosphorylation by rat brain kinases, in comparison to WT tau
protein (Alonso Adel et al., 2004). In another study, the same
mutations were shown to promote or inhibit phosphorylation
at specific sites (Han et al., 2009). In vitro phosphorylation by
recombinant GSK-3b exerted reduced phosphorylation of the
R406W mutation, probably through long-range conformational
changes. Conversely, P301L and V337M mutations had no effect
(Connell et al., 2001). Similar results were obtained in cell cul-
ture (Dayanandan et al., 1999). In contrast, several other studies
using cell culture models and human brain tissue indicate that
the R406W mutation reduces tau phosphorylation, not only at
the neighboring PHF1 epitope but at several positions (Miyasaka
et al., 2001; Deture et al., 2002; Tackenberg and Brandt, 2009;
Gauthier-Kemper et al., 2011). However, depending on the cellu-
lar context, R406W was also shown to increase phosphorylation,
and other mutations, such as V337M, reduced phosphorylation
of tau at specific sites (Deture et al., 2002; Krishnamurthy and
Johnson, 2004). Alterations in the phosphorylation state can have
tremendous effects on the structural properties, function, and
pathology of tau as discussed below.

In vitro data imply that phosphorylation of tau at certain
epitopes directly impacts on local structural properties or the
global conformation of tau which in turn may affect its assem-
bly into PHFs. Different sites were suggested to be important
for the aggregation propensity and filament formation of tau
including AT8, AT100, AT180, PHF-1, and S305 upstream of the
PHF6-hexapeptide motif which is known to be important for
tau fibrillization (Sun and Gamblin, 2009; Bibow et al., 2011;
Inoue et al., 2012). Some studies suggested that the compaction
of the paperclip conformation of tau becomes tighter or looser
depending on phosphorylation at the AT8, PHF-1, and AT100
epitopes (Jeganathan et al., 2008; Bibow et al., 2011). Likewise,
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Table 2 | Tau phosphorylation sites and effects.

Tau residue Kinase Model Cytotoxicity Aggregation References

S199/S202/T205
(AT8, CP13
epitopes)

– In vitro biochemical
assay

– S199E/S202E/T205E affects MT
binding, MT polymerization and
aggregation of tau

Sun and Gamblin,
2009; Bibow et al., 2011

GSK-3β In vitro biochemical
assay

– Pre-assembled pS199/pT205 tau
filaments form large tangle-like
structures

Rankin et al., 2008

– PC12 cells S199E/S202E/T205E cause
expansion of the space
between MTs and inhibit
mitochondrial movement in
neurites and axons

– Shahpasand et al., 2012

GSK-3β Rat hippocampal slices NMDA receptor activation
induces pS199/pS202 and
facilitates LTD induction

– Mondragon-Rodriguez
et al., 2012

– rTg4510 tau transgenic
mice

O-linked
N-acetylglucosamine
modification
(O-GlcNAcylation) of tau
lessens pS202/pT205,
reduces the number of
dystrophic neurons

O-GlcNAcylation of tau protects
against tau aggregation

Graham et al., 2013

– TPR50 tau transgenic
mice

pS202/pT205 increased with
age, MT hyperdynamics,
impaired axonal transport,
cognitive deficits earlier than
aggregates

Tau insolubility and intracellular
accumulation

Onishi et al., 2014

GSK-3β pR5 tau transgenic
mice

– Increased pS202/pT205 is
associated with fibrillar tau
pathology

Kohler et al., 2013

Cdk5 P25/Cdk5 transgenic
mice

– Increased pS202/pT205 is
associated with aggregated tau
filaments

Cruz et al., 2003

– TauE391 truncated
transgenic mice

– Truncation at E391 increases
pS202/pT205; tau accumulation,
mislocalization, tangle formation

McMillan et al., 2011

Cdk5,
GSK-3β

P25/P301L transgenic
mice

– Increased pS202 is associated with
increased number of NFTs

Noble et al., 2003

LRRK2 LRRK2/TauP301L
transgenic mice

– LRRK2 expression increases
pS199/pS202/pT205 of insoluble
tau

Bailey et al., 2013

– rTg4510 tau transgenic
mice

– pS202/pT205 in TBS-extractable
tau which consists of granular
aggregates and short filaments

Sahara et al., 2013

– IHC on paraffin-
sections AD brain

– Enhanced pS199/pS202/pT205 in
mature NFTs

Mondragon-Rodriguez
et al., 2014

– homogenates from AD
brain tissue, AD
synaptosomes

– Oligomers positive for
pS202/pT205 accumulate at
synapses in AD

Henkins et al., 2012;
Lasagna-Reeves et al.,
2012; Tai et al., 2012

S262/S356
(12E8 epitope)

MARK2 In vitro biochemical
assay

– Acetylation on S262/S356 inhibits
its phosphorylation and tau
aggregation

Schwalbe et al., 2013;
Cook et al., 2014

MARK4 rat primary
hippocampal neurons

Increased pS262/pS356 is
associated with decrease in
synaptic markers, loss of
spines and synapses

– Yu et al., 2012

(Continued)
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Table 2 | Continued

Tau residue Kinase Model Cytotoxicity Aggregation References

– rTg4510 tau transgenic
mice

O-GlcNAcylation of tau
lessens pS262/pS356,
reduces the number of
dystrophic neurons

O-GlcNAcylation of tau protects
against tau aggregation

Graham et al., 2013

– rTg4510 tau transgenic
mice

– pS262/pS356 in TBS-extractable
tau which consists of granular
aggregates and short filaments

Sahara et al., 2013

S262 DAPK1 HEK293,N2a cells Tau expression antagonizes
DAPK1 induced apoptosis
with simultaneous pS262,
no up-regulation of kinases

– Duan et al., 2013

PKA Rat hippocampal
neurons

pS262 mediates toxicity via
MT instability; accelerated
degradation of
synaptophysin

– Qureshi et al., 2013

GSK-3β Cortical neurons, rat
hippocampal slices

Stress-induced increase of
pS262 reduces cell viability

– Selvatici et al., 2013

Par-1 Drosophila pS262 contributes to
tau-mediated
neurodegeneration

– Iijima-Ando et al., 2012

MARK2
MARK4

Paraffin sections AD
brain

– MARK-tau interactions and pS262
correlate with Braak stages

Gu et al., 2013a

T231/S235
(AT180,PHF-6
epitopes)

– In vitro NMR
measurements

– pT231/pS235 has a helix stabilizing
role, potentially affecting tau
function and aggregation

Sibille et al., 2011

DAPK1 HEK293,N2a cells tau expression antagonizes
DAPK1 induced apoptosis
with simultaneous pT231,
no up-regulation of kinases

– Duan et al., 2013

GSK-3β Rat hippocampal slices NMDA receptor activation
induces pT231/pS235 and
facilitates LTD induction

– Mondragon-Rodriguez
et al., 2012

– TauE391 truncated
transgenic mice

– Truncation of tau at E391 increases
pT231/pS235, tau accumulation,
mislocalization, and tangle
formation

McMillan et al., 2011

– rTg4510 tau transgenic
mice

– pT231/pS235 in TBS-extractable
tau which consists of granular
aggregates and short filaments

Sahara et al., 2013

GSK-3β SAMP8 mice GSK-3β antisense treatment
decreases pT231/pS235;
reduced oxidative stress,
improved learning and
memory

– Farr et al., 2013

– Homogenates from AD
brain tissue

– Identification of pT231-positive
oligomers at early AD stages

Lasagna-Reeves et al.,
2012

S396/S404
(PHF-1, AD2,
PHF-13 epitopes)

MARK2 In vitro biochemical
assay

– Acetylation on S396/S404 inhibits
its phosphorylation and tau
aggregation

Cook et al., 2014

– In vitro biochemical
assay

– S396E/S404E affects MT binding,
MT polymerization and aggregation
of tau

Sun and Gamblin,
2009; Bibow et al., 2011

GSK-3β In vitro biochemical
assay

– pre-assembled pS396/pS404 tau
filaments form large tangle-like
structures

Rankin et al., 2008

(Continued)
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Table 2 | Continued

Tau residue Kinase Model Cytotoxicity Aggregation References

LRRK2 In vitro biochemical
assay, SH-SY5Y cells,
LRRK2 tg mice

– LRRK2 increases pS396, pT149,
and pT153, and aggregation of tau

Bailey et al., 2013;
Kawakami et al., 2014

DAPK1 HEK293,N2a Tau expression antagonizes
DAPK1 induced apoptosis
with simultaneous pS396,
no up-regulation of kinases

– Duan et al., 2013

GSK-3β Rat hippocampal slices NMDA receptor activation
induces pS396/pS404 and
facilitates LTD induction

– Mondragon-Rodriguez
et al., 2012

GSK-3β Cortical neurons, rat
hippocampal slices

Stress-induced increase of
pS404 reduces cell viability

– Selvatici et al., 2013

– rTg4510 tau transgenic
mice

– pS396/pS404 in TBS-extractable
tau which consists of granular
aggregates and short filaments

Sahara et al., 2013

– rTg4510 tau transgenic
mice

O-GlcNAcylation of tau
lessens pS396/pS404,
reduces the number of
dystrophic neurons

O-GlcNAcylation of tau protects
against tau aggregation

Graham et al., 2013

Cdk5,
GSK-3β

p25/P301L transgenic
mice

– Increased pS396/pS404 is
associated with increased number
of NFTs

Noble et al., 2003

Cdk5 p25/Cdk5 transgenic
mice

– Increased pS396/pS404 is
associated with aggregated tau
filaments

Cruz et al., 2003

GSK-3β P301L and
GSK-3β/P301L
transgenic mice

– Increased pS396/pS404, increased
tangle pathology but also longer
survival than P301L mice.

Terwel et al., 2008

– AD material:
homogenates,
synaptosomes, paraffin
sections

– Oligomers positive for pS396
and/or pS404 accumulate at
synapses in AD at different stages

Henkins et al., 2012;
Lasagna-Reeves et al.,
2012; Tai et al., 2012;
Mondragon-Rodriguez
et al., 2014

– IHC on paraffin
sections AD brain

– Content of tangles rather than
phosphorylated tau lead to altered
spine morphology and spine loss

Merino-Serrais et al.,
2013

T212/S214/T217
(AT100 epitope)

– In vitro biochemical
assay

– T212E/S214E/T217E affects MT
binding, MT polymerization, and
aggregation of tau

Bibow et al., 2011

– C. elegans – Inhibition of tau aggregation is
paralleled by reduced
pT212/pS214/pT217 and mitigates
proteotoxicity

Fatouros et al., 2012

GSK-3β pR5 tau transgenic
mice (P301L)

– Increased pT212/pS214/pT217 is
associated with fibrillar tau
pathology

Kohler et al., 2013

– rTg4510 tau transgenic
mice

– pT212 in TBS-extractable tau which
consists of granular aggregates and
short filaments

Sahara et al., 2013

S422 residue GSK-3β pR5 tau transgenic
mice

– Increased pS422 is associated with
fibrillar tau pathology

Kohler et al., 2013

– rTg4510 tau transgenic
mice

– pS422 in TBS-extractable tau which
consists of granular aggregates and
short filaments

Sahara et al., 2013

– AD synapses – Increased pS422 in AD synapses;
SDS-stable tau oligomers and
aggregates.

Henkins et al., 2012
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phosphorylation within the repeat region, particularly at KXGS
motifs, induced specific conformational changes that altered the
MT binding properties of tau (Fischer et al., 2009). In other
cases, structural changes were localized in the proximity of the
phosphorylation sites without affecting the global conformation
(Schwalbe et al., 2013).

Despite intensive research in the field, the contribution of
phosphorylation to the formation of tau aggregates is still con-
troversial (Table 2). Recent results from in vitro experiments,
showing that recombinant unphosphorylated tau induced fibril
formation similar to AD-derived PHFs, questioned the necessity
of tau phosphorylation for the fibrillization process (Morozova
et al., 2013). Furthermore, altered spine morphology and spine
loss in tissue of AD cases were attributed to the content of tangles
rather than to the amount of phosphorylated tau (Merino-Serrais
et al., 2013). In a study using PS19 mice (tauP301S mutation),
synthetic tau fibrils induced NFT pathology in the absence of
tau hyperphosphorylation (Iba et al., 2013). The introduction of
“pro-” and “anti-” aggregation mutations revealed that hexapep-
tide motifs of tau may function as a core to form local β-sheet
structure and, subsequently, to induce PHF formation (Von
Bergen et al., 2000; Eckermann et al., 2007). Enhanced tau levels,
via stabilization of tau mRNA, may contribute to tau pathology
independent of tau phosphorylation (Qian et al., 2013).

Other PTMs of tau might interfere with its phosphorylation,
thereby influencing the structure, function and regulation of the
protein, but the data are not consistent. KXGS motifs were found
to be hypoacetylated and hyperphosphorylated in patients with
AD, consistent with in vitro data showing that the acetylation
of tau prevents its phosphorylation and inhibits tau aggregation
(Irwin et al., 2013; Cook et al., 2014). In contrast, acetylation
of tau at K280 was associated with phosphorylation at the AT8
epitope in tau aggregates of tau transgenic mice, and detected
in post-mortem tissue of cases with AD or other tauopathies
(Min et al., 2010; Cohen et al., 2011; Irwin et al., 2012). Recent
evidence was provided that tau itself possesses acetyltransferase
activity, and is capable of catalyzing self-acetylation (Cohen
et al., 2013). In vitro, O-linked β-N-acetylglucosaminylation
(O-GlcNAcylation) at S400 was inversely correlated with tau
phosphorylation at S396 (Smet-Nocca et al., 2011). However,
treatment of tau transgenic mice with an O-GlcNAcase inhibitor
increased tau O-GlcNAcylation, hindered the formation of tau
aggregates, and slowed neurodegeneration without affecting the
phosphorylation of tau (Yuzwa et al., 2012; Graham et al., 2013).

Phosphorylation of tau at several residues mediates cellular
toxicity (Table 2). Many data implicate that phosphorylation of
tau needs to be well balanced. It was hypothesized that the detach-
ment of tau from MTs results in impaired MT stability and excess
amount of unbound hyperphosphorylated tau in the cytosol,
thereby contributing to toxic insult. In vitro experiments provided
evidence that phosphorylation of tau at S262, T231, and S214 is
necessary for the full detachment of tau from MTs (Illenberger
et al., 1998; Sengupta et al., 1998). Consistently, enhanced phos-
phorylation at S262 and T231 resulted in MT instability and cyto-
toxicity in cell and animal models (Steinhilb et al., 2007; Qureshi
et al., 2013). Moreover, pathological processes were rescued by
overexpression and activation of microtubule-affinity-regulating

kinases (MARKs) that phosphorylate tau at KXGS motifs of the
repeat domains (Mandelkow et al., 2004; Thies and Mandelkow,
2007). Aberrant phosphorylation of tau at pathological sites may
result in altered tau-MT binding, thereby affecting the organi-
zation and dynamics of MT networks. This in turn may com-
promise axoplasmic flow and proper neuronal function, and
ultimately cause cell death. The phosphorylation within KXGS
motifs, especially at S262, and GSK-3β seem to take key roles
among the phosphorylation sites and tau kinases, respectively.

Mitochondrial dysfunction and oxidative stress are both
intimately associated with cell death in neurodegeneration.
Mitochondrial oxidative stress in superoxide dismutase 2-
deficient and APP expressing mice exacerbated amyloid burden
and the hyperphosphorylation of tau at S396. Treatment with
high doses of antioxidants prevented from tau hyperphosphory-
lation and neuropathology (Melov et al., 2007). Triple AD mice
expressing mutant tau, APP and presenilin 1 developed tangles
and Aβ plaques, and displayed deregulation of several mitochon-
drial proteins suggesting synergistic effects of Aβ and tau in
perishing mitochondria (Rhein et al., 2009).

Undoubtedly, tau hyperphosphorylation is an important phe-
nomenon in AD and other tauopathies and parallels the appear-
ance of tau aggregates and NFTs, but despite great efforts, the
underlying mechanisms that ultimately lead to toxicity and neu-
rodegeneration remain elusive (Papanikolopoulou et al., 2010;
Ambegaokar and Jackson, 2011). In recent years, it was hypoth-
esized that the segregation of tau in intracellular aggregates is an
escape route for the cell from excess amount of protein. Instead,
tau oligomers were considered as toxic species that harm the cell
and, ultimately, lead to cell death (Sahara and Avila, 2014).

Accumulation of phosphorylated (AT8, PHF-1, S422) tau
oligomers was detected at human AD synapses concomitant with
dysfunction of the UPS (Henkins et al., 2012; Tai et al., 2012). Use
of a tau oligomer-specific antibody in human AD brain samples
revealed that tau oligomers appear at early stages in AD, either
before or after the manifestation of tau phosphorylation at spe-
cific epitopes (Lasagna-Reeves et al., 2012). Thus, aggregation of
the hyperphosphorylated forms of tau into PHF structures could
be neurotoxic by sequestering important cellular proteins, but it
could also be neuroprotective by avoiding accumulation of toxic
oligomeric tau.

PHYSIOLOGICAL AND PATHOLOGICAL IMPLICATIONS OF TAU
PHOSPHORYLATION
At normal levels of phosphorylation, tau contains 2–3 moles
phosphate/mole of protein and is a soluble cytosolic protein
(Khatoon et al., 1992). From the overall 85 phosphorylatable
residues, approximately 30 residues are phosphorylated in normal
tau proteins (Morishima-Kawashima et al., 1995a; Hanger et al.,
2009a). Most of the tau phosphorylation sites are clustered in the
proline-rich region, the microtubule binding repeats (MTBR) or
MTBR-flanking domains.

Tau expression and phosphorylation are developmentally reg-
ulated. A single tau isoform is expressed in fetal human brain
whereas six isoforms are expressed in adult human brain, with
fetal tau corresponding to the shortest adult tau isoform. The
degree of tau phosphorylation decreases during embryogenesis
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(Mawal-Dewan et al., 1994), which might be related to increas-
ing neuronal plasticity in the early developmental process (Brion
et al., 1993; Hanger et al., 2009a). PHF-tau contains 3–4 fold
phosphates over the normal adult tau (Khatoon et al., 1992;
Iqbal et al., 2013). In immature brain, as in PHFs, tau is phos-
phorylated at a large number of sites (Kenessey and Yen, 1993;
Morishima-Kawashima et al., 1995b). However, as in adult brain,
the phosphorylation in fetal tau is only partial. Phosphorylation
of tau in PHFs is denominated as “hyperphosphorylation” which
takes into account that other sites than the physiological ones are
phosphorylated. This state is also referred to as “abnormal” or
“pathological” phosphorylation.

MT dynamics are dependent on a balanced ratio between tau
molecules and MT tracks. Either excess or poor binding of tau
molecules, e.g., through dysregulation of the tau phosphorylation
state, results in destabilization and breakdown of MT networks.
This has a direct impact on MT function in the formation of
the cytoskeletal architecture and as track for axonal and organelle
transport, and is resumed in the “Tau-microtubule hypothesis”
(Alonso et al., 1994).

Early studies clearly demonstrated that tau plays an impor-
tant role in the establishment of neuronal polarity and axonal
outgrowth (Caceres and Kosik, 1990). Neurite extension and
retraction may be regulated by MARK and GSK-3β-mediated tau
phosphorylation (Biernat et al., 2002; Sayas et al., 2002). It was
speculated that phosphorylation of tau within the MTBR is neces-
sary for appropriate neurite outgrowth whereas phosphorylation
at SP and TP motifs within flanking domains retards neuronal
differentiation (Biernat and Mandelkow, 1999). Tau, a cargo of
kinesin, may displace other kinesin-based cargo indicating that
the development and stabilization of axons are dependent on a
balance of cytoskeletal elements (Dubey et al., 2008).

Overexpression of tau is known to compromise MT-
dependent axonal transport in a phosphorylation-dependent
manner (Sato-Harada et al., 1996). Co-expression of constitu-
tively active GSK-3β exacerbated, whereas GSK-3β inhibition
rescued vesicle aggregation and locomotor dysfunction in a
Drosophila model (Mudher et al., 2004; Cowan et al., 2010b).
Phosphorylation of tau at Y18 by the Fyn kinase was suggested to
prevent the activation of the GSK-3β signaling cascade, thereby
counteracting tau’s inhibitory effect on anterograde fast axonal
transport (Kanaan et al., 2012). These data suggest that the
pathological over-activation of GSK-3β inhibits axonal trans-
port through hyperphosphorylation of tau. In contrast, other
studies showed that the inhibition of tau phosphorylation by
GSK-3β inhibitors was associated with decreased mitochondrial
transport and motility and increased mitochondrial clustering
in cells (Tatebayashi et al., 2004; Llorens-Martin et al., 2011).
Tau may control intracellular trafficking by affecting the fre-
quencies of attachment and detachment of motors, in particular
kinesin, to the MT tracks (Trinczek et al., 1999; Morfini et al.,
2007). It was speculated that excess tau acts as transport block
for vesicles and organelles which is reversed by removal of tau
through MARK-mediated tau phosphorylation and subsequent
detachment of tau from MTs (Thies and Mandelkow, 2007).
However, detachment of tau from MT may also contribute to
axonal transport blockage and neurodegeneration (Iijima-Ando

et al., 2012). Dephosphorylation and phosphorylation cycles of
tau, through the interplay of tau kinases and phosphatases, may
serve as general mechanism to regulate tau’s function to maintain
a dynamic MT network for neurite outgrowth and axonal trans-
port (Fuster-Matanzo et al., 2012; Mandelkow and Mandelkow,
2012). Interestingly, improper distribution of overexpressed tau
in the somatodendritic compartment was shown to result in
more numerous and densely packed MTs in axons and dendrites.
Phosphomimic mutations of the AT8 epitope caused expan-
sion of the space between MTs and may thereby contribute to
axonal transport and mitochondrial movement defects (Thies
and Mandelkow, 2007; Shahpasand et al., 2012). Furthermore,
phosphorylated tau may sequester normal tau in neurites away
from MTs leading to disruption of the microtubular cytoskele-
ton and demise of axonal transport (Niewiadomska et al., 2005;
Cowan et al., 2010a; Iqbal et al., 2013).

Extracellular Aβ, shown to exacerbate the hyperphosphoryla-
tion of tau and NFT formation, was also suggested to modulate N-
methyl-D-aspartate receptor (NMDAR) function and to induce
excitotoxicity (Lauren et al., 2009). However, among the plethora
of known Aβ-interacting molecules, the specific Aβ target and
the intracellular propagation of the signal remain elusive. Prion
protein was proposed as binding partner of Aβ but there is still
controversy about the significance of this interaction (Balducci
et al., 2010; Kessels et al., 2010; Chen et al., 2013a). Aβ induces the
activation of Fyn which, in turn, increases the phosphorylation of
a subunit of NMDARs dependent on the status of tau phospho-
rylation and tau localization at the post-synapse. After an initial
increase, the number of surface NMDARs declined which resulted
in dendritic spine loss and excitotoxicity (Um et al., 2012). The
interaction of Fyn and tau, both forming a complex together with
NMDAR, seems to modulate synaptic plasticity and to sensitize
synapses to glutamate excitoxicity in AD (Ittner et al., 2010).

Phosphorylation of tau was also linked to altered turnover
and proteolysis. The detection of ubiquitin immunoreactivity in
tau inclusions was interpreted as failure of the ubiquitin protea-
some system (UPS) to proteolytically degrade excess tau (Bancher
et al., 1989). Proteasomal inhibition resulted in the accumulation
of particularly hyperphosphorylated tau species (Shimura et al.,
2004) and disruption of neuritic transport (Agholme et al., 2013).
Inhibition of autophagy in neurons resulted in 3-fold accumula-
tion of phosphomimic tau over wild type tau indicating that both,
autophagic and proteasomal pathways, are responsible for the
clearance of phosphorylated tau species (Rodriguez-Martin et al.,
2013). Biochemical and morphological analysis of AD cortices
revealed that tau becomes hyperphosphorylated and misfolded
at presynaptic and postsynaptic terminals, in association with an
increase in ubiquitinated substrates and proteasome components
(Tai et al., 2012).

Many other mechanisms were suggested for the implica-
tion of tau hyperphosphorylation in tauopathies. Cell death was
accompanied by expression of cell-cycle regulatory proteins in
aged mice expressing human tau isoforms on a knockout back-
ground (Andorfer et al., 2003). Inappropriate re-entry to the
cell cycle plays a role in AD and might be linked to hyperphos-
phorylation of tau via activation of cell-cycle relevant kinases
(Delobel et al., 2002; Absalon et al., 2013). Abnormal interaction

Frontiers in Molecular Neuroscience www.frontiersin.org May 2014 | Volume 7 | Article 42 | 16

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Tenreiro et al. Phosphorylation and neurodegeneration

with the mitochondrial fission protein Drp1 might be causative
for mitochondrial dysfunction and neuronal damage (Manczak
and Reddy, 2012). DNA damage resulted in the activation of
the checkpoint kinases Chk1 and 2, subsequent tau phospho-
rylation at AD-related sites, and enhancement of tau-induced
neurodegeneration in human tau expressing Drosophila (Iijima-
Ando et al., 2010). Immunohistochemical analysis of AD brains
revealed that tau is truncated at D421, and that this cleavage
occurs after conformational changes detected by the Alz-50 anti-
body but precedes cleavage at E391 (Guillozet-Bongaarts et al.,
2005). Accumulation of D421 and E391-truncated species occurs
early in the disease and correlates with the progression in AD
(Basurto-Islas et al., 2008). In transgenic mice, truncation of tau
was shown to drive pre-tangle pathology (McMillan et al., 2011).
In cells, hyperphosphorylation of tau at several residues and
cleavage of tau at D421, the preferential cleavage site of caspase-
3, enhanced the secretion of tau. This was suggested as potential
mechanisms for the propagation of tau pathology in the brain and
tau accumulation in the CSF (Plouffe et al., 2012).

KINASES INVOLVED IN TAU PHOSPHORYLATION
Similar to the pattern of tau hyperphosphorylation, the idea
of a distinct signature-specific pattern of tau kinase activation
emerged (Duka et al., 2013). Several attempts were done to
identify the responsible kinases and the corresponding phos-
phorylation sites of tau (Table 2). However, most of the kinases
phosphorylate several residues of tau, and most tau phospho-
rylation sites are targets of more than one kinase (Figure 3). In
addition, the existence of priming, meaning that the phosphory-
lation at one site facilitates phosphorylation at another site, and
feedback events to regulate the overall level of tau phosphoryla-
tion, hamper the assignment of a specific phosphorylation site
to a particular (dys-)function of tau (Bertrand et al., 2010; Kiris
et al., 2011).

Numerous kinases, including more than 20 serine/threonine
kinases, were shown to phosphorylate tau in vitro but their rel-
evance in AD is still under investigation (Hanger et al., 2009b;
Cavallini et al., 2013).

The proline-directed kinase GSK-3β was particularly associ-
ated with the formation of PHFs and NFTs and proposed as key
mediator in the pathogenesis of AD (Hooper et al., 2008; Terwel
et al., 2008; Ma, 2014; Medina and Avila, 2014). GSK-3β targets
tau at SP/TP sites, including the epitopes PHF-1, AT8, AT180,
AT100, S404 and S413 (Pei et al., 1999; Medina and Avila, 2014).
Alterations in GSK-3β levels were associated with changes in tau
phosphorylation in several cell and animal models (Hernandez
et al., 2013). Stress stimuli such as mitochondrial toxins or oxida-
tive stress to mimic conditions in neurodegenerative disorders
resulted in increased GSK-3β-mediated phosphorylation of tau,
reduced cell metabolic activity and MT destabilization (Hongo
et al., 2012; Selvatici et al., 2013). Other studies position GSK-3β

as prominent player in the pathogenesis of AD beyond its role as
tau phosphorylating kinase. Tau-P301Lx GSK-3β mice developed
severe forebrain tauopathy with tangles in the majority of neu-
rons but in the absence of tau hyperphosphorylation (Muyllaert
et al., 2006). In a Drosophila model, co-expression of a GSK-3β

homolog and human tau led to increased toxicity more likely due

to the fact that GSK-3β is a pro-apoptotic protein than due to
increased tau phosphorylation (Jackson et al., 2002).

The serine/threonine kinase Cdk5 plays important roles in
neuronal development and migration, neurite outgrowth, and
synaptic transmission, and is implicated in the pathogenesis of
AD (Cheung and Ip, 2012; Shukla et al., 2012). Immunoreactivity
of Cdk5 in several brain regions in AD was associated with pre-
tangle and early NFT stages, and colocalized with AT8-positive
tau in a subset of neurons (Pei et al., 1998; Augustinack et al.,
2002). Cdk5 activity was found to be higher in AD than control
cases probably due to the conversion of the Cdk5 activator p35
into the constitutive active form p25 (Lee et al., 1999; Patrick et al.,
1999; Shukla et al., 2012).

Mice overexpressing human p25/Cdk5 displayed enhanced
Cdk5 activity, hyperphosphorylation of tau, and cytoskeletal dis-
organization (Ahlijanian et al., 2000). The activation of Cdk5
along with overexpression of mutant tau was associated with tau
hyperphosphorylation and tangle formation (Noble et al., 2003).
APPswe mice showed increased Cdk5 activity due to increases in
p25 levels, and substantial phosphorylation of tau at AT8 and
PHF-1 epitopes linking Aβ pathology to tau hyperphosphoryla-
tion via increased Cdk5 activity (Otth et al., 2002). Furthermore,
Cdk5 was suggested to be linked to GSK-3β. Mice expressing
human p25 showed elevated Aβ levels but decreased phospho-
tau levels and reduced GSK-3β activity. Administration of Cdk5
inhibitors reduced Aβ production but did not alter the phos-
phorylation of tau suggesting that Cdk5 predominantly regulates
APP processing, whereas GSK-3β plays a dominant role in tau
phosphorylation (Wen et al., 2008; Engmann and Giese, 2009).
The crosstalk between Cdk5 and mitogen-activated protein kinase
(MAPK) pathways suggests a connection with neuronal apop-
tosis and survival signaling (Sharma et al., 2002; Zheng et al.,
2007). Dysregulation of the MAPK signaling pathways, com-
prising the three signaling cascades extracellular signal regulated
kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), was
suggested to be implicated in AD and other neurodegenerative
disorders (Kim and Choi, 2010). In the course of AD, ERK and
JNK are activated throughout all stages, and p38 in mild to
severe cases (Braak stages III to VI) (Pei et al., 2001; Zhu et al.,
2001). p38 and JNK immunoreactivity were associated with neu-
rons containing neuritic plaques, neuropil threads, and NFTs,
structures that were also recognized by antibodies raised against
phosphorylated PHF-tau (Hensley et al., 1999; Atzori et al., 2001).

The kinases MARK1-4 are non-proline directed kinases that
are involved in the establishment of neuronal polarity and the
regulation of neurite outgrowth (Biernat et al., 2002; Matenia
and Mandelkow, 2009; Reiner and Sapir, 2014). MARKs are
named after their ability to regulate the affinity of tau to MTs
through phosphorylation (Drewes et al., 1997). Importantly,
MARKs phosphorylate tau within the KXGS motifs, particularly
at S262, which phosphorylation is detected early in the course of
AD. Expression of MARK2 and MARK4, as well as the interac-
tions of these kinases with tau, were significantly enhanced in AD
brains, correlated with the Braak stages of the disease, and were
associated with NFTs (Chin et al., 2000; Gu et al., 2013a).

In transgenic Drosophila, overexpression of the Drosophila
homolog Par-1 was associated with increased phosphorylation
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FIGURE 3 | Schematic representation illustrating the various residues

in the longest isoform of tau that can be phosphorylated. SP/TP
motifs (represented in blue), KXGS motifs (represented in yellow), and
other sites (represented in gray) can be phosphorylated by
proline-directed kinases (represented in blue) and non-proline directed
Ser/Thr kinases (represented in green). Antibody epitopes AT8, AT100,
AT180, and PHF-1 comprise dual and triple serine/threonine residues

(indicated by brackets). Some mutations associated with FTDP-17 are
shown in red. Alternative splicing of N1, N2, and R2 generates the six
different isoforms of tau. N1, N2, N-terminal inserts 1 and 2; R1-R4,MT
binding repeats 1–4; GSK-3β, Glycogen synthase kinase 3β; Cdk5,
Cyclin-dependent kinase 5; CK, casein kinase; MARK, microtubule
affinity-regulating kinase; LRRK2, leucine-rich repeat kinase 2; DAPK,
Death-associated protein kinase; Dyrk1A, dual-specificity protein kinase.

and enhanced toxicity of human tau. Loss of Par-1 function
and mutation of tau at the Par-1 directed phosphorylation sites
(S262, S356) rescued from tau-induced toxicity. Interestingly,
Par-1 phosphorylation of tau was a prerequisite for downstream
phosphorylation through GSK-3β and Cdk5, and the genera-
tion of disease-associated phosphorylation epitopes (Nishimura
et al., 2004). Activation of MARK2 rescued from synaptic decay
caused by overexpression and improper distribution of tau in the
somatodendritic compartment (Mandelkow et al., 2004; Thies
and Mandelkow, 2007). However, overexpression of MARK4
resulted in tau hyperphosphorylation and loss of spines, which
also manifested after Aβ treatment. Therefore, MARKs may have
regulatory functions in spine morphology and synaptic transmis-
sion, but may also act as critical mediators in Aβ-induced toxicity
on synapses and dendritic spines (Zempel et al., 2010; Hayashi
et al., 2011; Yu et al., 2012). Furthermore, the phosphorylation
of tau by MARK was suggested to inhibit tau’s assembly into
PHFs (Schneider et al., 1999), contradictory to the hypothesis
that the pool of hyperphosphorylated, MT-unbound tau assem-
bles into PHFs. Phosphorylation of tau at SP/TP sites has low
impact on the tau-MT binding and is observed in AD, dissociating
the detachment of tau from MTs from the likability to assem-
ble into PHFs. GSK-3β was shown to phosphorylate MARK2 at
two different sites, the activatory T208 and the inhibitory S212,
thereby modulating the phosphorylation of tau, particularly at
S262 (Kosuga et al., 2005; Timm et al., 2008). MARK1/2 activity
was also regulated by the death domain of DAPK. DAPK acti-
vated MARK and promoted the phosphorylation of tau but also
seems to act via MARK-independent pathways on T231, S262,
and S396 of tau (Wang et al., 2010; Duan et al., 2013). Moreover,
DAPK induced rough eye and loss of photoreceptor neurons in a
Drosophila model, in part through the activation of the Drosophila

ortholog Par-1 (Wu et al., 2011b). PKC was described as nega-
tive regulator of MARK2, playing an important role in neuronal
polarity (Chen et al., 2006).

CK1 and CK2 are serine/threonine-selective protein kinases.
Overall CK2 immunoreactivity is reduced in the brain of AD
cases although NFTs stain very strong with anti-CK2 antibodies
(Iimoto et al., 1990). CK-1δ is upregulated in AD brain, correlat-
ing with the degree of regional pathology. CK-1δ colocalizes with
NFTs, neuropil threads and dystrophic neurites (Yasojima et al.,
2000). In cells, CK1δ inhibition reduced the phosphorylation of
tau at S396/S404 by more than 70%. Exogenous expression of
CK1δ increased tau phosphorylation at S202/T205 and S396/S404
and reduced tau-MT binding (Lee and Leugers, 2012).

Several sites in PHF-tau are targeted by CK1 in concert with
other kinases such as GSK-3β and protein kinase A (PKA).
Moreover, three sites, S113, S238, and S433, were phosphory-
lated only by the action of CK1δ suggesting a relevant role of this
kinase in tau pathology (Hanger et al., 2007). Synthetic Aβ was
reported to stimulate the activities of CK1 and CK2 and to medi-
ate phosphorylation of the substrate casein in vitro (Chauhan
et al., 1993). Aβ production was increased in cells with exoge-
nous expression of constitutively active CK1 and reduced by CK1
specific inhibition (Flajolet et al., 2007).

Dyrk1A is upregulated in AD, Down’s syndrome, and Pick’s
disease. Dyrk1A immunoreactivity was observed in the cytoplasm
and nucleus of scattered neurons, and detected in sarkosyl-
insoluble PHF fractions. Overexpression of Dyrk1A in transgenic
mice led to increased tau levels in the brain and accumulation in
NFTs (Wegiel et al., 2008). Direct phosphorylation of tau at T212
by Dyrk1A still lacks evidence in vivo.

LRRK2, a putative kinase, gained interest in recent years due
to its genetic association with both, inherited and sporadic PD,
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and a possible overlap to AD (Zhao et al., 2011; Ujiie et al.,
2012). The first hints for an involvement of LRRK2 in tau pathol-
ogy were given in transgenic mice expressing mutant LRRK2.
These animals showed increased tau phosphorylation at T149,
T153, and the AT8, CP13, 12E8 and PHF-1 epitopes, tau mislo-
calization in cell bodies and the neuropil, and tau aggregation
(Li et al., 2009, 2010; Melrose et al., 2010; Bailey et al., 2013).
Correspondingly, phosphorylation of tau at the AT8 epitope was
decreased in LRRK2 knock-out mice (Gillardon, 2009). Several
studies imply that LRRK2 phosphorylates and activates other
kinases and signal transduction pathways, thereby contributing
to enhanced tau phosphorylation, mislocalization, and dendritic
degeneration (Gloeckner et al., 2009; Lin et al., 2010; Chen et al.,
2012).

Several other kinases may be implicated in the pathology of
AD, anticipated from their aberrant activity in human brain
(Martin et al., 2013). In general, dysregulation of kinases is
likely to be responsible for the hyperphosphorylation of tau,
abnormal tau-MT binding, tau mislocalization, and tau assembly
into PHFs. However, it is still not known, which phosphory-
lation sites of tau are the most critical ones, which kinases
are the main players, and how these processes are mechanis-
tically linked to toxicity in AD and other neurodegenerative
disorders.

PHOSPHORYLATION AS A TARGET FOR THERAPEUTIC
INTERVENTION
Our current lack of understanding of the precise molecular
mechanisms underlying neurodegenerative disorders has limited
our ability to develop effective therapeutic strategies. Targeting
phosphorylation of aSyn and tau can impact on several mech-
anisms associated with the pathogenesis of AD, PD and other
neurodegenerative disorders. Thus, reducing aberrant protein
phosphorylation and protein levels, preventing protein aggrega-
tion, eliminating amyloidogenic species and preventing spreading
of pathology are all potentially beneficial and will be discussed
below.

KINASE INHIBITION
Although the precise consequences of aSyn phosphorylation
remain to be fully understood, it is evident that pS129 correlates
with disease progression, is present in the pathological hallmark
lesions of synucleinopathies and can have detrimental functional
consequences. Thus, inhibition of the relevant kinases might con-
stitute a possible therapeutic strategy. Inhibitors of PLKs have
been developed for oncology indications and tested in vivo. A
PD mouse model of subject to a treatment with the specific PLK
inhibitor BI2356 presented reduced pS129 aSyn (Inglis et al.,
2009). However, the long-term safety of such strategy is currently
unclear, as the kinases that phosphorylate aSyn have ubiquitous
distribution and because there is evident redundancy in the types
of kinases phosphorylating same residues in aSyn. In the partic-
ular case of PLK2, recent data suggest that enhancing the kinase
activity, instead of inhibiting, might also prove worth investigat-
ing further, as PLK2 suppresses aSyn toxicity in vivo by promoting
autophagy-mediated degradation of pS129 aSyn (Oueslati et al.,
2013).

The pharmacological inhibition of c-Abl is also emerging as
an attractive therapeutic strategy, as it was found to be neuro-
protective in animal models of PD (Ko et al., 2010; Imam et al.,
2011, 2013; Hebron et al., 2013a; Mahul-Mellier et al., 2014),
by promoting aSyn degradation (Hebron et al., 2013a,b; Mahul-
Mellier et al., 2014). Interestingly, c-Abl inhibition also targets
hyperphosphorylated tau for degradation (Hebron et al., 2013a)
and inhibits β-amyloid production in rat neuronal primary cul-
tures and in guinea pig brains (Netzer et al., 2003). Therefore, this
kinase is a promising target for the treatment of both, PD and AD.

Inhibition of GSK-3β activity by chemical compounds, anti-
sense RNAs and kinase-dead mutations or reduction of GSK-
3β levels were the most promising attempts to decrease the
phosphorylation of tau at critical residues. This was shown to
counteract neuronal death, reduce oxidative stress, and improve
learning and memory (Hernandez et al., 2013; Medina and
Avila, 2014). GSK-3β was suggested as missing link between
Aβ and tau pathology. Small molecule inhibitors of GSK-
3β might be potent to reduce Aβ-induced tau hyperphos-
phorylation (Noh et al., 2013; Ye et al., 2013). Given the
contribution of other kinases to tau hyperphosphorylation, effec-
tive treatment may require multiple kinase targeting (Mazanetz
and Fischer, 2007; Tell and Hilgeroth, 2013; Pinsetta et al.,
2014).

IMMUNOLOGICAL TARGETING OF PHOSPHORYLATED PROTEINS
The consequences of loss of aSyn function in PD are not com-
pletely clarified. Some studies suggest that a substantial reduction
in the levels of aSyn could have potential harmful effects in the
CNS. In fact, aSyn knockout mice show some loss of dopamin-
ergic nigrostriatal terminals with aging (Al-Wandi et al., 2010).
Moreover, aSyn seems to play an important role holding together
the SNARE complex, suggesting that excessive reduction of this
abundant protein in the nervous system could lead to deleterious
effects. Nevertheless, therapeutic strategies involving immuniza-
tion or promoting clearance of aSyn excess are attractive and have
been recently considered. Studies exploring immunization as a
potential therapeutic were performed in mice models of PD and
achieved promising results (Masliah et al., 2005, 2011). However,
to our knowledge, the use of phospho-specific antibodies against
aSyn was not explored so far.

Targeting specific phospho-tau sites through passive immu-
nization may be useful to slow, or even reverse, the progression
of a disease. Antibody uptake resulted in reduced tau phospho-
rylation, and clearance of pathological tau protein in brain slices
up to significantly improved cognitive performance in Thy-Tau22
transgenic mice (Troquier et al., 2012; Gu et al., 2013b). However,
repeated immunization of mice with phospho-tau peptides may
cause neuroinflammation (Rozenstein-Tsalkovich et al., 2013).

ACTIVATION OF PHOSPHATASES
Another possible therapeutic strategy could involve restoring or
increasing the activity of specific phosphatases. Although phos-
phatases are thought to be less appealing drug targets, since they
are considered less specific than kinases, increasing evidence sug-
gests that they might be “druggable” proteins. On the other hand,
the lower level of redundancy may be seen as an advantage.
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In fact, pharmacological induction of the phosphoprotein phos-
phatase 2A (PP2A) by eicosanoyl-5-hydroxytryptamide resulted
in dephosphorylation of aSyn at S129, inhibition of aSyn aggrega-
tion with concomitant improved neuronal integrity, reduction in
inflammation and amelioration of behavioral deficits in an aSyn
transgenic mouse model, (Lee et al., 2011).

Dysregulated phosphatase activity also seems to be partially
responsible for tau pathology. A number of pharmacological
agents, such as the FDA-approved drug memantine, prevented
okadaic acid or calyculin-induced PP2A inhibition and tau phos-
phorylation (Li et al., 2004; De Los Rios et al., 2010; Kickstein
et al., 2010; Yang et al., 2011).

MODULATION OF PROTEIN CLEARANCE VIA PHOSPHORYLATION
The induction of aSyn degradation through clearance path-
ways is also seen as an attractive therapeutic strategy. aSyn can
be degraded by direct proteolysis, by the UPS, by chaperone-
mediated autophagy, or by general autophagy (Lashuel et al.,
2013). As discussed earlier, phosphorylation of Y39 by c-Abl
impairs aSyn degradation by autophagy and proteasome (Mahul-
Mellier et al., 2014), while PLK2 phosphorylation at S129 pro-
motes selective autophagic aSyn clearance (Oueslati et al., 2013).
Likewise, inhibiting c-Abl and enhancing PLK2 activity are two
promising therapeutic approaches.

Several studies indicate that the reduction of tau phospho-
rylation was paralleled by an overall decrease in protein levels.
Moreover, targeting unphosphorylated tau protein had deleteri-
ous effects since tau is a normal component of the cytoskeleton
(Rosenmann et al., 2006). Additionally, reduced protein lev-
els were achieved through interference with the UPS and the
lysosomal / autophagic pathways. Immunization using phospho-
specific antibodies against tau epitopes resulted in reduced levels
of tau protein and clearance of tau aggregates (Asuni et al., 2007;
Boimel et al., 2010; Boutajangout et al., 2010, 2011). Interestingly,
memantine that inhibited the phosphorylation of tau at some
epitopes in hippocampal slices also reduced tau aggregation (Li
et al., 2004). The small molecule IU1, a potent and selective
inhibitor of the deubiquitinating enzyme ubiquitin specific pep-
tidase 14 (USP14), enhanced the degradation of tau (Lee et al.,
2010). The underlying mechanisms are not clear because USP14-
deficient mice showed no alterations in tau degradation and
actually increased amounts of phosphorylated tau (Jin et al.,
2012). Chronic treatment with lithium chloride, a direct inhibitor
of GSK-3β, reduced tau pathology by promoting ubiquitination
(Nakashima et al., 2005).

Positive lysosomal modulation was described for several fac-
tors and may be an attempt of cells to clear amyloidogenic
species such as tau and aSyn oligomers (Lee et al., 2004b; Butler
et al., 2006; Bahr et al., 2012). Methylene blue (MB) was shown
to induce autophagy and to reduce total and phosphorylated
levels of tau. Although MB administration improved cogni-
tive performance in tau transgenic mice, a reversal of already
existing NFTs was disputed (Congdon et al., 2012; Spires-Jones
et al., 2014). Interestingly, MB was the first identified direct
tau aggregation inhibitor (Duff et al., 2010). Modified versions
of this substance with greater tolerability and better absorption
are underway in clinical trials (Wischik et al., 2013). Lithium

chloride prevented tau aggregation in cultured neurons probably
through decreased tau protein levels as outlined above (Rametti
et al., 2008). In recent studies, pre-filamentous aSyn and tau
oligomers rather than aSyn fibrils and NFTs were considered as
toxic species questioning the usefulness of aggregation inhibitors
(Castillo-Carranza et al., 2013; Crowe et al., 2013; Lesne, 2013).
Furthermore, at higher doses, some of the in vitro tested sub-
stances showed severe side effects on the normal biology of tau
and its MT stabilization in cell culture and brain slices (Duff et al.,
2010).

MODULATION OF PATHOLOGY SPREADING VIA PHOSPHORYLATION
Recent studies strongly suggest that disease progression in AD,
PD, and other neurodegenerative disorders may, at least in part,
be due to cell-to-cell transmission of amyloidogenic species.
Thus, the elimination of these toxic species may help to slow or
contain neurodegeneration.

The mechanisms behind the spreading of aSyn are not fully
understood. However, aSyn secreted by neurons could strongly
contribute to cell-to-cell propagation (Marques and Outeiro,
2012; Eisbach and Outeiro, 2013). The relationship between the
phosphorylated status of aSyn and its secretion are currently
unknown and require investigation, but if correlation exists then
phosphorylation might be targeted to prevent the spreading of
aSyn pathology.

Immunization with cell-penetrating phospho-tau antibodies
was already discussed as a therapeutic approach to clear from
toxic tau species. Similarly, antibodies that remain in the extracel-
lular space may inhibit spreading and this includes both, anti-tau
and anti-Aβ antibodies (Giacobini and Gold, 2013; Liu et al.,
2014). Lowering the intracellular amyloid burden through RNA
interference or by drugs may entail reduced secretion of Aβ and
thereby lessen tau pathology (Chen et al., 2013b; Spilman et al.,
2013). However, some of these treatments failed in clinical tri-
als (Doody et al., 2014). Importantly, extracellular soluble tau
was also shown to initiate spread of tau pathology and may be
a plausible target for treatment (Michel et al., 2014).

CONCLUSIONS AND FUTURE PERSPECTIVES
While it is clear that phosphorylation of aSyn and tau is relevant
in the context of their aggregation and toxicity, there is still no
final consensus on the precise contribution this type of PTM has
toward the disease process. For example, there is still no consen-
sus on whether aSyn phosphorylation is a cause or a consequence
of aggregation, or whether phosphorylation is neurotoxic or neu-
roprotective. Furthermore, only a few phosphorylation sites have
been confirmed in human tissue so far, so there may be other
sites relevant to human pathology that remain to be identified.
Tau phosphorylation regulates tau’s function in many ways while
abnormal phosphorylation of tau is neurotoxic. The relationship
between tau phosphorylation and aggregation is clearly complex
with evidence that tau phosphorylation precedes, prevents or is
irrelevant to its aggregation. It will also be important to explore
the cross-talk between different PTMs, as this will likely have a
strong impact on our understanding of the biology/pathobiology
of different proteins associated with neurodegeneration. In addi-
tion, the identification of the kinases and phosphatases involved
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in the phosphorylation/dephosphorylation of aSyn and tau will
certainly open novel possibilities for pharmacological interven-
tion. Ultimately, solving the problems and inconsistencies sur-
rounding the phosphorylation of these important players in AD
and PD will be essential for advancing the development of novel
therapeutic strategies.
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