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Early life adversity, such as postnatal maternal separation (MS), play a central role in
the development of psychopathologies during individual ontogeny. In this study, we
investigated the effects of repeated MS (4 h per day from postnatal day (PND) 1–21)
on the brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal
cortex (mPFC), the nucleus accumbens (NAc) and the hippocampus of male and female
juvenile (PND 21), adolescent (PND 35) and young adult (PND 56) Wistar rats. The results
indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG) of adolescent
rats as well as in the DG of young adult rats. However, the expression of BDNF in the
mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus,
there was decreased BDNF expression with age in both the MS and non separated
rats. However, in the mPFC, the BDNF expression was increased with age in the non
separated rats; nevertheless, the BDNF expression was significantly decreased in the
MS young adult rats. In the NAc, the BDNF expression was increased with age in the
male non-maternal separation (NMS) rats, and the young adult female MS rats had less
BDNF expression than the adolescent female MS rats. The present study shows unique
age-differently changes on a molecular level induced by MS and advances the use of MS
as a valid animal model to detect the underlying neurobiological mechanisms of mental
disorders.

Keywords: maternal separation, brain-derived neurotrophic factor (BDNF), medial prefrontal cortex (mPFC),
hippocampus

Introduction

Adverse early life events are considered to be risk factors for the development of psychiatric
diseases (Walker and Diforio, 1997; Ellenbroek and Cools, 1998; Marais et al., 2008; Réus
et al., 2011). In rats, maternal separation (MS), which deprives pups of their mothers, has
often been used as a model for early life adversity (Hall, 1998; Marco et al., 2009). MS
has been demonstrated to induce behavioral and cognitive abnormalities, such as increased
depressive and anxiety-like behaviors (Marais et al., 2008; Jia et al., 2009; Rentesi et al.,
2010) and prepulse inhibition (PPI) deficits (Ellenbroek and Cools, 1998, 2002). MS has also
been shown to decrease new born cells in the hippocampus and the granular cell number
in the dentate gyrus (DG) of juvenile and adult rats (Mirescu et al., 2004; Oreland et al.,
2010; Hulshof et al., 2011); these findings suggest that MS can affect the neuroplasticity of rats.
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Brain-derived neurotrophic factor (BDNF) is a member of
the neurotrophin family (Hyman et al., 1991) and exerts a
wide range of functions, such as maintaining neuronal survival,
structure, growth, and differentiation and promoting synaptic
plasticity of learning and memory (Fumagalli et al., 2007; Pillai
and Mahadik, 2008). BDNF has also been implicated in the
neurobiological mechanisms of psychiatric diseases (Weickert
et al., 2003; Schneider et al., 2011; Favalli et al., 2012). BDNF
expression in multiple brain regions is sensitive to adverse life
experiences. For example, our lab has reported that adolescent
social isolation affects BDNF levels in the medial prefrontal
cortex (mPFC), Nucleus accumbens (NAc) and hippocampus of
adult rats (Han et al., 2011; Meng et al., 2011). Several studies
have reported the effects of MS on BDNF levels in different
brain areas; however, the results have been inconsistent. For
example, MS increased the BDNF level in the hippocampus
of adult rats (Greisen et al., 2005; Faure et al., 2007), reduced
the BDNF levels in the PFC, hippocampus and striatum of
mice (Ognibene et al., 2008) or had no change with respect
to the BDNF levels in the PFC and hippocampus (Réus et al.,
2011). These discrepancies may be resulted from the different
experimental procedures, species and strains adopted in these
studies.

Furthermore, other studies have indicated that the
developmental period of animals may be another important
factor for MS effects. For example, Roceri et al. (2004)
reported that MS produced a short-term-up-regulation of
the BDNF level in the hippocampus and PFC on postnatal
day (PND) 17 and a reduction of BDNF expression in the
PFC in adulthood. Kuma et al. (2004) conformed that MS
decreased the BDNF mRNA expression on PND 16 and
increased the BDNF mRNA expression on PND 30 and 60 in
the hippocampus of rats, and there was no significant difference
between MS and non-maternal separation (NMS) rats on
PND 20. Although these studies mentioned above suggested
the developmental factors of MS effects, to date, there is not
any studies that investigated the effects of MS on forebrain
BDNF expression in juvenile, adolescent and young adult rats
systematically.

In the present study, we aimed to investigate the effects of
repeated MS (4 h/day from PND 1–21) on the BDNF expression
levels in the mPFC, NAc and hippocampus in juvenile (PND
21), adolescent (PND 35) and young adult (PND 56) rats. The
three brain regions chosen in this study were based on the close
functional relationships with BDNF activity of them.

Material and Methods

Animals
Male and female Wistar rats were obtained from the Academy
of Chinese Military Medical Science. All of the animals
were housed on a 12 h light/12 h dark cycle (lights on
at 7:00 a.m.) and with free access to food and water.
The environmental conditions was kept constant (ambient
temperature 22◦C). All experimental procedures were performed
in strict accordance with the guidelines of the National
Institutes of Health Guide for the Care and Use of Laboratory

Animals (NIH Publications No. 80–23) and approved by the
Institutional Animal Care and Use Committee (IACUC) of
Peking University.

Maternal Separation
The protocol of MS were adapted from previous studies (Li
et al., 2013; Wang et al., 2015). The male and female rats were
mated to produce litters that consisted of 8–12 pups. After birth,
the pups were randomly divided into two groups: the MS (MS
group, 48 pups) and the NMS (NMS group, 48 pups). MS was
performed on MS group while the NMS group was undisturbed
from PND 1–21. Each group had 24 male and 24 female pups.
During the separation, the pups in MS group were separated
from their mothers for 4 h (10:00–14:00) per day from PND
1–21 and maintained on heated sawdust (29 ± 1◦) separately
from their littermates. The dams of the pups in MS group were
left in the home cage during the separation. The pups in NMS
group remained in their home cage with their mothers and
littermates during the 4 h separation. After weaning at PND
21, 16 MS (8 males and 8 females) and 16 NMS (8 males and
8 females) animals were sacrificed for the BDNFmeasurement by
immunohistochemistry (IHC). The rest of rats were reallocated
to different cages (4 rats per cage). Then, at PND 35, another 16
MS (8 males and 8 females) and 16 NMS (8 males and 8 females)
animals were sacrificed for the BDNF measurement by IHC. At
PND 56, the last 16 MS (8 males and 8 females) and 16 NMS
(8 males and 8 females) animals were sacrificed for the BDNF
measurement by IHC.

Immunohistochemistry
This procedure IHC has been described in previous studies
(D’andrea et al., 2001; Xavier et al., 2005; Han et al., 2011; Meng
et al., 2011). Briefly, the rats were anesthetized of intraperitoneal
(ip) administration with chloral hydrate (400 mg/kg) and
perfused with phosphate buffered saline (PBS, 0.01 M) followed
by 4% paraformaldehyde dissolved in PBS. The brain regions
of interest (mPFC: 5.70–2.70 mm from bregma; NAc: 2.70–0.70
mm from bregma; hippocampus: −1.30 to −5.30 mm from
bregma; Paxinos and Watson, 2006) were dissected on ice using
a rat brain mold and post-fixed by 4% paraformaldehyde for 6 h.
Then the brain samples were dehydrated (3 × 30 min 70%, 90%,
96%, 100% ethanol and Roti-Histol) and embedded in paraffin.
Next, the paraffin which containing the brain samples were cut
into sections (4 µm) using a microtome (Leica 235), then the
sections were pasted onto slides and dried (30 min, 58◦C) on
a heating plate. After washing in 0.05 M PBS (3 × 2 min),
the sections were put into citrate buffer solution and heated
in microwave oven. Afterwards, the slides were blocked (10%
goat serum and 1% BSA dissolved in 0.01 M PBS, 20 min at
room temperature, RT) and incubated in a first rabbit anti-BDNF
polyclonal IgG (1:200, Santa Cruz Biotechnology, overnight at
4◦C). After washing in 0.05 M PBS (3 × 5 min, RT), the sections
were incubated with a secondary goat anti-rabbit IgG (1:1000,
Santa Cruz Biotechnology, 1 h at RT), and incubated in an
avidin–biotin–peroxidase complex (1 h). Finally, the sections
were dehydrated by serial alcohol rinsing, dewaxed in dimethyl
benzene, and cover-slipped.
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Quantification and Statistical Analyses
The slides were viewed and photographed using a light
microscope (Olympus BX-51), and the images were analyzed
using a software (Image-pro plus 6.0). The BDNF levels were
estimated by counting all of the BDNF-positive cells present in
two serial sections interspaced by 4 µm in the middle of the
mPFC, NAc and hippocampus. The areas of the mPFC, NAc and
the CA1, CA2/3 andDG of the hippocampus weremeasured, and
the number of units per 1 mm2 was calculated bilaterally per rat.
For the analysis, the cell counts were averaged into a single score
for each rat.

All of the data are shown as the mean ± standard error of
the mean (SEM). The analyses were performed using the SPSS
16 software. The IHC results were analyzed using a multivariate
analysis of variance (MANOVA). The comparisons with two and
three groups were analyzed using Student’s t-test and a one-way
ANOVA followed by least significant difference (LSD) post hoc
tests, respectively. The significance level was defined as p < 0.05.

Results

Effects of MS on the BDNF Expression in the
Hippocampus
The results of the BDNF expression in the CA1 were summarized
in Figure 1. The results showed that there were significant main
effects of MS (F(1,84) = 7.987, p = 0.006) and age (F(2,84) =
7.421, p = 0.001), but not gender. The interaction between MS
and age was significant (F(2,84) = 5.385, p = 0.006), whereas the
other interactions were not significant. Further analysis (t-test)
indicated that MS increased the BDNF expression in the CA1 in
the PND 35 rats (t(30) = 4.035, p < 0.001; Figure 1A). A one-way
ANOVA revealed that there was a significant difference among
the three ages in both the NMS and MS groups (NMS: F(2,45) =
8.211, p = 0.001; MS: F(2,45) = 5.099, p = 0.010). The post hoc
(LSD) comparisons revealed that in the NMS group, the PND
35 and PND 56 rats had significantly less expression compared
with the PND 21 rats; in the MS group, the PND 56 rats had
significantly less expression compared with the PND 21 and PND
35 rats (Figure 1A).

In the CA2/3, the overall effects of MS, age and gender were
not significant; all of the interactions were also not significant.

The BDNF expression in the DG was summarized in
Figure 1B. MS resulted in an overall increased BDNF protein
expression in the DG (F(1,84) = 7.741, p = 0.007). The overall
effects of age and gender were not significant, and all of the
interactions were also not significant. Further analysis (t-test)
showed that MS significantly increased the BDNF expression in
the DG in the PND 35 and PND 56 rats (PND 35: t30 = 2.350,
p = 0.026; PND 56: t30 = 2.169, p = 0.038).

Effects of MS on the BDNF Expression in the
mPFC
The BDNF expression in the mPFC for each group was
summarized in Figure 2. MS significantly decreased the BDNF
expression in the mPFC (F(1,84) = 4.006, p = 0.005). The influence
of age and gender on the expression of BDNF was not significant.

The interaction between MS and age was significant (F(2,84) =
7.749, p = 0.001), whereas the other interactions were not
significant. Further analysis (t-test) indicated that MS reduced
the BDNF expression in the mPFC in the PND 56 rats (t(30) =
5.350, p < 0.001; Figure 2A). A one-way ANOVA revealed that
there was a significant difference among the three ages in both
the NMS and MS groups (NMS: F(2,45) = 3.238, p = 0.049; MS:
F(2,45) = 4.607, p = 0.015). The post hoc (LSD) comparisons
revealed that in the NMS group the PND 56 rats had significantly
increased expression compared with the PND 35 rats; in the MS
group the PND 56 rats had significantly less expression compared
with the PND 21 and PND 35 rats (Figure 2A).

Effect of MS on the BDNF Expression in the NAc
In the NAc, the overall effects of MS, age and gender were
not significant; however, there was a significant interaction
among MS, age and gender (F(2,84) = 4.475, p = 0.014). The
other interactions were not significant. Further analysis (one-way
ANOVA) revealed that for the male rats there was a significant
difference among the three ages in the NMS, but not in the MS
groups (NMS: F(1,22) = 4.378, p = 0.026; MS: F(1,22) = 1.613,
p = 0.223). However, for the female rats there was a significant
difference among the three ages in the MS, although not in the
NMS groups (NMS: F(1,22) = 0.970, p = 0.395; MS: F(1,22) =
4.564, p = 0.023). The post hoc (LSD) comparisons revealed
that in the male NMS group the PND 21 rats had significantly
less expression compared with the PND 35 and PND 56 rats
(Figure 3A); in the female MS group the PND 56 rats had
significantly decreased BDNF expression compared with the
PND 35 rats (Figure 3B).

Discussion

The current findings showed that repeated MS has fundamental
effects on BDNF protein expression in the forebrain of juvenile,
adolescent and young adult male and female rats. MS increased
BDNF expression in hippocampus of rats but decreased it
in the mPFC. BDNF expression in the CA1 was decreased
with age. However, in the mPFC, the increased expression of
BDNF with age in non-separated rats was reversed in MS rats.
The effect of gender on BDNF expression was only found
in the NAc.

Firstly, our results suggested that there were different effects of
MS on BDNF expression in the mPFC, hippocampus and NAc.
MS increased in the hippocampus of adolescent and young adult
rats and decreased in the mPFC of young adult rats. Similarly,
one previous study reported that MS produced a short-term-
up-regulation of BDNF expression in hippocampus and PFC,
which was measured on PND 17, and a reduction of BDNF
expression in the PFC in adulthood (Roceri et al., 2004). Our
results indicated that MS did not affect the expression of BDNF
in NAc. The alike results were also found in our previous study
in adult rats (Xue et al., 2013). These findings reminded us
that MS may affect BDNF expression differently in the mPFC,
hippocampus and NAc.

Since BDNF was closely related to both neural plasticity
and cytoarchitecture, are the influences of MS has on neural
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FIGURE 1 | Effects of Maternal separation (MS) on the brain-derived neurotrophic factor (BDNF) expression in the hippocampus, including the effects
of MS on the BDNF expression at different ages in CA1 (A) and dentate gyrus (DG) (B) and representative immunohistochemistry (IHC) figures of CA1
(C) and DG (D). The results are expressed as the mean ± S.E.M. (∗compared with PND 35 NMS rats, p < 0.05; #compared with PND 21 NMS rats, p < 0.05;
&compared with PND 21 and PND 35 MS rats, p < 0.05). Scale bar = 250 µm.

plasticity and cytoarchitecture in mPFC and hippocampus
similar? Previous study reported that MS (3 h per day from
PND 2–14) increased the hippocampal neurogenesis which was
assessed by using BrdU and DCX, meanwhile, the histone
methylation at the BDNF IV promoter and the expression of

BDNF were also increased in hippocampus (Suri et al., 2013).
MS also increased CREB and BDNF levels and hippocampus
progenitor proliferation in hippocampus (Nair et al., 2007).
Another study demonstrated that MS (2 h per day from PND
1–12) decreased the dendritic length and dendritic spine density
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FIGURE 2 | Effects of MS on the BDNF expression in the mPFC,
including the effects of MS on the BDNF expression at different ages
(A) and representative IHC figures (B). The results are expressed as the
mean ± S.E.M. (∗compared with PND 56 NMS rats, p < 0.05; #compared
with PND 35 NMS rats, p < 0.05; &compared with PND 21 and PND 35 MS
rats, p < 0.05). Scale bar = 500 µm.

of the neuron in PFC (Monroy et al., 2010). MS (24 h on PND
9) also induced the reduction in the thickness of PFC and of
the density of NeuN-immunolabeled neurons in PFC of rats
(Aksi ć et al., 2013). These studies on cytoarchitecture and neural
plasticity supported our findings about changes on BDNF levels
in PFC and hippocampus induced by MS.

In addition, existing studies have shown that the
inconsistency of MS effects was also reflected in cognitive
function, such as the spatial learning and reversal learning
in Morris water maze (MWM). Our recent study reported
that repeated MS (4 h per day from PND 1–21) increased
swim distance in spatial learning and decreased escape latency
in reversal learning of MWM in adolescent and early adult
rats (Wang et al., 2015). MS could induce the impairment of
spatial learning of MWM in adolescent (Frisone et al., 2002)
and adult rats (Garner et al., 2007), and also could enhance
the performance in reversal learning of MWM in adult rats
(Lehmann et al., 1999). Hippocampus, which was a key brain

FIGURE 3 | Effects of MS on the BDNF expression in the Nucleus
accumbens (NAc), including the effects of age on the BDNF
expression in different gender rats (A) and the representative IHC
figures (B). The results are expressed as the mean ± S.E.M. (∗compared with
PND 21 male NMS rats, p < 0.05; #compared with PND 35 female MS rats, p
< 0.05). Scale bar = 500 µm.

region of memory, played an important role in cognitive function
in MWM. Specifically deleted BDNF in hippocampus impaired
the spatial learning in MWM (Heldt et al., 2007). PFC was also
closely associated with spatial working memory in MWM (Xing
et al., 2012). These behavioral and BDNF results suggested that
differences among cognitive abnormalities of MS animals may
be related to the diverse changes in hippocampus and mPFC, but
more researches are still needed.

Secondly, as we have noted above, the developmental period
of animals may be another important factor for the MS effects.
The present study investigated the effects of MS on BDNF
expression in the hippocampus andmPFC of juvenile, adolescent
and young adult rats. Our results found that MS did not change
the BDNF expression in the CA1 and DG of PND 21 rats, but
increased the BDNF expression in the CA1 and DG of PND 35
rats, as well as in the DG of PND 56 rats. Similarly, another
previous study indicated that MS (3 h per day from PND 10–15)
decreased the expression of BDNF mRNA in the hippocampus
of PND 16 rats and increased the expression of BDNF mRNA
in the hippocampus of PND 30 and 60 rats. What’s more, it was
reported that there was no significant difference betweenMS and
mother-reared control rats on PND 20 (Kuma et al., 2004). These
findings were consistent with the results in the present study.

Thirdly, regarding the effects of MS on male and female rats,
the present study found that the expression of BDNF in the
mPFC and hippocampus was not significantly different between
the male and female rats. These results reminded us that the
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expression of BDNF, which was affected byMS, was not different
between the male and female rats. Marco et al. (2013) also found
that MS decreased the expression of BDNF in the PFC and
hippocampus both in male and female adolescent rats, but MS
increased the expression of glial fibrillary acidic protein (GFAP)
in male adolescent rats, not in female rats. However, our results
showed that between the MS and NMS rats of different ages the
effect of gender on BDNF expression in the NAc was different.
In the male NMS rats BDNF expression was increased with age.
A recent study reported that male juvenile rats (PND 26–28)
exhibited significantly elevated basal BDNF expression in the
NAc compared with their male adult (4 months) counterparts
(Perreault et al., 2013). These results were different with our
findings and this discrepancy may be because we did not observe
data at 4 months after birth. In the female MS group the BDNF
expression of the young rats was decreased compared with
the adolescent rats. No comparable result was reported in the
previous study.

Fourthly, the present study also found that the expression
of BDNF in the CA1 was decreased with age in the
NMS rats, and MS did not affect a change with age. A
previous study reported that the expression of BDNF in
the hippocampus changed with age: the expression of BDNF
increased after birth and it reached the highest level in
the second week after birth. After that, the expression of
BDNF gradually declined with age (Silhol et al., 2005). These
findings, consistent with our results, revealed the effect of
age on the process of BDNF neural-development in the
brain.

More importantly, the present study found that compared
with juvenile and adolescent rats, the BDNF expression in the
mPFC of young adult rats was significantly affected by repeated
MS. The highest BDNF expression in the NMS young adult
rats was reversed to the lowest expression of the MS rats.
These results suggested that the increase of BDNF expression
in the mPFC for young adult rats may be stopped and reversed
by MS, and no comparable result was reported in previous
studies. However, our lab had reported that repeated MS (4 h
per day from PND 1–21) improved reversal learning of the
MWM in young adult rats. For NMS rats, compared with
juvenile or adolescent rats, young adult rats had significantly
decreased cognitive flexibility; for MS rats, MS significantly
improved reversal learning of young adult rats (Wang et al.,
2015). Most previous studies had reported a positive relationship
between BDNF expression in the PFC and cognitive function
(Bredy et al., 2007; Sakata et al., 2013). However, a recent
report found that stress facilitated reversal learning of mouse,
and ventromedial prefrontal cortex (vmPFC) lesions mimicked
this effect of stress, but this enhanced reversal learning of

mouse induced by stress was prevented by BDNF infusion into
the vmPFC (Graybeal et al., 2011), which in part supported
our findings. Altogether, the relationship between cognitive
function and BDNF expression in the mPFC requires further
investigation.

Epigenetics research also confirmed the influence of early
life adversity on BDNF expression in brain. Roth et al. (2009)
demonstrated that early maltreatment increased the methylation
of BDNF DNA and it reduced the BDNF expression in PFC of
adult rats. Furthermore, many studies have confirmed that MS
led to hyperactivity of hypothalamic-pituitary-adrenal (HPA)
axis (Plotsky andMeaney, 1993; Lehmann et al., 2002; Lippmann
et al., 2007). MS reduced the level of glucocorticoid type-2 and
corticotropin-releasing hormone type-1 receptor (CRH1)mRNA
in hippocampus. MS also impaired the memory function and
decreased the expression of glucocorticoid in hippocampus of
rats (Llorente et al., 2011). These biochemical changes may
contribute to the neurobiological foundation of behavioral and
cognitive alterations induced by MS, which should be further
detected in our future research.

Conclusion

These present findings suggest that repeated MS induced
different types of forebrain neurobiological changes in juvenile,
adolescent, and young adult rats, revealing the varying patterns
of BDNF expression along with age in different brain regions
and indicating that the influence of gender was only embodied
in NAc not mPFC or hippocampus. The present study provided
new evidence for the study of behavioral and neuro-biochemical
alterations induced by adverse early life event. Considering the
close relationship between human BDNF and early life adversity,
these findings have potential clinical implication for treating
mental disorders.
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