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The transcription factor nuclear factor kappaB (NF-κB) is a well-known regulator of

inflammation, stress, and immune responses as well as cell survival. In the nervous

system, NF-κB is one of the crucial components in the molecular switch that converts

short- to long-term memory—a process that requires de novo gene expression. Here,

the researches published on NF-κB and downstream target genes in mammals will

be reviewed, which are necessary for structural plasticity and long-term memory, both

under normal and pathological conditions in the brain. Genetic evidence has revealed

that NF-κB regulates neuroprotection, neuronal transmission, and long-term memory. In

addition, after genetic ablation of all NF-κB subunits, a severe defect in hippocampal adult

neurogenesis was observed during aging. Proliferation of neural precursors is increased;

however, axon outgrowth, synaptogenesis, and tissue homeostasis of the dentate gyrus

are hampered. In this process, the NF-κB target gene PKAcat and other downstream

target genes such as Igf2 are critically involved. Therefore, NF-κB activity seems to be

crucial in regulating structural plasticity and replenishment of granule cells within the

hippocampus throughout the life. In addition to the function of NF-κB in neurons, we

will discuss on a neuroinflammatory role of the transcription factor in glia. Finally, a model

for NF-κB homeostasis on the molecular level is presented, in order to explain seemingly

the contradictory, the friend or foe, role of NF-κB in the nervous system.

Keywords: NF-kappaB, long-term memory, transcription factors, synapse, dentate gyrus, long term potentiation

WHAT IS MEMORY?

In its simplest form, we can define memory as information that can be retrieved later when
required. The frequently used definitions of memory in psychology are called declarative memory
and non-declarative memory. These terms can be used to discriminate memories of tasks such
as riding a bicycle (non-declarative) from other tasks such as remembering a lecture, events,
or places (declarative). As one might see with this simple example, there is no easy way to
describe how information from the real world (outer world) is stored within the brain. Current
knowledge describes what is necessary and sufficient for long-term memory formation such as
neurons, action potentials, synapses, engram cells, and neuronal networks. The term ‘engram’ was
coined by Richard Wolfgang Semon, who was the first to call memory traces as engram (Semon,
1920). There are several hypotheses involving single synapses, such as the synaptic tagging and
capture hypothesis (Redondo and Morris, 2011), or involving engram cells and their plasticity in
neuronal networks (Ryan et al., 2015 and see below). It seems to be unclear that which information
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of the real world is stored and how so many different memories
acquired during lifetime can be stored and retrieved. A standard
approach to memory research is that the observation, i.e., the
information from the real world, is taken up by sensory organs,
e.g., eyes, and then the information is transformed into signals,
which are transmitted to other neurons in the form of ion flux,
generating action potentials (neuronal activity). Long lasting
storage of this neuronal activity is thought to be stored in small
subnets of neurons within the brain. These neurons fire together,
show correlated responses, and have strong synaptic connections,
which may be used for memory storage (see Mayford et al.,
2012 for review), whereas most synapses, not integrated in the
investigated subnet, have only weak connections. Kandel and
coworkers provided another definition for memory: “Learning
is the biological process of acquiring new knowledge about the
world, andmemory is the process of retaining and reconstructing
that knowledge over time” (Kandel et al., 2014), suggesting that
memory retrieval could alter memory itself. For additional details
on electrophysiology and memory, see Section Target Genes with
Potential Involvement in Memory.

Pioneering work of Eric Kandel and coworkers has led to the
identification of molecular pathways that translate changes of
gene expression to behavior. This process involves intracellular
protein phosphorylation and later on the nuclear transcription
factor CREB as a target of the protein kinase A (Kandel,
2001). These findings inspired the interest of investigating
transcription factors as regulators of memory traces, taking
up an old concept from Richard Semon, who called memory
traces engram (Semon, 1920): “Ich bezeichne diese Wirkung
der Reize als ihre engraphische Wirkung, weil sie sich in die
organische Substanz sozusagen eingräbt oder einschreibt. Die so
bewirkte Veränderung der organsichen Substanz bezeichne ich
als das Engramm des betreffenden Reizes. . . ” Own translation
to English: “I call this action of a stimulus an engraphic
action, because it engraves or writes into the organic substance.
This change in the organic substance is called engram of
the corresponding stimulus.” Recently Susumo Tonegawa and
coworkers identified engram cells that retain memory even
under retrograde amnesia (Ryan et al., 2015). They labeled
engram cells by transcription of the activity-dependent c-fos
promoter, driving tTA-dependent expression of either mCherry
or chanelrhodopsin. Engram cells showed vast changes in
synaptic plasticity on many spines. This could be fully inhibited
by inhibiting protein synthesis. For an in depth discussion of the
engram concept, see Ramirez et al. (2014). This work underscores
the importance of transcription factors such as c-FOS for the
formation of long-term memory in specific neurons (engram
cells). We conclude that long-term memory could be stored in
specific neurons (engram cells) and that engram cells are tagged
during memory acquisition by the activation of transcription
factors.

TRANSCRIPTION FACTORS AND MEMORY

As discussed previously, transcription factors might provide a
way to measure memory traces in neuronal networks, which
are involved in memory storage. What is the definition of a

transcription factor? A recent census of human transcription
factors was done by identifying proteins that bind DNA in
a sequence-specific manner (Vaquerizas et al., 2009). For this
analysis, DNA-binding domains and families from the Interpro
database were assembled and used for database search. This led
to the identification of 1391 transcription factors in the human
genome. However, only 62 of these putative transcription factors
have been experimentally verified for both DNA-binding and
regulatory functions. The authors reported among themost-cited
transcription factors such as p53, FOS, JUN, CREB, and NF-
kappaB. Our own PubMed search in 2015 with MeSH entries
“p53 and brain” resulted in 721 publications, whereas inclusion
of “memory” in this search resulted in only 29 publications.
Another PubMed search with “FOS and brain” resulted in 1399
publications, and with the additional search term “memory,” 76
publications were found. About 3196 publications were found
for “CREB and brain”; 796 hits were found with the addition
of search term “memory.” These results might underscore the
importance of publications by Noble Prize winner Eric Kandel,
who advanced the work on transcription and memory, especially
on CREB (Kandel, 2001). Still NF-κB with MeSH term “brain”
gives 1430 publications, and together with “memory,” we received
108 publications. Reading of the abstracts immediately revealed
that some important work was not found by these search
strategies. Therefore, here, we will review the current literature
on NF-κB and memory in mammalian systems. Besides NF-κB,
other transcription factors activated by neuronal activity and
involved in memory include cAMP response element-binding
protein (CREB), CCAAT enhancer-binding protein (C/EBP),
activating protein 1 (AP-1), and early growth response factor
(Egr) (Alberini, 2009). Certainly there could be more.

INTRODUCTION TO NF-κB

NF-κB is a master transcription factor that is ubiquitously
expressed and responds to diverse stimuli including cytokines,
growth factors, and bacteria or viruses by the expression of stress
response genes in many cells (Hayden and Ghosh, 2012). NF-κB
(nuclear factor kappa B) was discovered in the laboratory of
David Baltimore (Sen and Baltimore, 1986), as a DNA-binding
factor that is specific to a 10-base pair nearly palindromic
sequence: 5′-GGGACTTTCC-3, initially binding to the enhancer
of the antibody kappa-light chain. Hence, this might explain
its name. Cloning revealed a heterodimer composed of p50 kDa
and p65 kDa (RelA) subunits. Further research identified other
transcription factors with homology to the reticuloendotheliosis
virus of turkeys (v-Rel). Each family member contains a Rel
Homology region (RHR) near its N-terminus (Figure 1). The
RHR contains two domains, the N-terminal domain (NTD)
and the Dimerization domain (Dim), joined by flexible linker
sequences. In addition, RHR contains a nuclear localization
signal (NLS). Therefore, the RHR combines sequence-specific
DNA-binding, dimerization, nuclear localization, and interaction
with IκB proteins. IκB was purified by Patrick Baeuerle as a 60-
to 70-kD inhibitory protein (called I kappa B) from a latent
form of NF-κB in the cytoplasm, where latent NF-κB could
be activated by treatment with mild detergent deoxycholate
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FIGURE 1 | The NF-κB family of DNA-binding proteins. Five DNA-binding

subunits found in the mammalian genome, which combine as homo- or

heterodimers. A frequently found dimer is composed of p50/p65. All dimers

can exist in a latent form in the cytoplasm complexed by IκB family members.

This leads to inhibition of NF-κB due to cytoplasmic retention. Furthermore,

NF-κB subunits can be classified as Class I (without transactivation, TA) or as

Class II with TA due to the presence of a transactivation domain (TAD) in the

C-terminal region.

(Baeuerle and Baltimore, 1988a). These data suggested a non-
covalent interaction of IκB with NF-κB, which could be purified
and cloned (Baeuerle and Baltimore, 1988b). Later, many
different proteins with IκB function were identified (Hinz et al.,
2012).

ACTIVATION OF CREB AND NF-κB IN
NEURONS

NF-κB is a transcription factor composed of two DNA-binding
subunits that is activated by various stimuli in the nervous system
(see Figure 2; Kaltschmidt and Kaltschmidt, 2009). Therefore,
knockout or genetic ablation has various effects within the
nervous system. In contrast, only knockout of subunit RelA
(p65) is embryonically lethal. Genetic evidence for a role of NF-
κB in the nervous system including cognitive effects or other
neurological defects are summarized in Table 1.

A comparison of NF-κB in the nervous system and CREB
activation is shown in Figure 2. The CREB family contains CREB
(cyclic-AMP-response element (CRE)-binding protein), CREM
(CRE-modulatory protein), and ATF1 (activation transcription
factor 1). Double-knockout of CREB and CREM resulted in a
massive apoptotic cell death of neurons of the cortical plate and in
the hippocampus and striatum, whereas neurogenesis seemed to
be unaffected (Mantamadiotis et al., 2002), and no fiber defects
were reported. Phosphorylation by protein kinase A at Ser133
activates CREB to promote transcription (for review, see West
et al., 2002). Phosphorylation can lead to the recruitment of the
transcriptional coactivator CREB-binding protein (CBP). CBP
belongs to a family of histone acetyl-transferases, which catalyze
hyper-acetylation of core histones, thereby leading to gene
activation by loosening chromatin packing. Neuromodulators
such as dopamine can activate G-protein-coupled receptors,

FIGURE 2 | Schematic representation for the activation of transcription

factors like NF-κB and CREB by synaptic activity. Upon synaptic

stimulation of the receptors for NMDA or voltage-gated calcium channels

(L-VGCC), a calcium influx induces activation of IkB kinases and

phosphorylation of IkB (blue). Finally, degradation within the proteasome takes

place, and thereby the nuclear localization signal of NF-kB is unmasked and

allows NF-κB (red/green) to enter the nucleus, where it binds to kb sites and

activates the transcription of target genes like PKAcat (catalytic subunit of

protein kinase A). On the left site, CREB is activated after stimulation of mGluR

or dopamine receptors by dopamine, and cAMP increases activating PKA.

This phosphorylates the transcription factor CREB and other proteins like MAP

kinases. P-CREB (orange) is bound by CBP (yellow), which initiates the

transcription of its target genes. Interestingly, activation of NF-κB and

expression of its target gene PKAcat will induce a positive feed-forward loop to

CREB activation without additional synaptic activation, which might explain the

late phase of long-term potentiation.

which in turn activates membrane localized adenylate cyclase,
which leads to the elevation of intracellular cAMP (Figure 2).
Activation by cAMP frees the catalytically active protein kinase
A (PKAcat) to enter the nucleus and phosphorylate CREB, which
could ameliorate age-dependent memory deficits (Bach et al.,
1999). Neuromodulators binding to metabotropic glutamate
receptors can also activate NF-κB in neurons (O’Riordan et al.,
2006). Activation of plasma membrane-localized ion channels,
such as NMDA (N-methyl-D-aspartate) receptors (NMDARs)
and L-type voltage-gated calcium channels (L-VGCCs), allow the
influx of calcium (Figure 2). The classical view was that CREB
could be activated by phosphorylation via the depolarization-
activated Ca(2+)-calmodulin-dependent protein kinases (CaM
kinases) I and II (Sheng et al., 1991). Then, how the calcium
signal is transmitted to the nucleus? This story was unfolded
about 25 years later. Recent results suggest a CaM kinase cascade
(see Figure 2), where the calcium signal is transmitted via
calmodulin-dependent phosphorylation of gamma CaMKII. The
activated γCaMKII travels to the nucleus where phosphorylation
of CREB is initiated (Ma et al., 2014). Until now, there are
only two transcription factors known to decode frequency of
calcium oscillations: NFAT and NF-κB (Dolmetsch et al., 1998).
While NF-κB is already activated by low frequency of calcium
oscillations and by infrequent oscillations even at the level of
its target genes IL2 and IL8 (Dolmetsch et al., 1998), nothing
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is known about the situation in neurons. It is suggested that
NF-κB could be activated by calcium in cerebellar granule
cells (Lilienbaum and Israël, 2003). Further investigations might
clear the mechanisms in other neuronal cell types. All NF-κB-
activating stimuli culminate on the IKK complex composed from
the IκB kinases IKK 1 and 2 (alpha and beta) and the third
subunit NEMO (Israël, 2010). Activation of the IKK complex
could involve ubiquitinylation of NEMO and upstream kinases,
and the entire mechanism is not solved so far. Activation of
the IKK complex leads to phosphorylation of the inhibitory
subunit IκB alpha at Ser 32 and 36 followed by ubiquitinylation.
This is a signal for proteolytic degradation of IκB in the
proteasome. Anti-cancer drugs such as bortecomib (Velclade) are
used to inhibit constitutive NF-κB activity in multiple myeloma
plasmacytoma cells. In the context reviewed here, bortecimib
can have serious side effects on the nervous system (see Velcade
EMA/27714/2015) such as posterior reversible encephalopathy
syndrome, autonomic neuropathy (damage to nerves controlling
organs such as the bladder, eyes, gut, heart, and blood vessels),
or more commonly peripheral neuropathy (nerve damage in
hands and feet). Furthermore, inhibition of the proteasome
system during consolidation blocked long-term memory both
in crabs and mice (Sol Fustiñana et al., 2014). Degradation of
IκB frees DNA-binding subunits to enter the nucleus by active
transport (Figure 2), leading to the expression of target genes
such as PRKACA (catalytic subunit of PKA; Kaltschmidt et al.,
2006). NF-κB could be activated in neurons by depolarization,
kainate, and glutamate (Kaltschmidt et al., 1995; Simpson and
Morris, 1999). Stimulation in young cerebellar granule cells
functions even at the concentration of 10 nM glutamate, alone or
together with 10µM glycine or 100µM NMDA (Guerrini et al.,
1995); interestingly, neurons prepared from older age depicted
constitutive NF-κB activity as already reported for hippocampal
and cortical neurons in vitro and in vivo (Kaltschmidt et al.,
1994). This constitutive NF-κB activity could be modulated by
co-cultured astrocytes, which could inhibit activation of NF-
κB in vitro (Kaltschmidt and Kaltschmidt, 2000). Constitutive
NF-κB activity is also found in vivo when reporter genes
were analyzed. LacZ expression driven by NF-κB promoters
(p105lacZ and 3 × Igk conalacZ) in brain was constitutive in
various brain regions of the adult brain including cerebellar
granule cells, the hippocampus and several layers as CA1, CA3
and dentate gyrus, and the cerebral cortex (Schmidt-Ullrich
et al., 1996). Expression of reporter genes was only neuronal.
Furthermore, forced expression of transdominant IκB alpha
completely blocked constitutive expression of this lacZ NF-
κB reporter gene (Fridmacher et al., 2003). Similar results
were achieved with another mouse model (Bhakar et al., 2002)
using a κB tandem repeat derived from HIV LTR to drive an
SV40minimal promoter lacZ gene. LacZ expression was strong
in the telencephalon and along the roof plate of midbrain. Among
other loci of staining, tactile hair follicles were prominently
stained. Layers of the cortex cerebri are stained to a lesser extent,
but strong staining was evident in hippocampal fields CA1,
CA2, DG, and to a lesser extent in CA3. Forced expression of
RelA protected cortical neurons against apoptosis induced by
etoposide (Bhakar et al., 2002). We found that pre-conditioning

neurons with tumor necrosis factor alpha (TNF) or low amounts
of amyloid beta peptide (Aβ) could protect neurons against
Aβ-mediated neurotoxicity (Kaltschmidt et al., 1999). In this
line, it could be shown that TNF is involved in hippocampal
synaptic plasticity (Albensi and Mattson, 2000). Furthermore,
we have previously shown (Kaltschmidt et al., 1999) that
treatment of cerebellar granule cells with TNF or low dose
Aβ peptide (0.1µM) could protect against neurotoxic amounts
of Aβ (10µM). This type of neuroprotection involves NF-κB
and might be enhanced by CBP as a potential NF-κB target
gene. CBP is a co-activator, which seems to be important for
chromatin opening, due to its histone acetyltransferase activity
(Ogryzko et al., 1996). Interestingly, several neuroprotective
small molecules could be identified by a screening strategy using
NF-κB activation (Manuvakhova et al., 2011). Memory decline
is one of the hallmarks of Alzheimer’s disease, which could
be correlated to reduced NF-κB activity around Aβ containing
plaques (Kaltschmidt et al., 1999). Neuroprotection against
kainate was blocked by forced expression of transdominant IκB
alpha (Fridmacher et al., 2003). In Figure 2, as an example of a
target gene, the catalytic subunit of protein kinase A (PKAcat)
is depicted; this gene is regulated by NF-κB in hippocampal
neurons in vivo (Kaltschmidt et al., 2006). Forskolin-induced
(cAMP-dependent) CREB phosphorylation is strongly impaired
when NF-κB is repressed. These data suggest a cross-coupling
of CREB and NF-κB-dependent memory pathways. However,
the question which are the relevant memory target genes still
remains.

TARGET GENES WITH POTENTIAL
INVOLVEMENT IN MEMORY

Long-lasting long-term potentiation (L-LTP) is a well-established
model for memory at the synaptic level. In this paradigm, short
voltage trains are used to induce a long-lasting post-synaptic
response. It was discovered by Lømo when stimulating the
perforant path (input to dentate gyrus granule cells) (Bliss and
Lømo, 1973). Recording of field potentials of granule cells showed
a long-lasting potentiation of granule cells lasting for hours
(L-LTP). The requirement of L-LTP for protein synthesis was
first described by Krug et al. (1984). In vivo L-LTP resulted
in long-lasting biphasic CREB phosphorylation (Schulz et al.,
1999). NF-κB p50−/− animals showed only decremental LTP that
faded over time, even when high frequency stimulation trains
were used, which elicited L-LTP in control animals (Oikawa
et al., 2012). Furthermore, LTP magnitude and LTD induction
were blocked by inhibiting NF-κB DNA binding in hippocampal
slices (Albensi and Mattson, 2000). In this line, expression of
Egr-2 was upregulated in WT hippocampal slices preparation
after theta burst stimulation but not in p50−/− slices (Nafez
et al., 2015). Same authors identified Egr-2 as novel NF-κB
target gene in brain. Knockout of c-Rel also led to decremental
LTP, whereas c-Rel expression was up-regulated during novel
object recognition (Ahn et al., 2008). Late-onset Parkinson’s
disease was reported in mice with c-Rel knockout with loss of
tyrosine hydroxylase positive neurons in the substantia nigra only
visible at 18 month of age (Baiguera et al., 2012). Inhibition

Frontiers in Molecular Neuroscience | www.frontiersin.org 5 November 2015 | Volume 8 | Article 69

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Kaltschmidt and Kaltschmidt NF-KappaB and Memory

of all NF-κB subunits by forced IκB expression led to reduced
LTP induction and longer learning phases in Morris water
maze (Kaltschmidt et al., 2006). As potential mechanisms, the
current models discuss the formation of novel post-synapses and
NMDA receptor density increase. Previous reviews suggested
that the two secreted proteins, brain-derived neurotrophic
factor (BDNF) and tissue plasminogen activator (tPA), have
been repeatedly implicated in L-LTP as memory-relevant
CREB target genes (Kandel, 2001) or nNOS and presenilin as
additional CREB targets (West et al., 2002). To analyze this
question in more detail, Eric Kandel and coworkers expressed
a constitutively transactivating mutant of CREB (VP16-CREB)
in transgenic mice under the control of the tetracycline
operator, which can be activated by CamKII promoter-
driven expression of the tetracycline-dependent transactivator
(Barco et al., 2005). Surprisingly, this study identified only a
handful of genes that are activated by VP16-CREB-induced
L-LTP, but not by increased neuronal activity alone (kainate
treatment). These genes include prodynorphin, MHC Class I
and JunD/cFos in CA1, and dentate gyrus (see Figure 3). A
low amount of induction in all hippocampal subfields was
detected for BDNF. Surprisingly, Arc was only induced by
kainate treatment, suggesting a difference in genes activated
by neuronal activity and memory-relevant gene expression.
Furthermore, MHC Class II genes seemed to be induced by
VP16-CREB. These data could be reproduced in part with
a cellular model of cultured hippocampal neurons (Benito
et al., 2011). One might be surprised by the fact that
a similar set of genes were identified in a different but
technically similar in vivo screen, involving loss of function
of NF-κB (Kaltschmidt et al., 2006). Therefore, we suggest
that JunD, MHC Class I, II and beta 2 microglobulin,
prodynorphin, and BDNF might be a common set of genes
that are regulated by CREB and NF-κB together. Indeed,
MHC Class I, II and beta 2 microglobulin share common

FIGURE 3 | Memory relevant target genes of NF-κB and CREB. Genetic

screens in transgenic mice identified several target genes of CREB (blue) and

NF-kB(red). A Venn diagram shows overlapping target genes (dark red) of both

transcription factors. For references see text.

response elements including the CREB-binding site, CRE (Gobin
et al., 2001). Similarly, these genes are NF-κB target genes
(Israël et al., 1989) even in neurons (Kaltschmidt et al., 1995; Yang
et al., 2014). However, function in neurons remained unclear.
MHC Class I molecules are trimeric proteins that are composed
of a transmembrane heavy chain, a soluble κ2-microglobulin (κ2-
m) light chain, and a peptide bound to the heavy chain. Only
recently, Carla Shatz and coworkers have suggested a synaptic
glue hypothesis (Huh et al., 2000), where MHC Class I molecules
might be used for adhesion of specific synapses. Surprisingly,
LTP is enhanced and LTD is absent in mice without functional
MHC Class I (Huh et al., 2000). Expression of MHC Class I
genes H2-D and T22 could be detected in the hippocampus
(Huh et al., 2000). However, other authors argue that MHC Class
I has a function in pathological situations (e.g., synapses and
neuron elimination by T-cells; Cebrián et al., 2014). Similarly, no
memory-relevant target genes for the AP-1 complex (Fos/Jun)
were presented so far. Prodynorphin was identified as a NF-κB
target gene with mapped response sites (Bakalkin et al., 1994).
BDNF expression might be regulated indirectly via the NF-κB
target gene XIAP (Kairisalo et al., 2009). In our humble opinion,
the correlation with memory formation is better for NF-κB target
genes (Figure 3 right part of the Venn diagram). The initial idea
of synaptic enhancement by transcription is of a target gene that
can indeed enhance post- or pre-synapse function. We think
there are now, after more than 20 years of research on NF-
κB in the nervous system, enough evidences on involvement of
NF-κB target genes in synaptic enhancement. In this line, a recent
genetic screen identified an insulin-like growth factor 2 (Igf2,
see Figure 4) as a novel neuronal NF-κB target gene involved in
spine density regulation (Schmeisser et al., 2012). Interestingly,
Igf2 could rescue the spine reduction in neurons with NF-κB
inhibition (Schmeisser et al., 2012). In addition, Igf2 is critically
involved inmemory consolidation and enhancement (Chen et al.,
2011). Igf2 could ameliorate the neurodegeneration in a mouse

FIGURE 4 | Scheme of a post-synapse. Some NF-κB target genes as

AMPAR, Igf2, and PSD95 are crucial components of the post-synaptic

compartment and involved in signal transmission. Association of NF-κB with

the scaffold is suggested by biochemical fractionation but was not directly

proven.
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model with Alzheimer’s disease, and its expression is reduced
in Alzheimer patients’ hippocampi (Pascual-Lucas et al., 2014).
Similarly, NF-κB activity was reduced in Alzheimer patients’
brains (Kaltschmidt et al., 1999), suggesting that Igf2 could be
a target gene of NF-κB in humans. In addition, amyloid beta
peptides could activate NF-κB p65 in neurons and might activate
NF-κB in the close vicinity of early plaques in Alzheimer patients’
brains (Kaltschmidt et al., 1997). In this respect, it might be
important to note that the activation of NF-κB by Alzheimer’s
disease follows a bell-shaped curve where low amounts of Aβ

activate NF-κB, but high amounts repress NF-κB; for discussion,
see Kaltschmidt et al. (2005). In a recent study (Schmeisser et al.,
2012), a dominant negative version of the IKK2 protein was
expressed in neurons using the tet system. Spine density was
reduced to the half of control in CA1, especially the memory-
relevant mushroom spines were reduced to about 25%. Learning
was slower as with IκB over-expression. Synapses contained
significantly less GluA1 and PSD95. Ultrastructure depicted a
high amount of synapses with disrupted post-synaptic density.
Similarly, it was shown earlier in cultured neurons that NF-κB
activity positively regulated spine densitiy and glutamatergic
synapse formation (Boersma et al., 2011). These data describing
post-synaptic damage fit to our data reporting reduced size
and number of presynaptic mossy fiber buttons (Imielski et al.,
2012). In addition, we observed that axonal growth is regulated
by NF-κB in vitro and in vivo in the mossy fiber pathway
(Imielski et al., 2012). Taken together, NF-κB regulates post-
synapse formation (see Figure 4) by expression of Igf2, whose
receptor is post-synaptic and by additional target genes such
as PSD95 (Boersma et al., 2011). Furthermore, NF-κB directs
the expression of AMPA receptor components (Boersma et al.,
2011; Schmeisser et al., 2012). NMDA receptor component NR1
appears to be regulated by NF-κB, and regulation of NF-κB
target genes such as Cox2 (Kaltschmidt et al., 2002), PKAcat
(Kaltschmidt et al., 2006), Foxo1, and NCAM (Imielski et al.,
2012) were described. Localization of NF-κB in synaptosomes
(Kaltschmidt et al., 1993; Meberg et al., 1996; Meffert et al.,
2003; Schmeisser et al., 2012) suggests a function of NF-κB
as retrograde messenger (see Figure 5). In this line, we and
others could show that p65-GFP is traveling to the nucleus when
activated by glutamate (Wellmann et al., 2001; Meffert et al.,
2003). This retrograde transport is dependent on the nuclear
localization signal of p65 and involves a dynein–dynactin motor
protein complex traveling on microtubules (Mikenberg et al.,
2007; Shrum et al., 2009). The traveling complex seems to be a
signaling endosome with scaffolding proteins such as Huntingtin
and/or HSC70 (Marcora and Kennedy, 2010; Klenke et al., 2013).
In comparison, it might be interesting to note that CREB could be
translated in axons andmediate a retrograde survival signaling in
response to nerve growth factor (Cox et al., 2008).

NF-κB SIGNALING IS ESSENTIAL FOR
DENTATE GYRUS TISSUE HOMEOSTASIS

Previously, we have shown that NF-κB plays an important
role at three consecutive stages of neurogenesis (see Figure 6):

FIGURE 5 | Scheme of retrograde transport. Upon stimulation of neurons,

the nuclear localization signal is unmasked, allowing its binding to scaffolding

proteins outside of the signaling endosome. This complex is then transported

retrogradely to the nucleus, where it finally activates NF-κB target genes.

proliferation/differentiation of neural progenitor cells, axon
specification, and integration of young neurons and survival
of mature granule cells (Imielski et al., 2012). Recently, the
role of NF-κB p50 in neurogenesis was analyzed (Denis-Donini
et al., 2008) in p50−/− mice, where the net rate of neural
precursor proliferation was unchanged, but only 50% of newborn
neurons survived in the DG and a defect in spatial short-
term memory was observed. Because in p50−/− mice only one
NF-κB subunit is deleted in all cell types, we used (Imielski
et al., 2012) a neuronal-specific ablation of all NF-κB subunits
in our study. We confirmed in part the results of Denis-
Donini and coworkers for a role of NF-κB in neurogenesis
and extended that findings to a function of NF-κB in tissue
of the dentate gyrus homeostasis, synaptogenesis, axogenesis,
and spatial pattern separation. In contrast to Denis-Donini
et al., we found an increased rate of proliferating DCX-
positive granule cell progenitors, presumably due to the high
rate of apoptosis observed in DG after forced expression of
transdominant negative IκB-alpha. Regrowing of DG after re-
activation of NF-κB had a major impact on integration and
survival of newborn DCX+ neurons. Similarly, neurogenesis
within the subventricular zone depends on NF-κB (Zhang et al.,
2012).

The regulation of adult neurogenesis by transcription factors
is still a matter of debate (Chen et al., 2011), and our data
show that the transcription factor NF-κB is a crucial regulator
of neurogenesis, essential for axogenesis, and integration of
newborn neurons. Taken together, these data indicate that
NF-κB plays an important role in structural plasticity of the
hippocampus.

Surprisingly, another study showed that over-activation of
NF-κB in a transgenic mouse model with forced expression of
ncaIKK-2 (Maqbool et al., 2013) resulted in a similar structural
defect: degeneration of granule cells to about 50% of control
level and massive astrocytosis. In addition, a reduction of BDNF
was described but no decrease of Prkca was measured. However,
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FIGURE 6 | NF-κB signaling is crucial for dentate gyrus tissue homeostasis. Left site: scheme of neural stem cell differentiation in the dentate gyrus, note that

NF-κB activation is essential for type 2b progenitor (yellow) maturation to mature granule cells. Right site: molecular pathways involved and resulting phenotypes.

expression of the NF-κB target gene Igf2 was not elevated in this
mouse model, arguing against the validity of gain of function
approaches to study NF-κB target genes.

To the best of our knowledge, NF-κB is the one and only factor
where ablation or over-activation showed such severe effects in
structural plasticity.

The observed NF-κB-dependent structural defects resulted
in a behavioral phenotype. Recently, behavioral tests (Clelland
et al., 2009) were developed to measure the memory of subtle
differences in spatial environment. The authors suggest that
neurogenesis enhanced the recognition of weakly separated
cues. In this line, we developed a special behavioral test (SPS-
BM), which is able to measure spatial pattern separation
with the advantage to analyze search strategies (Widera et al.,
2014).

Interestingly, the mouse model described in Imielski et al.
(2012) is a phenocopy of Alzheimer’s disease (AD) in three
aspects: reduced NF-κB activity as in AD brains (Kaltschmidt
et al., 1999), increased proliferation of immature DCX+ neuronal
precursors, and progressive cell loss (Jin et al., 2004) coupled with
strong neuroinflammation. Thus, re-activation of NF-κB might

be an interesting therapeutic strategy for neuroregeneration of

the adult dentate gyrus in the future.

CONCLUSION

We suggest that NF-κB activation in neurons could be an
interesting strategy to ameliorate memory diseases such as
Alzheimer’s disease. Dose–response curve of such kind of drugs
might be bell shaped, too much will lead to neurodegeneration.
Furthermore, constitutive activation of NF-κB in glia during
aging might lead to cognitive decline. Finally, re-activation of
NF-κB inhibition might lead to neuroregeneration due to stem
cell action, which could be the basis for further understanding of
brain repair.
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