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Brain-derived neurotrophic factor (BDNF) is a neurotrophin family member that is highly
expressed and widely distributed in the brain. BDNF is critical for neural survival and
plasticity both during development and in adulthood, and dysfunction in its signaling
may contribute to a number of neurodegenerative disorders. Deep understanding
of the BDNF-activated molecular cascade may thus help to find new biomarkers
and therapeutic targets. One interesting direction is related to the early phase of
BDNF-dependent gene expression regulation, which is responsible for the activation
of selective gene programs that lead to stable functional and structural remodeling of
neurons. Immediate-early coding genes activated by BDNF are under investigation, but
the involvement of the non-coding RNAs is largely unexplored, especially the long non-
coding RNAs (lncRNAs). lncRNAs are emerging as key regulators that can orchestrate
different aspects of nervous system development, homeostasis, and plasticity, making
them attractive candidate markers and therapeutic targets for brain diseases. We used
microarray technology to identify differentially expressed lncRNAs in the immediate
response phase of BDNF stimulation in a neuronal cell model. Our observations on
the putative functional role of lncRNAs provide clues to their involvement as master
regulators of gene expression cascade triggered by BDNF.
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THE ESSENTIAL ROLE OF BDNF IN NEURON LIFE

Brain-Derived Neurotrophic Factor (BDNF) has been shown to have a central function in both
neuronal development and in the adult nervous system. Knockout mice for BDNF usually die
soon after birth and suffer developmental defects in the brain and sensory nervous system
(Ernfors et al., 1995). Suppression of BDNF expression results in defective long-term potentiation
(LTP) and memory formation (Korte et al., 1995; Linnarsson et al., 1997; Ma et al., 1998; Mu
et al., 1999). In contrast, treatment of hippocampal slices from BDNF knockout mice with
recombinant BDNF completely reversed deficits in LTP and significantly improved deficits in basal
synaptic transmission (Patterson et al., 1996). BDNF interaction with NTRK2 receptor activates
three signaling pathways: PI3K-Akt (PI3K, phosphatidylinositol-3 kinase), Ras-MAPK (MAPK,
mitogen-activated protein kinase), and PLCγ-Ca+ (PLC, phospholipase C; Duman and Voleti,
2012). It is also known to regulate a large spectrum of processes of the nervous system, including
cell survival, growth, and differentiation (Casaccia-Bonnefil et al., 1999; Bibel and Barde, 2000;
Huang and Reichardt, 2003; Park and Poo, 2013; Suliman et al., 2013; Zagrebelsky and Korte, 2014),
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synaptic plasticity of neurons, and LTP (Xu et al., 2000; Bramham
and Messaoudi, 2005; Gottmann et al., 2009; Minichiello,
2009; Mizui et al., 2014; Zagrebelsky and Korte, 2014; Leal
et al., 2015). BDNF’s roles in neuronal processes during
development and adulthood, support its potential role in the
pathogenesis and treatment of both neurological and psychiatric
disorders (Pruunsild et al., 2007; Nagahara and Tuszynski, 2011;
Weissmiller and Wu, 2012). In fact, BDNF exerts potent pro-
survival and functional effects in models of neurological diseases
such as Parkinson’s (Howells et al., 2000; van der Kolk et al.,
2015), Huntington’s (Zuccato et al., 2008; Jiang et al., 2013),
and Alzheimer’s diseases (Holsinger et al., 2000; Michalski and
Fahnestock, 2003; Peng et al., 2005; Faria et al., 2014), as well as
depression and other psychiatric disorders (Karege et al., 2002;
Aydemir et al., 2005; Gonul et al., 2005; Cunha et al., 2006).

BDNF: THE MOLECULAR MECHANISM
OF ACTION

Understanding the molecular mechanisms of BDNF’s functions
may help to develop efficient therapeutic strategies for brain
diseases. The molecular cascade triggered by BDNF has largely
been investigated in the adult hippocampus, which retains a high
degree of synaptic plasticity into adulthood. The effects of BDNF
on LTP have been largely assigned to effects on modulation of
receptor trafficking and local protein synthesis at the synapse by
local activation of the translation machinery (Leal et al., 2014).
BDNF acts at different levels to increase translation activity by
altering the phosphorylation of proteins involved in the initiation
step of protein synthesis, such as the guanine nucleotide exchange
factor eIF2B (Takei et al., 2001) and eIF4E and 4EBP1 (Takei
et al., 2004). In addition, BDNF can affect the elongation step, as
shown in cultured cortical neurons, where BDNF stimulation was
shown to increase the phosphorylation (activation) of eukaryotic
elongation factor 1A (eEF1A; Inamura et al., 2005; Leal et al.,
2014).

BDNF AND DE NOVO GENE
EXPRESSION

Long-term effects of BDNF on synaptogenesis, synaptic plasticity,
and cell survival often depend on de novo gene expression.
BDNF first affects the expression of genes (immediate-early
genes, IEGs) that are regulated directly downstream of its signal
transduction pathways and couple early signals to late expression
of the downstream target responsible for persistent changes in
neuronal phenotype. Some BDNF-induced IEGs involved in
synaptic plasticity have been identified. Among them, activity-
regulated cytoskeleton-associated protein (ARC), salt-inducible
kinase 1 (SIK1), and transcription factor NR4A1 (Nur77), have
been shown to be up-regulated early by BDNF stimulation
of neurons (Ying et al., 2002; Rao et al., 2006; Zheng et al.,
2009; Finsterwald et al., 2013). Beyond the classical protein-
coding IEGs, micro-RNAs (miRNAs) have also been singled
out in the early response to BDNF stimulation. For example,

miR-132 has been shown to be markedly up-regulated early
after BDNF treatment of cortical neurons and involved in
neuron morphogenesis likely triggering a rapid and persistent
downregulation of protein levels (Vo et al., 2005). Both the
proteins and miRNA classes of regulators therefore seem to
participate in the early response to BDNF stimulation to induce
the expression of downstream effectors involved in long-term
synaptic changes and cell survival. Mechanisms regulating the
initial molecular cascade are likely even more intricate when
considering that a new class of non-coding RNA has recently
been emerging as a key regulator of gene expression: the long
non-coding RNA (lncRNA).

LONG NON-CODING RNA: A NEW
CLASS OF REGULATORY RNA

Long non-coding RNA are a heterogeneous class of numerous
transcripts mainly produced by RNA polymerase II and defined
as RNA molecules of more than 200 bases in length with no
protein-coding capacity. Although the functional role of the
vast majority of lncRNAs transcribed in a cell has been subject
to much debate (Palazzo and Lee, 2015), the literature shows
many examples of their effects on gene expression regulation.
The mechanism of action is based on their ability to interact
with other molecules, such as DNA, RNA, and proteins. In
this way, they can act at different stages of gene expression
and in processes ranging from chromatin remodeling to
transcriptional, post-transcriptional, and translational regulation
(Vance and Ponting, 2014). In addition, a recent analysis of
Ruiz-Orera et al. (2014) on ribosome profiling experiments
provided important evidence that lncRNAs associated with
ribosomes may play an important role in de novo protein
evolution by encoding short peptides. A large fraction of
tissue-specific lncRNAs is expressed in the brain (Derrien
et al., 2012), and many reviews have emphasized their role
in neurodevelopment, brain function, and a wide range of
neurodevelopmental, neurodegenerative and psychiatric diseases
(for instance, see St Laurent and Wahlestedt, 2007; van de
Vondervoort et al., 2013; Wu et al., 2013; Barry, 2014; Roberts
et al., 2014; Tushir and Akbarian, 2014). An emblematic
example is the antisense transcript, Bdnf-AS (Pruunsild et al.,
2007). Recently, Modarresi et al. (2012) demonstrated that
Bdnf -AS downregulates Bdnf expression through a role in
the guidance, introduction, and maintenance of H3K27me3
involving PRC2-mediated repressive chromatin remodeling.
Single-stranded oligonucleotides and siRNA-mediated depletion
of Bdnf-AS in adult mouse brain resulted in a several-fold
increase in Bdnf transcript and protein in the hippocampus
and frontal cortex (Modarresi et al., 2012). These results
paved the way for considering lncRNA as potential drug
targets and to search for new strategies to inhibit BDNF-
AS function to treat a number of neurological diseases in
which BDNF is downregulated. Due to their growing relevance
in the regulation of neuronal gene expression, we pondered
whether lncRNAs may have a role in the regulatory cascade
triggered by BDNF stimulation. In particular, we focused on
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immediate early response to the neurotrophin stimulation to
gain insight into the potential involvement of lncRNAs as
a master regulator in BDNF-induced neuronal transcriptional
changes.

RATIONALE, MATERIALS AND
METHODS

Neuronal Cell Model and Culture
Conditions
We used the popular SHSY-5Y cell line as a neuronal cell
model for BDNF stimulation. SHSY-5Y is a neuroblastoma cell
line that can be propagated by easy and low-cost methods
when in its native undifferentiated status (Kovalevich and
Langford, 2013). SHSY-5Y can be differentiated into cells with
a more mature and neuron-like phenotype (Kovalevich and
Langford, 2013). In particular, for our study, SH-SY5Y cells
(ATCC R©) were grown and propagated in Dulbecco’s modified
Eagle’s medium (DMEM, Microtech R©), supplemented with
2 mM L-glutamine (Lonza BioWhittakerTM), and a solution
of 1% penicillin/streptomycin (Lonza BioWhittakerTM) and
15% Fetal Bovine Serum (FBS, Gibco R©). The SHSY-5Y line
comprises at least two morphologically and biochemically
distinct phenotypes: neuroblastic (N-type) and a low proportion
of epithelial-like (S-type; Encinas et al., 2000) phenotypes.
For BDNF treatment on a more homogeneous neuronal cell
population, we performed an enrichment procedure based
on the different substrate adherence between the two cell
phenotypes. The obtained N-enriched population of SHSY-5Y
was differentiated by decreasing FBS concentration from 15
to 1.5% and adding 10 µM of RA (retinoic acid-RA, Sigma–
Aldrich R©) for 6 days (the medium was refreshed every 2 days).
This produced differentiated cells responsive to BDNF, since
RA treatment induces the expression of NTRK2 receptor in
SH-SY5Y cells (Kaplan et al., 1993; Encinas et al., 2000).
After 6 days of differentiation, the medium containing 1.5%
FBS and RA was removed and substituted with a medium
without FBS for two groups of cells. One of these groups
was treated with 10 ng/mL of BDNF (PeproTech R©) for a
specific time, whereas the second group was not treated
and used as a control for the gene expression analysis.
We carried out a preliminary investigation to choose the
most appropriate time for analyzing the immediate early
response to BDNF treatment. We based this analysis on the
expression pattern of three immediate early genes downstream
of BDNF signaling activation: ARC, NR4A1, and SIK1. The
mRNA level of all these genes peaked at 1 h of BDNF
treatment (data not shown). Based on these results, microarray
analysis was carried out on RNA extracted after 1 h BDNF-
treatment.

RNA Isolation and Quality
Total cellular RNA was isolated using an RNeasy R©Mini Kit
(Qiagen) according to the RNeasy R©Mini Handbook (Qiagen).
DNA contamination was efficiently removed by on-column

DNAse digestion (Qiagen). The concentration and the purity of
the RNA sample were assessed using NanoDrop R©1000 (Thermo
Scientific). Total RNA quality was assessed by an Agilent 2100
Bioanalyzer (Agilent Technologies).

Microarray Experiment Analysis
Microarray experiments were performed on biological triplicate
samples. Microarray hybridizations were performed by the
Transcriptomics and Genomics core facility of the Department
of Emergency and Organ Transplants (DETO) – Nephrology
Unit – of the University of Bari ‘Aldo Moro’ Italy 1. The labeled
cRNA was produced using a Low Input Quick Amp Labeling
(LIQA) kit (Agilent Technologies) and hybridized for 17 h at
65◦C on an Agilent SurePrint G3 8 × 60K custom lncRNA
expression array (Agilent Technologies). This array contains two
probes for 22,001 lncRNAs targeting the Gencode v15 human
lncRNA annotation, together with one probe for 17,535 randomly
chosen protein-coding transcripts. After hybridization, the slide
was washed according to Agilent protocols and scanned using a
High-Resolution Microarray C Scanner (Agilent Technologies).
The image file was processed using Agilent Feature Extraction
software (v10.7.3). The microarray grid was correctly placed,
and outlier pixels (which were rejected) and inlier pixels
were identified. Normalization was performed according to
the Quantile method. The differentially expressed probes were
selected using a moderated t-test with a p-value cut-off of 0.05.

Quantitative RT-PCR
qPCR validation was performed on independent biological
replicates in triplicate. cDNA was synthesized from 1 µg of
total RNA using an Invitrogen SuperScript III R©kit. Real-time
PCR was performed using the SYBR green method and an
Applied Biosystems 7500 System. The PCR conditions included
a denaturation step (95◦C for 10 min) followed by 40 cycles of

1http://www.uniba.it/ricerca/dipartimenti/deto

TABLE 1 | Summary of microarray analysis.

Transcript Number Differentially expressed FC ≥ 1.5

lncRNA 22,001 155 41

mRNA 17,535 238 40

TABLE 2 | Top regulated coding and long non-coding transcripts with fold
change above 2.

Coding Regulation FC lncRNA Regulation FC

NR4A3 Up 9.2 C6orf176 Up 3.8

ARC Up 8.3 lnc-NPAS4-1 Up 3.1

RHOB Up 4.3 lnc-WDR1-1 Up 2.8

fam46a Up 3.6 IGFBP7-AS1 Up 2.1

EGR1 Up 3.0 lnc-ZSCAN10-4 Up 2.1

DUSP5 Up 3.0 MIAT-003 Down 2.1

KLF10 Up 2.3 MIAT-001 Down 2.0

MAP3K14 Up 2.0 lnc-RHOF-1 Down 2.0

F3 Up 2.0
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amplification and quantification (95◦C for 35 s, 60◦C for 1 min).
Relative gene expression levels were normalized to the reference
gene hypoxanthine phosphoribosyl transferase 1 (HPRT1) and
calculated by the 2−11Ct method. The sequences of the primers
used are reported in Supplementary Table S1.

lncRNA Classification and Functional
Analysis
The LNCipedia database2 (Volders et al., 2015) was used for
retrieving the transcript ID, gene ID, and alternative gene
name of the differentially expressed lncRNAs. Differentially
expressed lncRNAs were classified by considering their position
relative to adjacent protein-coding genes as reported by Mattick
and Rinn (2015). Protein-coding potential of the differentially
expressed lncRNAs was assessed by CPAT (Coding-Potential
Assessment Tool) software3 (Wang et al., 2013). For the
functional analysis of the differentially expressed lncRNAs, a list
of nearby potentially regulated genes was retrieved using the
computational tool GREAT (Genomic Regions Enrichment of
Annotations Tool4; McLean et al., 2010). Functional enrichment
analysis for the predicted target genes and differentially expressed
coding genes was performed using the DAVID system (Database
for Annotation, Visualization, and Integrated Discovery5), which
uses Gene Ontology (GO) to identify the molecular function
represented in the gene profile (Dennis et al., 2003). We obtained
a list of potentially regulated miRNAs from lnCeDB6, a database
that provides human lncRNAs (version Gencode 19) that can
potentially act as competitive endogenous RNAs (ceRNAs) and
interfere with the pathway of miRNAs (Das et al., 2014).
These miRNAs were analyzed by miR2Disease7 to find miRNAs
deregulated in human diseases (Jiang et al., 2009). The potentially
regulated miRNAs were also analyzed by miRTarBase8 to find
their experimentally validated mRNA targets (Chou et al., 2016).
The list of the retrieved mRNA was analyzed by the DAVID tool.

2http://www.lncipedia.org/
3http://lilab.research.bcm.edu/cpat/
4http://bejerano.stanford.edu/great/public/html/
5http://david.abcc.ncifcrf.gov/
6http://gyanxet-beta.com/lncedb/
7http://www.mir2disease.org/
8http://mirtarbase.mbc.nctu.edu.tw/

For all the DAVID analyses, the significance of enrichment of
each GO term was assessed by a p-value of <0.05 and ranked by
the number of differentially expressed genes (count).

RESULTS AND DISCUSSION

Summary of Microarray Experiment
Results
Long non-coding RNA expression profiles are summarized in
Table 1. We found that 155 lncRNAs and 238 mRNAs were
significantly differentially expressed (p-value <0.05). A fold
change of >1.5 was found in 41 lncRNAs (24 up and 17 down
regulated) and 40 mRNAs (31 up and nine down regulated;
Table 1, Supplementary Table S2). A panel of both differentially
expressed lncRNAs and mRNAs with fold change above 1.5 was
validated by qPCR (Supplementary Figure S1). We analyzed the
41 differentially expressed lncRNAs by CPAT software to assess
their protein-coding potential. We found that 37 lncRNAs have
a coding probability value below the cutoff (0.364), while the
remaining 3 lncRNAs have a coding probability value above the
cutoff (Supplementary Table S3). Among these three transcripts
we found C6orf176, the RNA with the highest fold change in our
analysis (Supplementary Tables S2 and S3). The vast majority of
the top regulated coding transcripts with fold change above 2 are
classical immediate early genes involved in different biological
processes in response to various neural stimuli, such as NR4A3,
ARC, EGR1, and DUSP5 (Table 2). A number of lncRNAs showed
a fold change above 2, including the previously reported C6orf176
and MIAT (also known as Gomafu; Table 2). C6orf176 has been
shown to be readily upregulated with a peak at the 2-h time point
of treating human ocular ciliary smooth muscle cells with an
EP2- and EP4-specific agonist (Reitmair et al., 2012). Notably,
there was rapid and pronounced transcriptional upregulation
followed by a brisk decline which resembles the kinetics of
immediate early response genes (Reitmair et al., 2012). MIAT was
recently shown to be acutely regulated in response to neuronal
activation in mouse primary cortical neurons (Barry et al., 2014).
In particular, this lncRNA is strongly downregulated after 1 h
and 3 h of KCl depolarization (Barry et al., 2014). Interestingly,
our data are in accordance with that of Barry et al. (2014), since
we detected downregulation of MIAT transcript after 1 h of

TABLE 3 | Differentially expressed lncRNA that have been identified in literature.

Gene symbol Regulation Function

MALAT1 (Neat2) Down Control of the expression of genes involved in synapse function (Bernard et al., 2010). Down-regulation led to cell arrest in the
G1/S or G2/M phase (Yang et al., 2013).

MIAT (Gomafu) Down Down-regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing (Barry et al.,
2014). Decreased in the medial prefrontal complex following fear conditioning and knockdown of promoted stress reactivity and
anxiety-like behavior (Spadaro et al., 2015). Neurogenic commitment and neuronal survival, sustained overexpression of Miat
promoted neuronal death (Aprea et al., 2013).

HAND2-AS1 (Dein) Down Highly expressed in stage IVS neuroblastoma (Voth et al., 2007). Expression is neuroblastoma is co-regulated together with
HAND2 (Voth et al., 2009).

C6orf176 Up A possible regulatory function in response to cAMP signaling (Reitmair et al., 2012).

HOXD-AS1 Up It is induced by RA, could be regulated via PI3K/Akt pathway and controls genes involved in RA signaling, angiogenesis and
inflammation (Yarmishyn et al., 2014).
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FIGURE 1 | Gene Ontology (GO) enrichment analysis for lncRNAs by DAVID bioinformatics tool. (A) GO analysis of lncRNA-target genes + differentially
expressed coding genes according to biological process. (B) GO analysis of lncRNA-target genes + differentially expressed coding genes according to molecular
function. (C) GO analysis of lncRNA-target genes + differentially expressed coding genes according to cell component. (D) Top 10 biological processes for coding
genes that are target of miRNA potentially regulated by the differentially expressed lncRNAs. Grouped GO terms are reported as following with the ID of the single
GO term. Transcription and gene expression: GO:0045449 + GO:0006350 + GO:0006355 + GO:0006357 + GO:0045893 + GO:0045941 + GO:0010628 +
GO:0045944; RNA metabolic process: GO:0051252 + GO:0051254 + GO:0045935 + GO:0051173 + GO:0010604; biosynthetic process: GO:0010557 +
GO:0031328 + GO:0009891; macromolecular complex assembly and organization: GO:0065003 + GO:0043933 + GO:0034622 + GO:0034621; blood vessel
and vasculature development: GO:0001568 + GO:0001944; chromatin organization and function: GO:0006334 + GO:0031497 + GO:0065004 + GO:0034728 +
GO:0006323 + GO:0006333; regulation of synaptic plasticity: GO:0048168 + GO:0048167; mesoderm morphogenesis and development: GO:0048332 +
GO:0007498. The number on the pie chart indicates the number of differentially expressed coding genes associated to the GO term (or GO group), while the
number in brackets indicates the number of genes located near the differentially expressed lncRNAs.

TABLE 4 | Putative miRNA targets on lncRNA and their involvement in
neuropsychiatric diseases.

miRNA symbol Neuropathology

hsa-miR-339-5p Neurodegeneration

hsa-miR-433 Parkinson’s disease

hsa-miR-133b Parkinson’s disease

hsa-miR-346 Schizophrenia

hsa-miR-328 Alzheimer’s disease

hsa-miR-299-3p Alzheimer’s disease

hsa-miR-422a Multiple sclerosis

stimulation with BDNF, which is a well known activity-dependent
factor.

Classification and Functional Analysis of
lncRNA Regulated by BDNF
The lncRNAs were classified in accordance with the definition
discussed in “Materials and Methods” Section. The vast majority

of differentially expressed lncRNAs were included in the
intergenic and antisense classes (Supplementary Table S2).
Five lncRNAs with a fold change above 1.5 were hypothesized
to have a role in physiological and pathological processes
in neuronal cells by regulating gene expression (Table 3).
This supports the hypothesis of an involvement of lncRNA
in BDNF-mediated molecular effects. To assess the potential
function of the vast majority of the differentially expressed
lncRNAs, we examined the function of genes located near the
lncRNAs in the genome. The list of these coding genes and
the list of differentially expressed coding RNAs found in our
microarray survey were used for GO and pathway enrichment
analysis with the DAVID tool. GO terms that shared the
same genes were grouped together as shown in Figure 1 with
the ID of single GO terms. We report the number of genes
associated with the GO group in a pie chart with the number of
genes located near the lncRNAs in brackets. The most enriched
biological processes are related to transcription regulation and
RNA metabolic process (Figure 1A). In addition, there are
also processes related to chromatin organization and function

Frontiers in Molecular Neuroscience | www.frontiersin.org 5 March 2016 | Volume 9 | Article 15

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


fnmol-09-00015 February 29, 2016 Time: 19:43 # 6

Aliperti and Donizetti Long Non-coding RNA and BDNF

(Figure 1A). The involvement of genomic loci of lncRNA in
transcription control was also revealed by GO terms of molecular
function (Figure 1B). Regarding cellular component analysis,
enriched GO are related to non-membrane-bound organelle,
lumen and chromatin structure (Figure 1C).

miRNA Targets on lncRNA
Long non-coding RNAs can affect gene expression by interfering
with the microRNA pathways and acting as competing
endogenous RNA. We therefore used the lnCeDB database
to unravel microRNA (miRNA)–lncRNA putative functional
interactions by identifying miRNAs with binding sites in
differently expressed lncRNAs. Seven of the miRNAs found are
associated with neuropathologies reported in the mir2disease
database (Table 4). To acquire information on biological
processes affected by the putative lncRNA-miRNA interaction,
we retrieved a list of experimentally validated mRNA targets
of all the previously identified miRNAs and carried out a
functional analysis with the DAVID tool. In the top 10
biological processes, the most represented categories are related
to the regulation of transcription and RNA metabolic processes
(Figure 1D).

CONCLUSION

The gene expression occurring immediately after neural stimuli
plays critical roles in long-lasting neuronal changes. Further
efforts are needed to isolate novel IEGs, with the hope of
finding “master genes” for neuronal processes and subsequent
therapeutic targets for brain diseases. The molecular mechanisms
underlying the gene expression regulation in the initial phase of
the stimulus-induced molecular cascade comprise the product of
coding genes, miRNAs, and very recently, lncRNAs (Aitken et al.,
2015). We sought to evaluate the potential role of lncRNAs in
early gene expression regulation triggered by the neurotrophin
BDNF. In particular, using microarray technology, we found
that hundreds of lncRNAs and coding IEGs changed their
transcript level after 1 h of BDNF treatment on neuronal cells.
Some of the differentially expressed lncRNAs are already known.

These are strictly associated with neuronal cellular processes
and are involved in gene expression regulation. However, the
biological functions of a vast majority of lncRNAs identified
in this study are not currently understood. We therefore used
computational approaches to provide preliminary insights into
their potential functionality. The most enriched ontology terms
were related to the transcription regulation processes, which
highlights the putative role of lncRNAs in orchestrating the
immediate response to BDNF. Overall, this study presents an
interesting area for further investigations into lncRNAs with
essential roles in molecular and cellular processes triggered by
neurotrophins.
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