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WDR13 expresses from the X chromosome and has a highly conserved coding

sequence. There have been multiple associations of WDR13 with memory. However, its

detailed function in context of brain and behavior remains unknown. We characterized

the behavioral phenotype of 2 month old male mice lacking the homolog of WDR13

gene (Wdr13−/0). Taking cue from analysis of its expression in the brain, we chose

hippocampus for molecular studies to delineate its function. Wdr13−/0 mice spent

less time in the central area of the open field test (OFT) and with the novel object in

novel object recognition test (NOR) as compared to the wild-type. However, these mice

didn’t show any significant changes in total time spent in arms or in frequency of arm

entries in elevated plus maze (EPM). In the absence of Wdr13, there was a significant

upregulation of synaptic proteins, viz., SYN1, RAB3A, CAMK2A etc. accompanied with

increased spine density of hippocampal CA1 neurons and better spatial memory in

mice as measured by increased time spent in the target quadrant of Morris water maze

(MWM) during probe test. Parallel study from our lab has established c-JUN, ER α/β, and

HDAC 1,3,7 as interacting partners of WDR13. WDR13 represses transcription from AP1

(c-JUN responsive) and Estrogen Receptor Element (ERE) promoters. We hypothesized

that absence of Wdr13 would result in de-regulated expression of a number of genes

including multiple synaptic genes leading to the observed phenotype. Knocking down

Wdr13 in Neuro2a cell lines led to increased transcripts of Camk2a and Nrxn2 consistent

with in-vivo results. Summarily, our data provides functional evidence for the role ofWdr13

in brain.

Keywords: Wdr13, mouse models, synaptic genes, memory, proteomics, behavior

INTRODUCTION

WDR13 belongs to a class of WD (tryptophan-aspartate) repeat-containing proteins. Human
WDR13 gene was discovered and characterized by Singh et al. (2003) and its highly conserved
mouse homolog (Wdr13) by Suresh et al. (2005). It was independently discovered in mice by
D’Agata et al. (2003) as Cmrg1 (Cerebellar memory related gene 1). Both human and mouse
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homologs of this gene localize on the X chromosome and
encode a protein comprised of 485 amino acids. Western blot
analysis shows two major isoforms of WDR13, one near the
predicted molecular weight of 53 kDa and another smaller 43
kDa band corresponding to a truncated 394 amino acid protein
(Singh et al., 2015a). WDR13 is a nuclear protein without any
consensus nuclear localization signal (Suresh et al., 2005). To
elucidate its function, a gene-knockout mouse was generated in
our laboratory. The absence of this gene in mice (Wdr13−/0)
resulted in age-dependent mild obesity, pancreatic beta cell
hyper-proliferation, subsequent hyper-insulinemia (Singh et al.,
2012) and improvement of metabolic phenotype in Lepr(db/db)

mice (Singh et al., 2015a).
Wdr13 gene is expressed in most tissues with relatively higher

expression observed in the brain, pancreas, ovaries, and testes
(Suresh et al., 2005). Research from various groups indicates the
possible involvement of Wdr13 in brain function. D’Agata et al.
(2003) implicated its function in learning and memory based
on the association between expression of this gene to classical
conditioning of rabbit nictitating membrane response. Wdr13
transcript has been shown to be enriched following synaptogenic
lesion of the hippocampus in rats, suggesting its role as a
possible neuro-protective molecule (Price et al., 2003). WDR13
had also been reported to be associated with the phenotype
of hyperactivity, learning and visual-spatial difficulties of an
11-year-old boy having approximately 1.3 Mb duplication at
locus Xp11.23p11.3 (El-Hattab et al., 2011).

These reports, however, were based on correlation and did not
give any direct evidence of brain specific function of WDR13.
In the current work, we have delineated the role of this gene in
brain by studying behavioral and molecular changes in Wdr13
knockout male mice (Wdr13−/0).

MATERIALS AND METHODS

Animal Experiments and Handling
Mice were procured from the central Animal House facility
(CCMB). They were housed in polypropylene cages with
shredded corn-cob bedding with 12-h light and dark cycle (6
a.m.–6 p.m. light cycle). The required numbers of mice were
generated by crossing of wild-type and mutant (heterozygous,
Wdr13+/−) mice. Unless mentioned specifically, all behavior and
molecular data corresponds to male Wdr13−/0 and wild-type
mice in CD1 genetic background. CCMB Institutional Animal
Ethics Committee approved all the animal experiments (Reg. No.
CPCSEA 20/1999).

Analysis of Brain Metabolism
NuclearMagnetic Resonance (NMR)was used to analyze changes
in brain metabolites ofWdr13−/0 and wild-type mice at 10 and 2
months of age. Metabolic measurements of cortex and subcortex
were carried out on one group of mice containing wild type
and Wdr13 knockout mice of age 10 months (n = 5, 6) by
co-infusion of [U-13C6]-Glucose and [2-13C]-Acetate through
the tail vein. 13C labeling of amino acids in brain tissue extract
was analyzed using 1H-[13C] and 13C-[1H]-NMR spectroscopy.
The protocol has been described by previous studies (Patel et al.,

2001; Shameem and Patel, 2012). Two month old (n = 4) mice
cortex was analyzed for metabolic changes using infusion of
[1,6-13C2]Glucose for 10 min using the methodology described
earlier (Shameem and Patel, 2012; Tiwari and Patel, 2012).

RNA In situ Hybridization (RISH)
Dig-labeled RNA probes for anti-sense and sense strands of full
length Wdr13 cloned in pGMT vector were prepared according
to instructions provided by ROCHE. RISH was carried out on
cryo sections (30 µM) derived from formaldehyde perfused
and fixed brain tissue from wild-type and Wdr13−/0 mice as
described previously (Singh et al., 2015b). Images were taken
using AxioImager2 (Zeiss) with Apotome.

Behavioral Analysis of Wdr13−/0 Mice
Mice were tested for anxiety, depression, learning and memory.
Video tracking software Noldus Ethovision 3.1 was used to
record the movements of the mice in the tests. Litter-mates were
utilized as control wild-type for different behavioral experiments.
Wdr13−/0 and wild type mice in outbred CD1 background was
utilized for all behavioral studies. Few of the following studies
were also performed in inbred C57BL/6J background to rule out
possibilities of any strain-specific phenotypes.

(i) Open Field Test: This test was designed to study
emotionality in rats (Hall, 1934) and later reproduced
in mice (Christmas and Maxwell, 1970). This test has
since been performed to assess the degree of anxiety and
locomoter activity in mice. The Open Field test (OFT) arena
is an open square box 50 × 50 cm. The box is virtually
demarcated into a central zone and peripheral zones. The
experimental mouse was placed in one corner of the box and
allowed to explore the arena for 5 min. The amount of time
the mouse spent in the center and periphery zones within 5
min was then noted. Mice with higher anxiety levels tend to
spendmore time in the periphery and less time in the central
area.

(ii) Elevated Plus Maze test: This test too was performed to
assess the degree of anxiety in mice (Crawley, 2006). The
setup consists of a four armed maze kept on an elevated
platform. The maze consists of two open arms and two
closed arms (walls on the side). The mouse was kept at
the center of the maze facing the open arm and allowed to
explore the arena for 5min. The amount of time spent by the
mouse in the open and closed arms was then calculated. The
frequency of visit to each arm was also calculated. Mice with
higher anxiety levels tend to spend more time in the closed
arms and less in the open arms (thigmotaxis).

(iii) Forced Swim Test: Also known as the Porsolt Swim Test
(Porsolt et al., 1977), this test is conducted to analyse
depression in rodents. In this test the mice were placed in a
beaker filled with water till 20–25 cm and the total duration
of immobility was measured. The experiment was video-
recorded and analyzed post-recording. Usually amouse with
depression phenotype remains immobile for a longer time
(Can et al., 2012).
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(iv) Novel Object Recognition Test: This test had been
developed to measure cognition, anxiety and preference
for novelty in rodents (Antunes and Biala, 2012). In this
experiment, the mice were placed in an open field on the
first day. On the second day, two similar objects were
introduced in the arena and the mice were habituated to
them. On day three, a novel object of different shape and
size replaced one of the objects. The discrimination by the
mice between two objects was noted (measured as ratio of
difference between time spent near novel object and familial
object to that of total time spent exploring both objects).
Normally, a wild type mouse prefers to explore novel
objects.

(v) Hot Plate test: This test is generally used to analyze proper
functioning of neuromuscular junction and pain sensitivity
(Minett et al., 2012). The mice were placed on a hot plate at
55◦C and the latency to the first jump was noted.

(vi) Morris water maze (MWM): This experiment was
developed for learning and memory analysis in rodents by
Morris (1981). There are many variants of the method for
training and analysis (Vorhees and Williams, 2006). Here
the modified version of the Morris Water Maze (MWM) has
been followed. The cues such as a tripod stand, a hanging
bucket and specific arrangement of curtains were located
outside a tub of 90 cm in radius and 40 cm in depth. The
mouse was first placed on the submerged platform for 30 s
on the first day and then taken out. In the second trial on
day one, the mice were placed in water and then guided
to the submerged platform. Usually each mouse were
subjected to 2–3 trials in 1 day. The mice in subsequent
trials were placed in water and time to reach the platform
was noted. If it was unable to reach, it was guided at the end
of the trial, which lasted 1 min 30 s. At the end of the trial,
when the mouse reached the platform, it was left there for
15–30 s. Latency to reach the platform was noted and this
was taken as an indication of learning capacity of the mice.
After 5–6 days when the mice learnt to reach the platform
placed anywhere in the tub, probe test was conducted 24 h
post last learning trial.
For re-learning experiment, the position of the platform was
shifted to a new location after mice learnt to reach in its
initial location. The learning ability of the mice to reach
the platform in its new location was analyzed over multiple
trials.
In the probe test, the platform was removed and the
mice were placed in the tub. The time it spends in the
quadrant in which the platform was kept was noted.
Repeated (extinction) trials were performed 24 h after the
final learning trial. In an extinction trial the mice were
subjected to probe trials from random location multiple
times. Normally the probability for a wild type to search for
the platform decreases over trials (Maei et al., 2009; Terry,
2009).
For long-term memory test, probe trial was not conducted
immediately after the learning trial, but mice were subjected
to a probe trial after a period of 20 days using the same setup

and location of cues. Time spent by the mice in the target
quadrant was noted.

Cohorts Used
Multiple cohorts were used for the afore-mentioned behavioral
experiments (Table 1). Multiple experiments were executed in
duplicates to validate the phenotype observed. Initially, a cohort
of CD1 mice (n = 5) was utilized to perform OFT, Elevated Plus
Maze (EPM), Novel Object Recognition test (NOR), and MWM.
Between the non-stress experiments of OFT, EPM, NOR and that
of MWM, there was an interval of 2 weeks. An independent
cohort of CD1 mice (n = 17) was then subjected to OFT, EPM,
and Forced Swim Test. A separate cohort of mice (n = 9, 10/8)
was used to re-perform NOR and Hot Plate test. For MWM, we
repeated learning trials and probe test in a separate cohort of mice
(n = 6). Two other independent cohorts were utilized separately
for re-learning experiment and long-term retention test inMWM
(n = 6 each). We have also repeated FST with a separate cohort
of mice (n= 6; data not shown).

We used two separate cohorts for performing behavioral tests
in C57Bl/6J mice. One cohort of mice (n= 16) was tested in OFT.
Another (n= 8) was used to perform EPM and MWM.

Proteomic Analysis
Sample preparation, labeling, running of samples in LC-
MS/MS and analysis were performed as described below. The
mass spectrometry proteomics data along with the list of
proteins quantified have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset
identifier PXD002466.

iTRAQ 4 Plex
We pooled hippocampi from three wild-type and three
knockout (Wdr13−/0) mice for the present study. Proteins
were extracted from tissue using 0.5% SDS and were estimated
using Bicinchoninic acid assay (BCA) method. Two hundred
micrograms of protein from both groups was taken as a starting
amount. The protein from each group was treated with 2 µL of

TABLE 1 | List of Cohorts of mice utilized in behavioral experiments.

Strain Cohort number n Behavioral experiments

CD1 1 5 OFT, EPM, NOR, MWM

2 17 OFT, EPM, FST

3 9, 10/8 NOR, Hot Plate Test

4 6 MWM learning and probe trials

5 6 MWM relearning trials

6 6 MWM long term retention

7 6 FST (data not shown)

C57Bl/6J 1′ 16 OFT

2′ 8 EPM, MWM

OFT, Open Field Test; EPM, Elevated Plus Maze; FST, Forced Swim Test; MWM, Morris

Water Maze; NOR, Novel Object Recognition.
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reducing agent [tris (2-carboxyethyl) phosphine (TCEP)] at 60◦C
for 1 h and the samples were alkylated using 1 µL of cysteine
blocking reagent, methyl methanethiosulfonate (MMTS) for
10 min at RT. After alkylation, the samples were digested
with trypsin (Sequencing Grade Modified Trypsin, Promega
Cat#:V511A) using 1:20 (w/w) at 37◦C for 16 hrs. We split
the samples based on the protein amount (100 µg) in each
group and labeled with iTRAQ 4plex (catalog # 4352135, Applied
Biosystems, Foster City, CA, USA) reagents as per manufacturer’s
protocol. In iTRAQ 4-plex experiments, peptides from wild type
were labeled with 114 and 115 tags, while knockout samples
were labeled with 116 and 117 tags. After labeling, we pooled
the samples and carried out desalting using C18 spin columns
(89873—Pierce R© C18 Spin Columns) as per manufacturer’s
protocol. Later, the iTRAQ 4-plex labeled samples were processed
further for LC-MS/MS analysis.

LC-MS/MS Analysis
Samples were analyzed on UPLC (Dionex The UltiMate R© 3000
HPLC) interfaced with Q-Exactive mass spectrometer (Thermo
Scientific, Bremen, Germany). Trypsin digested peptides were
loaded on a 15 cm long column (EASY-Spray column ES800,
15 cm × 75 µm ID, PepMap C18, 3 µm). Column was heated
at 30◦C with integrated temperature control. Peptides were
separated using linear gradient from 2 to 98% of buffer B (95%
acetonitrile and 0.1% formic acid) at a flow rate of 300 nl/min,
which was followed by a column re-equilibration reaching 2%
of buffer B for few minutes. Gradient length had been adjusted
to 50 min. The acquisition of the data was carried out using
Xcalibur 2.1 (Thermo Scientific, Bremen, Germany). MS spectra
were acquired in a data dependent manner in the range of
m/z 350–1800 at a scan resolution of 70,000 and followed by
top 10 precursor ions selected for MS/MS analysis at a scan
resolution of 17,000. Normalized collision energy (NCE) was
set to 27 for fragmentation. The priority of the precursor ion
selection was based on the charge state in the order of 2+, 3+
and>3+. Unassigned and single charge state precursor ions were
excluded from fragmentation. The dynamic exclusion was set as
30 s during data acquisition. The nano source was operated with
2.2 KV and the capillary temperature at 300◦C. Isolation width
has been adjusted.

Data Analysis
The acquired data was analyzed using Proteome Discoverer
1.3 (Thermo Scientific, Bremen, Germany) software. We used
International Protein Index (IPI) (version 3.83, Mouse) database
to search for peptides. The workflow created included spectrum
files, spectrum selector and Sequest. Search nodes were given as
searches including peptide validator for false discovery analysis
and used a reporter ion quantifier for quantitation. We set
the parameters, which included Methylthio (C), iTRAQ label
at N-terminus of the peptide and lysine as fixed modifications.
Oxidation of methionine (M) and deamidation(N/Q) were
used as variable modification. The parent and fragment mass
error tolerance were set as 20 ppm and 0.2 Da respectively.
We acquired a total of 13,059 MS/MS scans. We calculated
false discovery rate (FDR) by enabling the peptide sequence

analysis using decoy database and top ranked hit based on
peptide score, XCorr for Sequest. We applied 1% FDR in our
analysis and proteins with a minimum of 1 unique peptide were
considered.

Golgi Cox Staining
Golgi cox staining was done on 100 µM brain sections using
a protocol described previously (Chakravarty et al., 2015). Six
mice, each of wild-type and Wdr13−/0 were selected for the
analysis. A minimum of six CA1 neurons from hippocampal
sections for each mouse was analyzed for spine density. Spines
from the apical region of CA1 neurons were considered for
the analysis. Spine density was analyzed in dendritic sections
of 10 µm length. In total, about 90–100 spines were analyzed
for each genotype. A semi-automated procedure for calculating
spine density was utilized as described previously using FIJI
and Image J (Orlowski and Bjarkam, 2012). In brief, high-
resolution images of spines were converted to 8 bit image
using ImageJ and threshold applied. Areas to be analyzed were
selected, pasted in a new document and were converted to
binary. These were then skeletonized using ImageJ or FIJI and
analysis of the skeleton was performed. For analyzing dendritic
branching, 6–8 CA1 neurons from five each of wild-type and
Wdr13−/0 mice were traced using NeuronJ plugin and Sholl
analysis was performed using Sholl Analysis Plugin (v 1.0)
for ImageJ. Images were taken using AxioImager2(Zeiss) with
Apotome.

BrDU Labeling and Counting
Mice were injected with 200mg/kg (body weight) of BrDU,
24 h prior to processing and analysis. BrDU injections were
given to mice either in resident conditions or at the final
day of learning trials of MWM. Brains were collected while
whole body perfusion. Serial coronal sections of 30 µm each
were obtained from a single brain encompassing SVZ (Sub-
ventricular Zone) and SGZ (Sub Granular Zone) or DG
(Dentate Gyrus) and every 6th section (excluding the early
and late formations) were processed for immunohistochemistry
using a protocol described previously (Becker et al., 2008).
Similar sections from Wdr13−/0 and wild-type were stained
for BrDU incorporation[Anti-BrDU (Sigma, B8434) 1:300] by
fluorescent labeling or DAB (Invitrogen) staining according to
a previously described protocol (Singh et al., 2012, 2015b) or
manufacturer’s instructions and counting of one hemisphere
was carried out. Area of each DG per section was analyzed
using ImageJ and BrDU counts were normalized for the
median areas of the sections (DG). A minimum of 5
mice and 6 s from each mouse has been used for the
experiment.

Cell Culture and Transfections
Neuro2a cells were cultured in DMEM media with 10% Fetal
Bovine Serum supplemented with antibiotics. Neuro2a cells
grown in 24 well plates were assayed for effect of WDR13 on
the expression of luciferase from AP1 and ERE site containing
promoters using protocol previously described (Singh et al.,
2015b). For analysis of luciferase from AP1 site containing
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promoter, Flag-WDR13 was co-transfected with c-JUN at
(150:150) ng and (200:150) ng along with AP1-Luciferase and
in Neuro2a cells in 24 well plate. For analysis of luciferase
fromERE site containing promoter, Flag-WDR13was transfected
at 150 ng along with ERE-luciferase and in Neuro2a cells
grown in 24 well plate, with or without supplementation of
10 nM Estradiol. Neuro2a cells used for assaying luciferase
activity from ERE-promoter were maintained in DMEM media
with 10% charcoal stripped serum. Transfection was carried
out using Lipofectamine LTX (Life Technologies) as per
manufacturer instructions. The results obtained from luciferase
activity were normalized to β-galactosidase activity (indicative
of transfection efficiency). Wdr13 siRNA (Sc-155258-Santacruz)
and control scrambled RNA (Sc-37007) (Santacruz) were
introduced in Neuro2a cell line using RNAiMax (Invitrogen) at
100 nM as per manufacturer’s instructions and previous reports
(Singh et al., 2012). All the experiments were conducted in
triplicates.

RNA Isolation, Primer Designing, and Real
Time Analysis
The primers were designed using the Primer3 software and
PrimerBank. RNA was isolated using TrizolTM method and
cDNAs were prepared using the protocol described by Sambrook
and Russell (2001), and other previous studies (Singh et al., 2012,
2015b). Briefly, hippocampi were homogenized in TrizolTM and
1/10th volume of 1-Bromo 3- Chloropropane (Sigma) added to
the solution. Aqueous phase was collected after centrifugation
and RNA precipitated using equal volumes of isopropanol. After
ethanol wash, RNA was air-dried and dissolved in DEPC treated
water. Real time PCR was performed using SYBR green 2X mix
(Invitrogen and Thermo-Fischer). ABI Prism SDS 7000 and ABI
3900 HT were used to perform real time PCR as per company
protocol.
Primer sequences:

Gene Forward (5′–3′) Reverse (3′–5′)

name

Camk2a TGCCTGGTGTTGCTAACCC CCATTAACTGAACGCTGGAACT

Gria1 TCCCCAACAATATCCAGATAGGG AAGCCGCATGTTCCTGTGATT

Gria2 GCCGAGGCGAAACGAATGA CACTCTCGATGCCATATACGTTG

Grin1 AGAGCCCGACCCTAAAAAGAA CCCTCCTCCCTCTCAATAGC

Grin2a ACGTGACAGAACGCGAACTT TCAGTGCGGTTCATCAATAACG

Nrgn CAAACCCCATACTCCCAAAA ACGAAAGGACTTGGTGGTTG

Nrxn2 GCTCTGCATCCTCATTCTCC TGTTCTTCTTGGCCTTGCTT

Rab3a GTGGGCAAAACCTCGTTCCT TCCTCTTGTCGTTGCGGTAGA

Syn1 AGCTCAACAAATCCCAGTCTCT CGGATGGTCTCAGCTTTCAC

Western Analysis
Protein was isolated from hippocampi after homogenizing the
tissues in SDS lysis buffer (Sambrook and Russell, 2001).
Western Blotting was performed using manufacturers protocol
or protocol previously described (Singh et al., 2012, 2015b)
with antibody against WDR13 [(HPA000913, Sigma) 1:1000

in 5%BSA], c-JUN [(sc-45, Santacruz) 1:500 in 5%BSA] and
β-ACTIN [(sc-47778, Santacruz) 1:1000 in 5%BSA].

Histological Analysis
We performed Nissl staining and Hematoxylin and Eosin (H&E)
staining on brain cryo-sections (30µm) of 4 month old wild-type
andWdr13−/0 mice to understand any gross changes in anatomy.
For H&E staining (Fischer et al., 2008), the sections were air-
dried and then immersed in Hematoxylin solution followed by
Eosin solution with washes in water. The sections were then
dehydrated using a gradient of alcohol concentrations, washed in
xylene and mounted. For Nissl staining (Nissl, 1894), air-dried
cryo-sections were de-fatted using xylene and absolute alcohol
before rehydrating them and immersing in 0.1% Cresyl Violet
solution (containing glacial acetic acid). The sections were then
washed in water, dehydrated and mounted on slides.

Statistical Analysis
One or Two way analysis of variance (ANOVA) and
student’s unpaired T-test were conducted with significance
at p < 0.05(denoted as ∗) and at p < 0.005(denoted as ∗∗). For
samples with n > 5, data are presented as mean± SEM.

RESULTS

Our objective was to delineate the distribution of WDR13 in the
brain. Both the isoforms of WDR13—53 and 43 kDa, showed
differential expression in 2 months old mice with Cerebellum
(Cr) showing comparatively higher levels of expression, followed
by other regions of the brain, namely, Hipocampus (Hip),
Cortex (Cx), andOlfactory bud (Ob) (Figure 1A). Hypothalamus
(Hypo) showed lower expression levels as compared to
Cerebellum. Previous reports (D’Agata et al., 2003) and, those
reported in Allen Institute of Science Mouse Brain Atlas
(Lein et al., 2007) showed that Wdr13 transcript prominently
localized to Cortex, Hippocampus, Cerebellum, and Olfactory
Bulb. We performed RNA in-situ hybridization (RISH) using
antisense probe against full length Wdr13 and found similar
results (Figure 1B, Supplementary Figure 1). Considering its
expression and previous reports of its association with memory
(D’Agata et al., 2003), we selected hippocampus for our
subsequent analysis.

We also compared whole brains from wild-type and
Wdr13−/0 mice to investigate any notable differences. Analysis
of the brains did not reveal any significant differences in weight
(Singh et al., 2012) or shape. We also did not find any significant
differences (n = 3) in the gross anatomy of the brains (in both
coronal and sagittal sections) fromwild-type andWdr13−/0 mice
(Supplementary Figure 2).

Two Months Old Wdr13−/0 Mice Did Not
Show Changes in Brain Metabolism
Wdr13−/0 mice exhibited changes in general metabolism with
progression of age (Singh et al., 2012), which became prominent
at an age of 9 months. We performed NMR analysis of brain
metabolites in 2 months (n = 4) and 10 months age (n = 5, 6)
to find out if there were any changes in brain metabolism, and
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FIGURE 1 | (Ai) Representative blot for western analysis using antibody against WDR13 in different regions of the mice brain at 2 months age (Ob, Olfactory bulb; Cr,

Cerebellum; Cx, Cortex; hip, Hippocampus; Hypo, Hypothalamus). (Aii) Relative quantification of expression of WDR13 in different brain regions (n = 3). Data

represented as ±SD (B). RNA-in situ hybridization using full length anti-Wdr13 probe showing localization in (i) Hippocampus and (ii) Cerebellum. Top panel(s) depicts

sections probed using Wdr13 antisense probe and bottom panel(s) depict sections probed using Wdr13 sense probe. Scale: 100 µm.

if these were correlated to changes in systemic metabolism in
Wdr13−/0 mice.

We found no significant changes in cortical brain metabolism
in 2 months oldWdr13−/0 mice (Figures 2A,B). However, there
was a significant increase in 13C concentration of glutamate
(Glu) from [U-13C6]Glucose (p < 0.05) but not in the levels
of metabolites of cortex and subcortex of Wdr13−/0 mice at 10
months of age (Figures 2C–F). There were also no significant
changes (p > 0.05) in the 13C glutamate levels enriched from
[2-13C]-Acetate (Figures 2G,H) at this age.

Glucose is utilized by both neurons and astroglia in the
brain for their metabolism, whereas acetate is specifically taken
up and assimilated by astrocytes (Waniewski and Martin,
1998). Labeling of Glutamate, GABA and Glutamine from [U-
13C6]Glucose indicates initial estimate of the glutamatergic,
GABAergic TCA cycle and total neurotransmitter cycle fluxes,
respectively. Labeling of Glutamate, GABA and Glutamine
from [2-13C]Acetate is representative of astroglial metabolism
(Shameem and Patel, 2012). Thus, the increase in glutamate
metabolism enriched from glucose but not acetate indicated it
to be specific to neurons. Hence, the observed results might

be primarily because of neuron specific activity of Wdr13.
However, since brain metabolism is altered by changes in levels
of circulating insulin (Bingham et al., 2002) and in obesity
(Yau et al., 2012), studying Wdr13−/0 mice at 10 months might
not distinguish properly between the brain-specific function
of Wdr13 and changes in systemic metabolism. Therefore,
to understand the primary brain and behavior phenotype of
Wdr13−/0 mice, all behavioral, molecular and histological studies
were carried out at 2–3 months of age.

Based on existing literature and the pattern of expression of
Wdr13 in the brain, we analyzed Wdr13−/0 mice for any altered
anxiety or cognitive function (s).

Wdr13−/0 Mice Showed Mild Anxiety
Wdr13−/0 mice in both CD1 (Figures 3A,B; p < 0.05; n =

17; Cohort 2 and Supplementary Figure 3A; p = 0.07; n =

5; Cohort 1) and C57Bl/6J (Figures 5Ai,ii; p < 0.05; n = 16;
Cohort 1′) genetic background spent less time in the central
area and traversed more distance in the OFT indicating anxiety
and hyper-activity. There were no significant differences in
pain response (Figure 3C; p = 0.26) in hot plate test (n =
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FIGURE 2 | (A,B) Analysis of brain metabolites using NMR of 2 month old Wdr13−/0 and wild-type mice (n = 4) (A). Concentration of metabolites in cerebral cortical

extract of mice using [2-13C]glycine as reference. (B) 13C labeled metabolites in cortex from [1,6-(13)C(2)]glucose of 2 months old Wdr13−/0 mice showed no

significant difference (p > 0.05) than the wild-type mice. Data is represented ±SD. (C–H) Analysis of brain metabolites using NMR of 10 month old Wdr13−/0 and

wild-type mice (n = 5, 6) (C). Concentration of metabolites in cerebral cortical extract of mice using [2-13C]glycine as reference. (D) Concentration of metabolites in

cerebral sub-cortical extract of mice using [2-13C]glycine as reference. (E) 13C labeled metabolites enriched from [U-13C6]glucose in cortex showed significant

increase (p < 0.05) in levels of glutamate C4 (GluC4) in Wdr13−/0 mice than the wild-type mice. (F) 13C labeled metabolites enriched from [U-13C6]glucose in

subcortex also showed significant increase (p < 0.05) in levels of glutamate C4 in the Wdr13−/0 mice. (G) 13C labeled metabolites from [2-13C]acetate in cortex and

in (H) Subcortex did not show any significant differences (p > 0.05) between Wdr13−/0 and wild-type mice. Data represented as ±SEM. Wt, wild-type; Wdr13−/0,

Wdr13 knockout mice; Glu, Glutamate, GABA; Gln, Glutamine; Asp, Aspartate; NAA, N-AcetylAspartate; Suc, Succinate; Ala, Alanine; Lac, Lactate; Ino, Inositol; Tau,

Taurine; Cho, Choline; Cre, Creatinine or Cre. *p < 0.05.

8; Cohort 3), indicating that neuro-muscular junctions and
motor response were not affected. In the NOR, Wdr13−/0 mice
spent less time (Figure 3D, p < 0.05 n = 10, 9; Cohort 3
and Supplementary Figure 3B; p = 0.06; n = 5; Cohort 1) in
Discrimination Index (DI) exploring the novel object and more
time with the familiar object. In other words, the Wdr13−/0

mice actively discriminated against the novel object. Hence this
behavioral phenotype may be associated with novelty driven

anxiety, rather than the lack of ability to discriminate as the
DI 6= 0. The mutant mice however, didn’t show any significant
changes in total time spent and frequency of visit to arms in EPM
(Figures 3E,F; n = 17; Cohort 2 and Supplementary Figure 3C;
n = 5; Cohort 1; p > 0.05), although in C57Bl/6J background
(n = 8; Cohort 2′), they showed a slight (p = 0.06) increase
in frequency of visit to the closed arm [Figures 5Bi,ii]. In
forced swim test (FST), the Wdr13−/0 mice (n = 17; Cohort
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FIGURE 3 | Behavioral analysis of Wdr13−/0 and wild-type mice at 2 months of age. (A) Time spent in the central area of open field test. Wdr13−/0 mice

spent significantly (T-test; p < 0.05) less time in the central area of the open field than wild-type mice (n = 17; Cohort 2). (B) Total distance traversed in open field test.

Wdr13−/0 mice traveled significantly (T-test; p < 0.05) more distance in the open field arena than wild-type mice (n = 17; Cohort 2). (C) Hot plate test. There was no

significant difference betweenWdr13−/0 and wild-type mice (T-test; p > 0.05) in latency to react to pain sensing when placed on a hot plate (55◦C) (n = 8; Cohort 3).

(D) Novel object recognition test. There was a significant difference (T-test; p < 0.05) between Wdr13−/0 mice and the wild-type mice in discrimination index (n = 10,

9; Cohort 3). The knockout mice spent less duration exploring the novel object as compared to the wild type. (E,F) Elevated plus maze test. Wdr13−/0 mice did not

show any significant differences (T-test; p > 0.05) than the wild-type mice in total time spent and frequency of visit to closed arms of the elevated plus maze (n = 17;

Cohort 2) (G). Forced swim test. Wdr13−/0 mice showed slightly less immobility as compared to the wild-type mice (n = 17; Cohort 2). This difference was however

not statistically significant (T-test; p = 0.06). Data represented as ±SEM. Wt, wild-type; Wdr13−/0, Wdr13 knockout mice. *p < 0.05.

2 and Cohort 7) showed slightly lesser immobility (Figure 3G;
p = 0.06) as compared to wild-type, though this was not
statistically significant. All these data collectively indicated that
theWdr13−/0 mice exhibited mild anxiety.

Wdr13−/0 Mice Showed Better
Performance in Hippocampal Dependent
Spatial Memory Task Associated with
Upregulated Synaptic Proteins
Hippocampus has been shown to be involved in spatial learning
and spatial memory (Vorhees and Williams, 2006; Clark et al.,
2007; Inostroza et al., 2011; Barnhart et al., 2015) and also long

term retention of memory (Ramos, 2000) as assessed by MWM.
Hence we employed MWM as a test to assess hippocampal
dependent learning and memory behavior (Figure 4A).

Wdr13−/0 mice showed no significant difference (p > 0.05) in
the time taken to reach the platform through the learning trials
[Figure 4B (CD1; n = 6; Cohort 4)]. Using another cohort of
mice we performed re-learning experiment, when the platform
was re-located after the mice were trained to reach the platform
in a specific quadrant. In this experiment also Wdr13−/0 mice
(n = 6; Cohort 5) didn’t differ significantly (p > 0.05) from
the wild-type in the time taken to reach the platform in the
new location (Figure 4C). However, Wdr13−/0 mice spent more
time in the target quadrant during the probe (extinction) trials
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FIGURE 4 | The Morris water learning and memory test. (A) Schematic of the protocol followed for the experiments. (B) There was no significant difference

(ANOVA; p > 0.05) between Wdr13−/0 and the wild-type mice in the latency (time) to reach the platform through the learning trials (n = 6; Cohort 4). (C) Re-learning

experiment showed no significant difference (ANOVA; p > 0.05) between the Wdr13−/0 and wild-type mice (n = 6; Cohort 5). (D) On successive (extinction) probe

trials, Wdr13−/0 mice spent significantly [ANOVA, F (1, 40) = 14.24; p < 0.005] more time in the target quadrant as compared to the wild-type mice (n = 6; Cohort 4).

(E)Wdr13−/0 mice showed better long-term memory by spending significantly (T-test; p < 0.005) more time in the target quadrant when subjected to probe trial after

20 days of learning phase (n = 6; Cohort 6). Data represented as ±SEM. Wt, wild-type; Wdr13−/0, Wdr13 knockout mice. *p < 0.05, **p < 0.005.

{[Figure 4D; ANOVA, F(1, 40) = 14.24; p < 0.005] (CD1; n =

6; Cohort 4)}, which were performed on the same cohort of
mice which underwent learning trials. Probe trial after learning
trials was also conducted on a separate cohort of mice and
similar results [Supplementary Figure 3D; ANOVA, F(1.56) =

5.44; n = 5; Cohort 1; p < 0.05] were obtained, validating the
observed phenotype. Interestingly, even in a long term retention
test performed 20 days after learning trials on an independent
cohort of mice, the mutant (n = 6; Cohort 6) spent significantly
more time (Figure 4E; p = 0.003) in the target quadrant. We
found similar results using Wdr13−/0 and wild-type mice in
C57Bl/6J inbred background; mutant mice did not show any
significant differences in the latency to reach the platform during
the learning trials [Figure 5Ci (C57Bl/6J; n = 8; Cohort 2′)] but

spent more time in the target quadrant {[Figure 5Cii; ANOVA,
F(1, 36) = 10.24; p < 0.005] (C57Bl/6J; n = 8; Cohort 2′)} during
the extinction probe trials. Thus, MWM test indicated that the
Wdr13−/0 mice didn’t show any differences in learning ability,
but had improved retention of spatial memory inMWM than the
wild-type and this phenotype was strain independent.

Singh et al. (2012) had previously shown that in Wdr13−/0

mice, there was an increase in pancreatic beta cell proliferation.
We asked whether in the brain of the mutant mice, the
proliferation of adult neuronal precursor cells were affected.
Since, adult neurogenesis has been implicated in learning
and memory (Deng et al., 2010), we also asked if the
enhanced spatial memory phenotype of Wdr13−/0 mice was
associated with increased neuronal proliferation induced adult
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FIGURE 5 | Behavioral tests of Wdr13−/0 and wild-type mice in C57Bl/6J background at 2 months of age. (A) Open Field Test. (i) Wdr13−/0 mice spent

significantly (T-test; p < 0.05) less time in the central area of the open field as compared to wild-type mice. (ii) Wdr13−/0 mice moved significantly (T-test; p < 0.05)

more distance in the open field arena than the wild-type mice (n = 16; Cohort 1′). (B) Elevated plus maze. (i) There was no significant difference (T-test; p > 0.05)

between Wdr13−/0 and wild-type mice in time spent in closed arm and central area (ii). Wdr13−/0 mice showed marginally increased frequency to visit the closed

arm than the wild-type mice. However, this difference was not significant statistically (T-test; p = 0.06). No significant differences (T-test; p > 0.05) were observed

between the wild-type and Wdr13−/0 mice in the frequency of visit to the central area or open arm (n = 8; Cohort 2′). (C) Morris Water Learning and Memory test. (i)

There was no significant difference (ANOVA, p > 0.05) between Wdr13−/0 and wild-type mice in the latency to reach the platform during the learning trials (ii).

Wdr13−/0 mice spent significantly [ANOVA, F (1, 36) = 10.24; p < 0.005] more time in the target quadrant on repeated probe trials (extinction trials) as compared to

the wild-type mice (n = 8; Cohort 2′). Data represented as ±SEM. Wt, wild-type; Wdr13−/0, Wdr13 knockout mice. *p < 0.05.

neurogenesis. However, BrDU labeling of proliferating neurons
in the Sub Ventricular Zone (SVZ) and Dentate Gyrus (DG)
of Sub Granular Zone (SGZ) of Wdr13−/0 and wild-type
mice under resident conditions showed no significant changes
(Supplementary Figures 4A,A′,B,B′; p> 0.05). Next, we wanted
to know whether absence of Wdr13 had any effect on eural
proliferation after the mice was subjected to learning tasks. Since
learning tasks are shown to increase neurogenesis (Gould et al.,
1999), we checked BrDU incorporation in proliferating neurons
after MWM learning trials but again failed to note significant
changes (Supplementary Figures 4C,D; p > 0.05). It may be
noted that we also did not find significant difference of labeled
BrDU cells between wild-type controls and those subjected to
learning task. This is not a contradiction because Gould et al.

(1999) also stated that the increased neurogenesis that they
observed wasmainly due to stability of neural progenitors labeled
with BrDU before the start of the learning trials. The authors also
failed to find any changes in number of cells labeled during or
after the trials, which was similar to our findings. This indicated
that adult neurogenesis might not have any significant role
behind the observed phenotype.

Dendritic spines have been associated with synaptic plasticity
(Segal, 2005) and spine density and structures have been
implicated with long and short term memory (Moser et al., 1994;
Leuner et al., 2003; Restivo et al., 2009). Therefore, we analyzed
spine density of apical CA1 hippocampal neurons from wild-
type and mutant mice. We found that it was significantly higher
(14%; p < 0.05) in the Wdr13−/0 mice as compared to the
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FIGURE 6 | Analysis of spine density and dendritic branching of CA1 neurons of the hippocampus from wild-type and Wdr13−/0 mice. (A,B)

Representative pictures of wild-type (left) and Wdr13−/0 (right) CA1 neurons and spines. (C) The spine density of apical CA1 neurons was significantly (T-test; p <

0.05) higher in Wdr13−/0 mice as compared to the wild-type. Scale: 5 µm. (D) There was no significant difference (ANOVA; p > 0.05) in dendritic branching of CA1

neurons of Wdr13−/0 and wild-type mice. Data represented as ±SEM. Wt, wild-type; Wdr13−/0, Wdr13 knockout mice. *p < 0.05.

wild-type (Figures 6A–C). We also analyzed dendritic branching
of hippocampal CA1 neurons which revealed no significant
differences (Figure 6D; ANOVA, p> 0.05) between the wild-type
andWdr13−/0 mice.

To understand the molecular mechanism(s) behind the
observed phenotype, iTRAQ based quantitative proteomics was
done from hippocampus of Wdr13−/0 and wild-type mice.
Proteomic analysis (Supplementary Sheet 1; Table 2) revealed
that 78 proteins were upregulated at greater than 1.5 folds out of a
total of 170 quantified (1% FDR) proteins in theWdr13−/0 mice.
These upregulated proteins included synaptic proteins, namely,
SYN1, RAB3A, CAMK2A, and SV2B, proteins belonging to the
14-3-3 family, tubulins, dynamins, etc. In a separate proteomics
experiment (data not shown), we found a decrease in protein
levels of neurogranin (NRGN) inWdr13−/0 hippocampus.

Transcription analysis of Syn1 (synapsin1) and Rab3a
(Figure 7A) from hippocampus was consistent with the
proteomics data (p< 0.05), implying that absence ofWdr13 gene
resulted in upregulation of key synaptic genes in mice. Similarly,
Nrgn transcription was downregulated (p = 0.03). There were,

however, no significant changes in the transcript levels of Grin1,
Grin2a (NMDA receptors) and Gria1, Gria2 (AMPA receptors)
but changes (p < 0.05) were observed in transcript levels of
Camk2a consistent with the proteomics data (Figure 7B).
Interestingly, we also found a significant upregulation in
transcript levels of immediate early genes c-Fos and Arc, but not
Bdnf (Supplementary Figure 5) in hippocampus of Wdr13−/0

mice when subjected to a novel context (objects placed in an
open field) as compared to the wild-type mice.

We wanted to understand whether the changes observed
in the expression of multiple synaptic genes were due to the
genetic deletion of Wdr13. We found that downregulation
of Wdr13 in Neuro2a cells (Supplementary Figures 6A,C)
resulted in upregulation of Camk2a and Nrxn2 (Figure 7C),

indicating direct effect of absence/levels of WDR13 on the

expression of these genes. Previous work carried out in our

laboratory has established cJUN, ERα/β, PHIP, and HDACs
as interacting partners of WDR13 (V. P. Singh and Shalu
Singh, personal communication). We found that in Neuro2a
cell line, WDR13 caused repression in transcription (p = 0.03)
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TABLE 2 | Proteins found up-regulated (>1.5 folds) in the hippocampus of Wdr13−/0 mice as compared to wild-type mice (78 out of 170 quantified).

No. Category Proteins upregulated

1 Unknown 19 (IPI00831115.3, IPI01027830.1, IPI00986691.1, IPI00753044.1, IPI00775970.1, IPI00974916.1,

IPI00473320.2, IPI00649084.1, IPI00990529.1, IPI00110658.1, IPI00831369.1, IPI00475306.1, IPI00987992.1,

IPI01026987.1, IPI00648119.1, IPI00762803.1, IPI00265107.4, IPI00830929.1, IPI00970521.1)

2 Synaptic transmission, synaptic

vesicle cycling, synapse molecule

pathway

16

2A AMPA cycling 2 (Vesicle-fusing ATPase, Alpha-soluble NSF attachment protein)

2B Glutamate cycling 3 (Vesicular glutamate transporter 1, Isoform Glt-1B of Excitatory amino acid transporter 2, Calcium-binding

mitochondrial carrier protein Aralar1)

2C GABA metabolism 1 (Isoform 2 of 4-aminobutyrate aminotransferase, mitochondrial)

2D Cam kinase regulation 4 (Isoform 2 of Neurochondrin, Protein phosphatase 1E, Isoform Alpha CaMKII of Calcium/calmodulin-dependent

protein kinase type II subunit alpha, CaM kinase-like vesicle-associated protein)

2E Synaptic vesicle proton gradient 3 (V-type proton ATPase subunit E 1, V-type proton ATPase subunit d 1, V-type proton ATPase subunit B, brain

isoform)

2F Synaptic 3 (Synaptic vesicle glycoprotein 2B, Dihydropyrimidinase-related protein 2, Isoform Ib of Synapsin-1)

3 Structural 15 (Adenylyl cyclase-associated protein 1, Isoform 2 of Alpha-adducin, Isoform 5 of Dynamin-1, Beta-globin,

Tubulin alpha-4A chain, Tubulin alpha-1A chain, Profilin-1, Hemoglobin subunit beta-2, Isoform 3 of Dynamin-1,

Tubulin beta-2B chain, Tubulin beta-4 chain, Thy-1 membrane glycoprotein, Isoform 2 of Spectrin alpha chain,

brain, 6.8 kDa mitochondrial proteolipid, cofilin-1-like)

4 Protein synthesis 1 (Isoform 3 of Ankyrin repeat and sterile alpha motif domain-containing protein 1B)

5 Metabolism 13 (Phosphoglycerate kinase 1, Cytochrome c oxidase subunit 7A2, mitochondrial, Transaldolase,

Thioredoxin-dependent peroxide reductase, mitochondrial, Phosphorylase, Isoform M1 of Pyruvate kinase

isozymes M1/M2, Creatine kinase U-type, mitochondrial, Cytochrome b-c1 complex subunit 2, mitochondrial,

Isoform 1 of Low molecular weight phosphotyrosine protein phosphatase, Fructose-bisphosphate aldolase A,

Isoform 2 of Obg-like ATPase 1, Serine/threonine-protein phosphatase, Cytochrome b-c1 complex subunit 8 )

6 Chaperone 2 (Heat shock protein HSP 90-beta, Parkinson disease (Autosomal recessive, early onset) 7)

7 Cell signaling 9 (plasma membrane calcium ATPase 1, NEDD8, Isoform 2 of Serine/threonine-protein phosphatase 2B catalytic

subunit alpha isoform, Isoform 2 of 14-3-3 protein theta, 14-3-3 protein zeta/delta, 14-3-3 protein epsilon, 14-3-3

protein gamma, Isoform 2 of Nck-associated protein 1, Gamma-enolase)

8 Cell adhesion and migration 1 (neurocan core protein-like)

9 Vesicular trafficking and fusion 2 (Clathrin heavy chain 1, AP-2 complex subunit alpha-2)

The classifications have been done manually based on Refseq and Uniprot annotations.

from promoters containing the Estrogen Receptor Element
(ERE) (Figure 7D) in both presence and absence of estradiol.
Luciferase assay also indicated that co-expression of WDR13
with c-JUN (Supplementary Figures 6A,B,D,E) resulted in
repression of transcription from AP1 element containing
promoter (Figure 7E; one way ANOVA; p < 0.05). We therefore
hypothesized that in the absence of Wdr13, any repression
(competitive or non-competitive) over key genes caused due to
its interaction with its partner(s) (Perissi et al., 2010), might be
relieved, resulting in their upregulation leading to the observed
phenotype.

DISCUSSION

The current work highlights the action of Wdr13 in the brain.
We showed that WDR13 represses transcription from AP1 and

ERE elements containing promoters, which harbor c-JUN and
ERα/β responsive elements respectively. Absence of Wdr13 led

to de-regulated expression of multiple genes. Many of these
include synaptic genes like Syn1, Rab3a, Nrxn2, Camk2a, etc.
Interestingly, we showed that absence of Wdr13 caused mild
anxiety and improved retention in MWM task, associated with
increased spine density.
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FIGURE 7 | (A) In Wdr13−/0 mice hippocampus, transcript levels of Syn1 (synapsin1) and Rab3a showed increase (T-test; p < 0.05) and Nrgn (neurogranin) showed

decrease (p < 0.05) than the wild-type under non-stress conditions (n = 5) Data represented as ±SEM. (B) In Wdr13−/0 mice, there were no significant changes in

levels of Grin1, Grin2a, Gria1, and Gria2 in the hippocampus whereas transcripts of Camk2a were upregulated (n = 4). Data represented as ±SD. (C) Knockdown of

Wdr13 in Neuro2a cells using siRNA resulted in increased transcripts of Camk2a and Nrxn2. Data represented as ±SD. (D) WDR13 repressed luciferase transcription

from a promoter containing an ERE element in the presence of Estradiol (Mann Whitney; p < 0.05). (E) Luciferase activity of AP1 promoter containing vector in

Neuro2a cells showed decrease upon co-expression of c-JUN with WDR13 (One way ANOVA; p < 0.05). Data represented as ±SD. Wt, wild-type; Wdr13−/0,

Wdr13 knockout mice. *p < 0.05.

We selected the age window of 2–3 months of age to carry out
all behavior experiments. There were no systemic changes in the
Wdr13−/0 mice at this age (Singh et al., 2012) and we did not find
any changes in brain metabolism. Though we found increased
glutamate metabolism at 10 months of age in mutant mice, we
argued that this change was mostly neuronal, considering that
there were no changes in concentration of 13C glutamate labeled
from acetate- indicative of astroglial metabolism. The changes
observed at 10 months in Wdr13−/0 mice might have resulted
from accumulating molecular changes in the brain due to the
absence of Wdr13. Since de-regulation of glutamate can lead to
changes in memory (McEntee and Crook, 1993; Gecz, 2010),
anxiety (Bergink et al., 2004), depression (Sanacora et al., 2012),
etc., it would be interesting to study the behavioral phenotype
of Wdr13−/0 mice at 10 months of age. Increase in glutamate
in a chronic state can also lead to excitotoxicity (Foran and
Trotti, 2009). Therefore, analysis of brain function and anatomy
is important to shed light on the effect of genetic deletion of

Wdr13 in aged mice brain. A conditional knockout mouse with
brain specific deletion of Wdr13 would be more suitable for this
age dependent study since systemic metabolic effects because of
the absence of this gene could be avoided.

Before analyzing differentially regulated genes, we asked if
whether the proliferation of adult neuronal precursor cells was
affected using BrDU labeling. Our results showed no significant
difference in BrDU positive cells of DG and SVZ between
Wdr13−/0 and wild-type mice unlike pancreatic beta cells. This
also indicated that the pathways affected in brain might be
different from pancreas or other tissues.

We showed that the absence of Wdr13 resulted in
upregulation of multiple synaptic proteins (16 out of
78 upregulated) in-vivo. We showed similar results in
downregulation of Wdr13 in Neuro2a cell lines indicating
that the changes occurred as a consequence of loss of the gene
and not due to any systemic effects. The synaptic proteins
found upregulated could be classified into AMPA cycling,
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Glutamate cycling, GABA metabolism, CAM kinase regulation,
Synaptic vesicle proton gradient and synaptic vesicle cycling
(Table 1). We observed notable upregulation in Camk2a,
Syn1, and Rab3a levels in Wdr13−/0 mice at transcript and
protein levels. It is known that synapsins control the release
of neurotransmitters such as glutamate and important for
synaptic plasticity (Nichols et al., 1992; Jovanovic et al., 2000).
Synapsins are involved in memory formation and consolidation
process in drosophila and in aging-related memory impairment
in mammals (Godenschwege et al., 2004; John et al., 2009).
Similarly, RAB3A is important for synaptic transmission,
learning and memory (Yang et al., 2007). CAMK2A belongs
to the CaM-kinase II family of proteins-known for their
significant role in synaptic plasticity, long term potentiation
(LTP), and learning and memory (Soderling, 1993). Levels of
Vesicular glutamate transporter 1 (VGLUT1)—an important
molecule for excitatory synapse and for maintaining LTP
(Balschun et al., 2010) was also found to be increased in
Wdr13−/0 mice. Upregulation was also recorded in the levels
of 14-3-3 proteins in Wdr13−/0 mice. 14-3-3 proteins are
positive regulators of associative learning and memory (Qiao
et al., 2014). An upregulation in dynamins and tubulins
found in the Wdr13−/0 mice could be important factors
behind the increased spine density observed (Gray et al.,
2005; Shirao and González-Billault, 2013). Since spine density
has been related to learning and memory, upregulation of
afore-mentioned proteins might be of significance regarding
the observed phenotype. We also found upregulation of
immediate early genes Arc and c-Fos in Wdr13−/0 mice when
exposed to a novel environment as compared to wild-type
mice. Arc has traditionally been associated with learning and
memory, particularly long term spatial memory (Bramham
et al., 2010). C-Fos has also been shown to be upregulated
during learning trials (Alberini, 2009). It may be noted that
no changes were found in the transcript levels of NMDA and
AMPA receptor genes. However, considering that the levels of
multiple synaptic proteins including important proteins like
CAMK2A and immediate early genes like Arc, were found
to be upregulated, an increased LTP might be expected to be
associated with the phenotype of better spatial memory in
Wdr13−/0 mice. These findings may be corroborated with the
help of further experiments particularly electrophysiology. Thus,
taken together, increase in levels of above mentioned synaptic
proteins and increased synaptic activity as measured by Arc
and c-Fos, might be few of the key factors responsible for better
performance in spatial memory task of MWM by Wdr13−/0

mice.
Interestingly, many of the synaptic proteins along with

Clathrin, AP-2, and Dynamin found up-regulated in Wdr13−/0

mice are also known to be important for synaptic vesicle
recycling. Synaptic vesicle recycling is essential for synaptic
plasticity, memory, and cognitive ability, and any deleterious
changes in it lead to mental retardation, schizophrenia, and
defects in spatial memory (Murthy and De Camilli, 2003;
Glyvuk et al., 2010; Cottrell et al., 2013). Synaptic recycling
affects synaptic transmission (Casillas-Espinosa et al., 2012) and
consequently memory through LTP (Hölscher, 1999). In this

context it would be interesting to investigate synaptic recycling
in these mutant mice.

Though Wdr13−/0 mice showed better spatial memory, they
didn’t show any differences in spatial learning as assessed using
MWM than that of the wild-type mice. Previous reports show
that disruption of a gene can affect memory without significantly
changing learning ability (Maguschak and Ressler, 2008; Tsai
et al., 2012) though the molecular reasons are not clearly
understood.

Wdr13−/0 mice also showed decreased exploration of central
area of OFT and active avoidance of novel object but failed
to show any significant difference in EPM, particularly in CD1
background. It is possible that the response of the mutant mice
was directed specifically against novel environment (Bailey and
Crawley, 2009) and therefore differences were observed in OFT
and NOR. Since the mutant mice also traversed significantly
more distance, it explored EPM as much as the wild-type
mice leading to no observable differences in CD1 background.
However, it is to be noted that mutant mice in C57Bl/6J
background showed a trend of increased visit to closed arm
of EPM, and therefore, it is possible that this phenotype of
mild novelty-associated anxiety was affected by the genetic
background (CD1).

In our analysis, we found decreased levels of Neurogranin
(Nrgn) at protein and transcript levels in Wdr13−/0 mice.
Neurogranin is a brain-specific calmodulin-binding protein
expressed particularly in dendritic spines. Nrgn−/− mice exhibit
characteristics of anxiety (Miyakawa et al., 2001). Similarly, it has
been shown that overexpression of Camk2a leads to increased
anxiety in mice (Hasegawa et al., 2009).

It is known through previous studies carried out in our lab
thatWDR13 interacts with c-JUN, Estrogen receptors ERα/β and
HDACs (V. P. Singh and Shalu Singh, personal communication).
Consistent with our previous findings, we show that WDR13
represses transcription from promoter containing ERE (ERα/β
responsive) and AP1 (c-JUN responsive) elements. The action
leading to the observed phenotype and deregulation of the
multiple afore-mentioned genes in Wdr13−/0 mice might have
been attained by relieving of competitive repression (Perissi et al.,
2010) induced by WDR13 on downstream targets of c-JUN and
ERα/β—both shown to be positive regulators of learning and
memory genes. Learning trials are known to increase cJun levels
which affect learning positively by altering the expression of
downstream genes (Alberini, 2009). While estrogen aids synaptic
transmission and plasticity by positively regulating synaptic
genes (Foy et al., 2010), activation of Estrogen receptors like
ERβ has also been shown to improve memory (Liu et al., 2008).
Further, estrogen induces synaptic protein CAMK2A activity in-
vivo (Sawai et al., 2002). Additionally, administration of estradiol
increases transcription of Syn1 (Pan et al., 2010). Syn1 has also
been reported to contain an ERE element upstream (Bourdeau
et al., 2004) indicating that the action of estrogen on its
transcription is guided through Estrogen receptors. Interestingly,
in our analysis we have found both Camk2a and Syn1 to be
upregulated inWdr13−/0 mice.

Multiple genes that affect memory and learning have been
reported in previous studies. Modulation of expression of a
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number of them had resulted in better learning and memory.
These genes affect different processes like excitatory synaptic
transmission (Nr2b, Cdk5, p25, Hgf etc.), inhibitory synaptic
transmission (GABA receptor, Grpr, Pkr etc.), pre-synaptic
function (H-ras, Ncx2, Cbl-b, etc.), transcriptional regulation
(CREB, CamkIV, Gcn2, Calcineurin, etc.), miRNA biogenesis
(Dicer1), epigenetic regulation (Hdac2) etc. (Lee, 2014). Our
results show that absence of Wdr13 in 2 months old mice
leads to better spatial memory associated with upregulation
of multiple synaptic proteins. While it is exciting to find a
molecule, manipulation of which may enhance memory, long-
term implications of removal of this gene needs to be studied. As
mentioned earlier increased glutamate can lead to excitotoxicity
and neuronal death and hence aged mice lacking Wdr13 should
be analyzed. Also, the persistent increase in synaptic proteins
has been associated with schizophrenia (Li et al., 2015). Hence,
it should be investigated whether absence of Wdr13 leads
to hallucinogenic or schizophrenia like effect in mice with
increasing age.
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Supplementary Figure 1 | RNA in situ hybridization of Wdr13 in the brain.

(A) RISH using antisense Wdr13 probe showed localization of it’s transcript in

Hippocampal CA1, CA2, CA3 region, and Dentate Gyrus, and in Cortex. The left

panel depicts antisense probe and right panel depicts sense probe. Scale 1 mm.

(B) Antisense Wdr13 probing (top) of a sagittal section of mouse brain showing

significant hybridization in Cerebellum, Hippocampus, and Cortex. Scale 1 mm.

(C) A coronal section of cortex hybridized with anti-sense Wdr13 probe. Scale

200 µm.

Supplementary Figure 2 | Histological staining of brain sections from

Wdr13−/0 and wild-type mice showed no significant differences (n = 3).

(A) Nissl staining of a coronal section of brain showing the hippocampus.

Wild-type is shown on left and Wdr13−/0 on right. (B) Nissl staining of sagittal

section of brain. Wild-type is shown in top and Wdr13−/0 in bottom panel. (C)

H&E staining of a coronal section of brain. Wild-type on left and Wdr13−/0 on

right. (D) H&E staining of sagittal section of brain. Wild-type on top and Wdr13−/0

bottom panel. Scale 1 mm.

Supplementary Figure 3 | Additional dataset: Behavioral analysis of

Wdr13−/0 and wild-type mice in CD1 background (Cohort 1). (A) Open field

test. Wdr13−/0 mice showed marginally (T-test; p = 0.07) decreased exploration

time in the central area of the open field as compared to the wild-types. (B) Novel

object recognition test. Wdr13−/0 mice showed a trend (T-test; p = 0.06) of

decreased exploration of novel object than the familiar object (n = 5). (C) Elevated

plus maze test. There were no significant differences (T-test; p > 0.05) between

Wdr13−/0 and wild-type mice in total time spent in closed or open arms (n = 5).

(D) Morris water maze test. Wdr13−/0 mice spent significantly more time

[ANOVA, F (1,56) = 5.44; p < 0.05] in the target quadrant during extinction trials as

compared to the wild-type mice (n = 5). Data represented as ±SEM. Wt,

wild-type; Wdr13−/0, Wdr13 knockout mice. ∗p < 0.05.

Supplementary Figure 4 | Tracking adult neuronal proliferation in

Wdr13−/0 and wild-type mice using BrDU labeling. (A) Representative

images of fluorescent labeling for anti-BrDU in wild-type and Wdr13−/0

Dentate Gyrus (DG). (A′) There was no significant difference (T-test; p > 0.05)

in the number of BrDU labeled cells from the DG of hippocampus. (B)

Representative images of Dab staining for anti-BrDU labeling in wild-type and

Wdr13−/0 Sub Ventricular Zone (SVZ). (B′) There was no significant difference

(T-test; p > 0.05) in the number of BrDU labeled cells from SVZ of Wdr13−/0

and wild-type mice. (C) There were no significant differences in number of

BrDU positive cells in hippocampal DG and in (D). SVZ of Wdr13−/0 mice as

compared to the wild-type mice after performing learning task in Morris water

maze. Data represented as ±SEM. Wt, wild-type; Wdr13−/0, Wdr13 knockout

mice.

Supplementary Figure 5 | Real time analysis of hippocampus from

Wdr13−/0 and wild-type mice which were exposed to a novel environment

revealed increased transcripts of c-Fos and Arc in Wdr13−/0

hippocampus. However, there was no significant difference (T-test; p > 0.05) in

transcript levels of Bdnf (n = 4). Data is represented ±SD. Wt, wild-type;

Wdr13−/0, Wdr13 knockout mice.

Supplementary Figure 6 | Western analysis. (A) Representative blot of

WDR13 overexpression and knockdown (from left) in Neuro2a cells. (B) Relative

quantification of WDR13 overexpression (Mann Whitney; p < 0.05) and

knockdown (Mann Whitney; p < 0.05). (C) Percent relative expression (compared

to controls) for WDR13 knockdown and overexpression. (D) Representative blot

and (E) relative quantification (triplicates) of c-JUN overexpression (Mann Whitney;

p < 0.05) in Neuro2a cell line. Data is represented ±SD.
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