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Tetraspanins are a family of ubiquitously expressed and conserved proteins, which are

characterized by four transmembrane domains and the formation of a short and a large

extracellular loop (LEL). Through interaction with other tetraspanins and transmembrane

proteins such as growth factors, receptors and integrins, tetraspanins build a

wide ranging and membrane spanning protein network. Such tetraspanin-enriched

microdomains (TEMs) contribute to the formation and stability of functional signaling

complexes involved in cell activation, adhesion, motility, differentiation, and malignancy.

There is increasing evidence showing that the tetraspanins also regulate the proteolysis

of the amyloid precursor protein (APP) by physically interacting with the APP secretases.

CD9, CD63, CD81, Tspan12, Tspan15 are among the tetraspanins involved in the

intracellular transport and in the stabilization of the gamma secretase complex or

ADAM10 as the major APP alpha secretase. They also directly regulate, most likely in

concert with other tetraspanins, the proteolytic function of these membrane embedded

enzymes. Despite the knowledge about the interaction of tetraspanins with the

secretases not much is known about their physiological role, their importance in

Alzheimer’s Disease and their exact mode of action. This review aims to summarize the

current knowledge and open questions regarding the biology of tetraspanins and the

understanding how these proteins interact with APP processing pathways. Ultimately, it

will be of interest if tetraspanins are suitable targets for future therapeutical approaches.

Keywords: tetraspanin, Alzheimer disease, membrane microdomains, amyloid precursor protein, secretases,

amyloid beta

INTRODUCTION

The neurotoxic amyloid beta (Aβ) peptide is a major component of senile plaques in Alzheimer’s
Disease (AD) and derives from its precursor the amyloid precursor protein (APP). Despite
an intensive effort and increasing understanding of its role in AD the physiological function
of APP is not completely understood. APP and its relatives amyloid-like protein-1 (APLP1)
and amyloid-like protein-2 (APLP2) are proteolytically processed, ubiquitously expressed and
share overlapping functions. APP has been linked with trophic roles in neurons and synapses,
axon pruning, intracellular signaling and apoptosis (Muller and Zheng, 2012). How APP
interaction with other proteins is defined, how its proteolytic processing is controlled and how
signaling events are regulated by APP is poorly understood. Proteomics-based approaches and
yeast-two-hybrid screens have been used to identify the protein interaction network of APP
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(Kohli et al., 2012; Yu et al., 2015) and of the proteases known to
cleave APP (Wakabayashi et al., 2009; Jeon et al., 2013). Among
others, members of the tetraspanin family have been identified.
Tetraspanins have been characterized as scaffold for protein
interactions establishing tetraspanin-enriched microdomains
(TEMs) and are involved in grouping APP and functional
important protein partners.

This review focuses on the emerging role of tetraspanins in the
regulation of the proteases involved in the proteolytic processing
of APP. The available knowledge about how tetraspanins
regulate processing and intracellular trafficking of APP and
APP-cleaving secretases is summarized. It is discussed why
tetraspanins are attractive novel drug targets. There are some
excellent reviews covering different aspects of tetraspanin biology
thereby providing a useful overview about their diverse functions
(Berditchevski and Odintsova, 2007; Yanez-Mo et al., 2009;
Charrin et al., 2014).

WHAT ARE TETRASPANINS?

Tetraspanins are compact and glycosylated transmembrane
proteins, that span cell membranes four times. Two extracellular
domains, one larger and one smaller loop are separated from
three cytosolic domains, one short loop and one N-terminal
and C-terminal end, respectively. Intracellular cysteine residues
of the tetraspanins can be modified by lipidation, i.e., addition
of palmitate, possibly contributing to the establishment of
tetraspanin microdomains and the regulation of intracellular
signaling events (Berditchevski et al., 2002; Charrin et al., 2002;
Yang et al., 2002). The large extracellular loop (LEL) and the
transmembrane domains play a role in mediating protein-
protein interactions (Hemler, 2003; Charrin et al., 2009). The
structure of the isolated LEL of human CD81 was solved. It looks
mushroom-shaped and it consists of a conserved subdomain,
including three helices and a more variable one with two helices,
possibly involved in the binding to other membrane proteins
(Kitadokoro et al., 2001; Seigneuret et al., 2001). The full CD81
structure revealed a cone-like structure, where the LEL harbors
an intramembrane cavity which is supposed to bind cholesterol
(Zimmerman et al., 2016). It is speculated that the cholesterol
bound structure favors a closed structural state of this tetraspanin
with less tightly bound partner proteins.

Thirty three members of tetraspanins have been described.
They can be mainly found at the plasma membrane and
within endocytic membranes. Co-immunoprecipitation and
crosslinking experiments revealed a high affinity of tetraspanins
to interact with each other and other transmembrane proteins.
These are in particular integrins, but also members of the
immunoglobulin superfamily, signaling receptors, enzymes such
as proteases and many other integral proteins residing in TEMs
(Yanez-Mo et al., 2009).

FUNCTIONS OF TETRASPANINS

The function of tetraspanins is mainly defined by their ability
to interact with other transmembrane proteins. Due to the

great variety of partner proteins, tetraspanins are involved in
various cellular processes like migration, adhesion, signaling
and pathogen infection (Boucheix and Rubinstein, 2001;
Lammerding et al., 2003; Barreiro et al., 2008). By regulating
cell motility and different signaling pathways, tetraspanins
play an important role in cancer progression and metastasis
(Boucheix and Rubinstein, 2001; Wang et al., 2011). For
example, the tetraspanins CD9 and CD151 contribute to
cancer cell invasion by interacting with different integrins
and signaling enzymes, like protein kinase C (PKC) and
phosphoinositide 4-kinase (PI4K) (Zhang et al., 2001; Wang
et al., 2011). Tetraspanins also modulate intracellular signaling
pathways by coordinating ligand-receptor binding at the
cell surface. This is exemplified by the observation that
tetraspanin 3 promotes binding of the NogoA ligand to the
receptor sphingosine-1-phosphate-receptor-2 (S1PR2), which
activates an intracellular signaling cascade leading to the
inhibition of neurite outgrowth (Thiede-Stan et al., 2015). Most
tetraspanins regulate the functions of their partner proteins
by modulating their spatiotemporal distribution at the plasma
membrane and organizing them together with other functional
proteins (e.g., enzymes and substrates) (Odintsova et al., 2003;
Haining et al., 2012; Thiede-Stan et al., 2015). Recent studies,
demonstrated that the interaction with tetraspanins influences
the motility of their partner proteins and their association
with other molecules within the plasma membrane (Yang
et al., 2012; Mattila et al., 2013; Jouannet et al., 2015). In
addition, some tetraspanins directly control the trafficking
of their partner proteins (Berditchevski and Odintsova,
2007). For example CD63, facilitates endocytosis of the HIV
receptor C-X-C chemokine receptor type 4 (Yoshida et al.,
2008).

Further genetic and in vivo studies demonstrated the
importance of tetraspanins in various physiological and
pathophysiological processes. In the central nervous system,
the knockout of CD81 increased brain size and number of
glial cells in mice (Geisert et al., 2002). Tspan7 regulates spine
maturation and AMPA receptor trafficking by interacting
with the protein interacting with C-kinase 1 (PICK1) in rat
hippocampal neurons (Bassani et al., 2012). Moreover, loss of
CD9 in mice impaired formation of axoglial paranodal junctions
and caused myelination deficits in the peripheral nervous system
(Ishibashi et al., 2004). Also other tetraspanins like Tspan5
(Garcia-Frigola et al., 2001) and Tspan3 (Seipold et al., 2016) are
highly expressed in the brain and in neuronal cells. However,
their physiological roles remain unclear. Tetraspanin knockout
mice additionally revealed the importance of CD9, CD81,
CD37, and CD151 for fertilization, brain and peripheral nerve
development and the immune response. However, analysis of
tetraspanin functions by loss-of-function approaches in mice has
been hampered, due to compensatory effects and their redundant
functions.

In human, mutations of tetraspanin 7, CD151 and the
retinal tetraspanin Peripherin/RDS are associated with X-linked
mental retardation, skin and kidney diseases, deafness and retinal
degeneration (Kohl et al., 1998; Zemni et al., 2000; Karamatic
Crew et al., 2004).
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TETRASPANINS AS REGULATORS OF
α-SECRETASE ACTIVITY

Several tetraspanins associate with the APP secretases and
regulate their activity. In particular, the membrane localized α-
secretase ADAM10 associates with multiple tetraspanins. Using
mild detergent conditions CD9, CD53, CD81, CD82, and CD151
were identified to associate with ADAM10. CD9, CD81, CD82
were able to stimulate ADAM10-dependent TNFα and EGF
shedding (Arduise et al., 2008). In an independent study the
association of ADAM10 with tetraspanin 12 (Tspan12) caused
an accelerated ADAM10 maturation, i.e., the cleavage of the
pro-ADAM10 to the mature and active protease, followed by
an increased ADAM10-dependent APP processing (Xu et al.,
2009). It was postulated that Tspan12 activated proprotein
convertases and stabilized the mature form of ADAM10. Co-
immunoprecipitation experiments, performed under stringent
detergent conditions, suggested that CD9, CD81, CD82, and
CD151 did not directly interact with ADAM10 (Dornier et al.,
2012). It was concluded that these tetraspanins associate with
ADAM10 through interactions mediated by other members
of the tetraspanin web. However, tetraspanins belonging to
the TspanC8 subfamily still interacted with ADAM10 under
stringent immunoprecipitation conditions, indicating that these
tetraspanins directly bind to the protease (Dornier et al., 2012).

This evolutionary related subgroup of TspanC8 tetraspanins
(Figure 1) includes the tetraspanins 5, 10, 14, 15, 17, and 33,
which all contain eight conserved cysteine residues within
their LEL. Analysis of the TspanC8-ADAM10 interaction
revealed that overexpression of individual TspanC8 tetraspanins
promoted ADAM10 maturation in human cells and Drosophila
melanogaster (Haining et al., 2012). With exception of Tspan10
and Tspan17, TspanC8 overexpression also increased ADAM10
surface localization. Heterologous Tspan10 and Tspan17
expression led to a localization of ADAM10 to late endosomes
(Dornier et al., 2012). Although, the C8 tetraspanins exert similar

FIGURE 1 | The subgroup of TspanC8 tetraspanins. The TspanC8

tetraspanins are an evolutionary conserved subgroup of tetraspanins,

including Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33.

TspanC8 tetraspanins interact with the APP α-secretase ADAM10 and

regulate its maturation, surface expression and substrate cleavage. Alignment

of the human TspanC8 amino acid sequences was performed with

ClustalOmega and is presented as dendrogram.

effects on ADAM10 maturation and trafficking (except Tspan10
and Tspan17), they have different impact on the cleavage of
ADAM10 substrates (Prox et al., 2012; Noy et al., 2016). The
overexpression of the TspanC8s members Tspan5 and Tspan14
promoted ligand induced shedding of the Notch receptor. In
contrast, expression of Tspan15 reduced Notch processing
(Dornier et al., 2012). Tspan15 was the only TspanC8 member,
that increased ADAM10-mediated N-cadherin shedding after
overexpression in human embryonic kidney (HEK293) and
monkey fibroblast-like Cos7 cells (Prox et al., 2012; Noy et al.,
2016). It was also shown that the generation of APP C-terminal
fragments was differentially affected by certain TspanC8s.
While expression of Tspan14 and Tspan33 slightly reduced the
appearance of APP C-terminal cleavage products (Jouannet
et al., 2015), Tspan5 expression had no effect on the production
these fragments. Tspan15 expression in the human osteosarcoma
cell line U2OS-N1 (Jouannet et al., 2015) also reduced APP
processing, but increased it in murine neuroblastoma (N2a)
and HEK293 cells (Prox et al., 2012). Since, tetraspanins act in
concert with other tetraspanins in TEMs the conflicting data
may be explained by the different composition of tetraspanins in
the different cellular systems used.

There is increasing evidence that TspanC8s mediate substrate
specificity by a direct interaction with ADAM10 and modulation
of its association with other membrane components, e.g.,
integrins (Jouannet et al., 2016). Using ADAM10 chimeric and
truncation constructs, it was demonstrated that the TspanC8s
differentially favor the interaction with the ADAM10 membrane
proximal stalk region, cysteine-rich domain and disintegrin
domain (Noy et al., 2016). TspanC8s may constrain and stabilize
ADAM10 in defined conformations (Noy et al., 2016). The
expression of TspanC8 tetraspanins had different impact on
the membrane environment of ADAM10. Mass-spectrometric
analysis of ADAM10-associated proteins revealed that in Tspan5
expressing cells ADAM10 preferably associated with classical
components of the tetraspanin web such as the α3β1 integrin,
CD9P1 and CD9, which was reduced in Tspan15 transfected cells
(Jouannet et al., 2015). Tspan5 expression enhanced ADAM10’s
localization at the cell periphery, while Tspan15 expression did
not (Jouannet et al., 2015).

Tspan3, a TspanC6 tetraspanin, was identified, as another
ADAM10 and APP interacting tetraspanin in cells and in the
murine brain (Seipold et al., 2016). Tspan3 expression did
not obviously influence ADAM10 maturation or trafficking but
increased ADAM10-mediated APP cleavage. Tspan3 is likely
involved in this process as a scaffold protein, which stabilizes
ADAM10 and APP at the cell surface.

An interaction of tetraspanins with ADAM17, which is
closely related to ADAM10 and under certain circumstances
also exerts α-secretase activity toward APP (Buxbaum et al.,
1998), has only been described for CD9. Heterologous expression
of CD9 or treatment with CD9-specific antibodies inhibited
phorbol ester (PMA)-stimulated shedding of the ADAM17
substrates TNFα and ICAM-I, while CD9 knockdown increased
it (Gutierrez-Lopez et al., 2011). In the same manner, treatment
with neutralizing anti-CD9 monoclonal antibodies reduced
ADAM17-mediated shedding of LR11 (SorLa) in human
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leukocytes, while CD9 expression increased it (Tsukamoto et al.,
2014). Most likely CD9 inhibits ADAM17 sheddase activity by
affecting the membrane compartmentalization of ADAM17 itself
or its substrates. CD9 may even interact with both, ADAM10
and ADAM17, but exerting opposite effects on their activity with
regards to TNFα shedding (Gutierrez-Lopez et al., 2011).

TETRASPANINS AS REGULATORS OF
γ-SECRETASE ACTIVITY

Next to ADAM10 also the γ-secretase complex interacts with
tetraspanins. Wakabayashi et al. showed that Presenilin-1 and
Presenilin-2 associate with the tetraspanins CD9, CD81, Upk1b
as well as with the tetraspanin associated proteins EWI-F, EWI-2
which connect the tetraspanin web with the actin cytoskeleton
(Sala-Valdes et al., 2006) and CD98hc (Fenczik et al., 2001),
a regulator of integrin signaling and amino acid transport
(Wakabayashi et al., 2009). The activity of the γ-secretase
complex was strongly decreased upon knockdown of CD81,
EWI-F, and CD98hc, which correlated with a decrease in Aβ

production. Inhibition of γ-secretase activity was also observed in
CD9 and CD81-deficient mouse embryonic fibroblasts revealed
by an accumulation of C-terminal fragments of the γ-secretase
substrates APP, APLP-2 ADAM10, N-Cadherin and Syndecan-
3. Treatment with anti-CD9 monoclonal antibodies reduced Aβ

levels in HEK293 cells (Wakabayashi et al., 2009). Additionally,
siRNA mediated knockdown of Tspan33 in HeLa cells reduced
the γ-secretase dependent cleavage of a constitutively active,
truncated form of Notch1 and that of T-cell acute lymphoblastic
leukemia (T-ALL)Notch1 oncogenicmutants (Dunn et al., 2010).

Independent studies analyzing the interactome of the γ-
secretase complex identified the tetraspanins CD63 and Tspan3
in the network of the presenilin interacting proteins (Jeon
et al., 2013; Seipold et al., 2016). CD63 is one of the few
tetraspanins which is found on late endosomal and lysosomal
membranes (Rous et al., 2002). CD63 associates with CD9, CD81,
and CD82 within the tetraspanin web. However, the functional
consequence of this interaction for the γ-secretase complex has
not been elucidated. Due to its functions in the endosomal sorting
complex required for transport (ESCRT)-independent formation
of intraluminal vesicles (van Niel et al., 2011) CD63 could control
the degradation of the γ-secretase complex.

TETRASPANINS AS A PART OF A
MULTI-SECRETASE COMPLEX

Another mechanism by which tetraspanins regulate both, α- and
γ-secretase, activity has recently been reported by Chen et al.
(2015). It was shown that α- and γ-secretase associate in an active
multiprotease complex at the plasma membrane (Figure 2).
Assembly of this multi-secretase complex seems to be modified
by Tspan12 and the TspanC8 tetraspanins Tspan 5, 14, 12, and
17. Knockdown of Tspan5 and Tspan14 decreased ADAM10
association with the γ-secretase complex, which correlated with
a reduced presence of mature ADAM10. Knockdown of Tspan12
and Tspan17 also decreased the association of ADAM10 with the

FIGURE 2 | Tetraspanins regulate APP cleaving enzymes. Schematic

drawing illustrating the role of tetraspanins (Tspan) as scaffolds for the

assembly of a multisecretase complex, which consists of ADAM10 and the

γ-secretase-complex and is required for the processing of the amyloid

precursor protein (APP) at the plasma membrane.

γ-secretase complex and the α-secretase-dependent generation of
soluble sAPPα, but did not alter ADAM10maturation.Moreover,
Tspan12 and Tspan17 seem to contribute to an α-/γ-secretase
feedback mechanism. This feedback mechanism is related to
γ-secretase inhibition and causes an increase of sAPPα at the
expense of sAPPβ. This is also accompanied by an increase of
APP and BACE1 surface levels. This effect was less effective after
knockdown of Tspan12 and Tspan17 (Chen et al., 2015).

In conclusion, tetraspanins are potent regulators of α-
and γ-secretase activity, which modulate maturation, complex
assembly, trafficking and substrate specificity. In regards to β-
secretase cleavage, no direct interaction of tetraspanins with
the β-secretase BACE1 has been reported. The metalloprotease
Meprin β, which cleaves APP in amanner similar to BACE1 (Bien
et al., 2012), interacts with Tspan8 and resides together with APP
in TEMs (Schmidt et al., 2016). However, Tspan8 had no impact
on the proteolytic activity of Meprin β towards APP.

TETRASPANINS AS THERAPEUTIC
TARGETS

The treatment with monoclonal antibodies (mAbs) against CD81
diminished the development of neurological symptoms in a
multiple sclerosis mouse model (Dijkstra et al., 2008) and
prevented hepatitis C virus (HCV) infection after prophylactic
injection in mice (Meuleman et al., 2008). Application of
anti-CD9 antibodies reduced tumor growth and progression
in gastric cancer mouse xenografts (Nakamoto et al., 2009).
Stimulatory CD151 antibodies promoted cell adhesion and
thereby reduced immobilization of tumor cells and metastasis
(Zijlstra et al., 2008). The humanized anti-CD37 IgG fusion
protein Otlertuzumab (TRU-016) is a potential drug for the
treatment of lymphoid B-cell malignancies (Robak et al., 2009)
and was tested in phase 1 clinical trials for the treatment
of chronic lymphocytic leukemia (Byrd et al., 2014). It is
proposed that mAbs directed against tetraspanins inhibit lateral
associations or cause the formation of tetraspanin aggregates,
which disrupt TEMs and cause a downregulation of the targeted
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tetraspanin and its partner protein(s) (Hemler, 2008). Also
recombinant soluble large extracellular domains (sLEL) may
inhibit tetraspanin-dependent functions. Similar to mAbs, CD81
sLELs reduced HCV infectivity and blocked HIV-1 entry into
macrophages (Flint et al., 2006; Ho et al., 2006).

The potential of tetraspanins to modulate γ-secretase activity
in AD was demonstrated by RNAi-mediated knockdown
experiments. The downregulation of CD81 and tetraspanin-
associated proteins EWI-F and CD98hc reduced the secretion
of neurotoxic Aβ in HEK cells, stably overexpressing a mutated
form of APP, which favors amyloidogenic processing. Likewise,
treatment with anti-CD81 and anti-CD9 mAbs decreased Aβ-
production in HEK293 cells (Wakabayashi et al., 2009). However,
most therapeutic approaches targeting γ-secretase activity were
accompanied by severe side effects, like skin cancer development,
gastrointestinal toxicity and infections (Doody et al., 2013), due
to the physiological role of its substrates, for example Notch1
(Haapasalo and Kovacs, 2011). Interestingly, the individual
knockdown of CD9 and CD81 in HeLa cells had no significant
effect on the activity of different leukemic mutant forms of
Notch1 (Dunn et al., 2010). It was further shown that human
Tspan33 promotes γ-secretase cleavage of Notch and that
depletion of Tspan33 might be a potential target in T-ALL, a
rare yet aggressive form of lymphoblastic leukemia, which is
associated with activating mutations of Notch1 (Weng et al.,
2004; Dunn et al., 2010). Since CD9, CD81, and Tspan33 are also
regarded as regulators of ADAM10- andADAM17 (Arduise et al.,
2008; Gutierrez-Lopez et al., 2011; Haining et al., 2012; Jouannet
et al., 2016), the effects of potential therapeutics have to be studied
carefully.

By reducing Aβ- and increasing sAPPα-production the
upregulation of ADAM10 expression had beneficial effects in an
AD mouse model (Postina et al., 2004). ADAM10 is another
promising target for the treatment of AD, as demonstrated
by a recent study using the synthetic retinoid acitretin to
increase ADAM10 expression in AD patients (Endres et al.,
2014). Targeting specific members of the TspanC8s, which
enhance ADAM10 activity, but have different impact on its
substrate specificity, could possibly reduce side effects of a global
ADAM10 activation. Moreover, most of the TspanC8s are not
expressed in all cell-types (Dornier et al., 2012; Jouannet et al.,
2016), indicating that targeting these tetraspanins could regulate
ADAM10 activity in a cell-type specific manner. With regard
to AD, enhancing ADAM10 non-amyloidogenic APP processing
could be achieved by stimulation of Tspan12, Tspan15 and
Tspan33 using agonistic monoclonal antibodies, sLELs or small
molecular drugs that increase the promoter activity and protein
expression of these tetraspanins.

ADAM10 is also associated with tumor progression,
metastasis and inflammation by site-specific cleavage of several
adhesion molecules and cytokines. In this case a downregulation
of its proteolytic activity could be of therapeutic benefit
(Moss et al., 2008; Saftig and Reiss, 2011). ADAM10-mediated
N-cadherin shedding was associated with cancer cell migration

(Kohutek et al., 2009) promoting tumor progression and
metastasis. In this regard downregulation of Tspan5 and
Tspan15, which predominantly promote ADAM10-mediated
N-cadherin shedding (Noy et al., 2016), by antagonistic mAbs,
sLELs or RNAi, could be a therapeutic option. By sharing several
substrates with ADAM10, inhibition of ADAM17 is also effective
in different kinds of cancer and inflammatory disorders (Saftig
and Reiss, 2011). The expression of CD9 reduced ADAM17-
dependent TNFα shedding (Gutierrez-Lopez et al., 2011), which
is a main factor in inflammation and involved in rheumatoid
arthritis, psoriasis and inflammatory bowel disease.

To evaluate the full therapeutic potential of tetraspanins, the
exact mechanisms and consequences of potential tetraspanin-
directed therapeutics need to be further investigated. Due to
their multiple interaction partners and the complex organization
in TEMs, tetraspanins also have opposing functions, which
might depend on the cellular system. While downregulation
of Tspan33 in HeLa cells decreased Notch1 signaling (Dunn
et al., 2010), its overexpression in U2OS-N1 cells reduced Notch1
activity (Jouannet et al., 2016). Targeting such tetraspanins could
cause severe adverse effects such as cancer development and
inflammation. Moreover, redundancy of tetraspanin functions
and compensatory effects might decrease the clinical activity of
potential therapeutics.

CONCLUSION

In summary, tetraspanins are potent regulators of APP cleaving
enzymes. In particular, tetraspanins came into focus as cell-type
and substrate specific regulators of the α-secretases ADAM10 but
also of the γ-secretase complex.

Their specific functions and localization make tetraspanins an
interesting target for the treatment of AD and possibly other
diseases. However, first approaches trying to target tetraspanins
have not succeeded, which could be explained by their
functional redundancy. It will be necessary to better understand
how tetraspanins exactly work and how their redundancy is
regulated. Another central aspect is how tetraspanin expression
is regulated and if tetraspanin dysfunctions are associated with
the development of AD.
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