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The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the
plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding
of PrPC is associated with the transmissible spongiform encephalopathies (TSEs),
whereas its normal conformer serves as a receptor for oligomers of the β-amyloid
peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD).
PrPC is highly expressed in both the nervous and immune systems, as well as in
other organs, but its functions are controversial. Extensive experimental work disclosed
multiple physiological roles of PrPC at the molecular, cellular and systemic levels,
affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory
mechanisms, among others. Often each such process has been heralded as the
bona fide function of PrPC, despite restricted attention paid to a selected phenotypic
trait, associated with either modulation of gene expression or to the engagement of
PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to
bind several extracellular and transmembrane ligands, which are required to endow
that protein with the ability to play various roles in transmembrane signal transduction.
In addition, differing sets of those ligands are available in cell type- and context-
dependent scenarios. To account for such properties, we proposed that PrPC serves
as a dynamic platform for the assembly of signaling modules at the cell surface,
with widespread consequences for both physiology and behavior. The current review
advances the hypothesis that the biological function of the prion protein is that of a cell
surface scaffold protein, based on the striking similarities of its functional properties
with those of scaffold proteins involved in the organization of intracellular signal
transduction pathways. Those properties are: the ability to recruit spatially restricted sets
of binding molecules involved in specific signaling; mediation of the crosstalk of signaling
pathways; reciprocal allosteric regulation with binding partners; compartmentalized
responses; dependence of signaling properties upon posttranslational modification;
and stoichiometric requirements and/or oligomerization-dependent impact on signaling.
The scaffold concept may contribute to novel approaches to the development of
effective treatments to hitherto incurable neurodegenerative diseases, through informed
modulation of prion protein-ligand interactions.
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INTRODUCTION

The prion protein, often referred to as cellular prion protein
(PrPC) was discovered amid studies of transmissible spongiform
encephalopathies (TSEs), such as Creutzfeldt-Jakob Disease,
a low-prevalence, mostly sporadic, fatal and still incurable
neurodegenerative disease (Takada and Geschwind, 2013). Since
the 1980s evidence has accumulated that these conditions are
associated with the misfolding, aggregation, replication and
spread of abnormal conformers of PrPC, in line with the
concept of a protein-only, infectious particle which originated
the sobriquet prion for the anomalous conformer (Prusiner,
1984).

Whereas misfolding of PrPC is usually considered the major,
if not indispensable requirement for neurodegeneration in TSEs,
experimental work indicated that the normal PrPC conformer
serves as a binding site for diffusible Aß peptide oligomers (AßO)
in the course of Alzheimer’s Disease (AD; Um and Strittmatter,
2013; Laurén, 2014; Kostylev et al., 2015). The AßO are deemed
the major toxic species associated with AD, and accumulate as a
consequence of disregulated proteolytic cleavage of the amyloid
precursor protein (APP; Lambert et al., 1998; Walsh and Selkoe,
2007; Ferreira and Klein, 2011).

The involvement of PrPC in both TSEs and AD renewed and
amplified the interest in this protein, that holds important clues
towards the understanding of the pathogenesis, as well as the
discovery of novel therapies for both those neurodegenerative
diseases. Progress in this direction, however, suffers from
controversies over functional properties of the prion protein, the
corruption and/or loss of which are likely relevant to both TSEs
and AD. The current review compares functional properties of
PrPC with those of scaffold proteins involved in the organization
of intracellular signal transduction pathways, in support of the
hypothesis that the biological function of the prion protein is
that of a cell surface scaffold protein (Linden et al., 2008, 2012,
2017).

ASSOCIATION OF THE PRION PROTEIN
WITH BOTH TRANSMISSIBLE
SPONGIFORM ENCEPHALOPATHIES AND
ALZHEIMER’S DISEASE

The course of the various types of TSEs (also known as
Prion Diseases, henceforth abbreviated PrDis) involves the
progressive cooptation and misfolding of PrPC molecules from
an initial template of abnormal prions (Colby and Prusiner,
2011). Knowledge is still fragmentary as to the kinetics of
aggregation and progressive growth of prion oligomers, the
ensuing compaction of protease-resistant, insoluble deposits of
abnormal conformers of PrPC, as well as the conditions that
lead to their occasional organization as amyloid proper (Morris
et al., 2009; Eichner and Radford, 2011; Corsaro et al., 2012;
Wang et al., 2016). Also the purported toxic species are a
matter of debate (Bucciantini et al., 2002; Silveira et al., 2005;
Guerrero-Muñoz et al., 2014), as are hypotheses concerning the
requirement for ancillary pathogenic factors (Cordeiro and Silva,
2005; Manuelidis, 2013). That the presence of the prion protein

is required for the course of PrDis was, however, made clear
by early experiments, in which neither the spread of abnormal
conformers, nor the pathological hallmarks of PrDis were found
in the brains of PrPC-null mice infected with extracts of diseased
tissue (Büeler et al., 1993).

On the other hand, experimental studies showed that PrPC

may bind oligomers of Aß peptide (AßO) and mediate signal
transduction induced by the latter (Laurén et al., 2009; Nygaard
and Strittmatter, 2009; Chen et al., 2010; Barry et al., 2011;
Bate and Williams, 2011a; Larson et al., 2012; Ganzinger et al.,
2014; Laurén, 2014). Notably, however, the reputed role of
the prion protein as a receptor for AßO is not exclusive
(Balducci et al., 2010; Calella et al., 2010; Cissé et al., 2011;
Forloni and Balducci, 2011). Several other molecules interact
with AßO in both neurons and glial cells (Mucke and Selkoe,
2012; Kam et al., 2014; Ferreira et al., 2015; Yu and Ye,
2015). Importantly, the composition of the preparations of
AßO employed in distinct experimental studies is quite variable
(Mucke and Selkoe, 2012; Ferreira et al., 2015), and for example,
whereas the Frizzled receptor preferentially binds oligomers of
low molecular weight and/or monomeric Aß peptide, higher
molecular weight oligomers bind the prion protein (Magdesian
et al., 2008; Kostylev et al., 2015). This probably explains the
multitude of putative neurotoxic AßO receptors, albeit selective
oligomer-receptor interactions may legitimately represent the
progressive effects of the variegated and evolving Aß peptide
aggregates present in the brains of patients along the course of
AD (Amieva et al., 2005; Mucke and Selkoe, 2012; Villemagne
et al., 2013; Bernard et al., 2014; Alzheimer’s Association,
2015).

THE QUEST FOR THE FUNCTION OF THE
PRION PROTEIN

The production of the first Prnp-null mouse in the 1990s
(Büeler et al., 1992) triggered major advances in the field, as
it allowed proof that PrPC was required for progression of
PrDis in the mouse brain (Büeler et al., 1993). In turn, the
report that those mice developed normally and showed no
overt behavioral or immunological defects (Büeler et al., 1992),
depreciated somewhat the search for functional properties of
the normal conformer of PrPC. The acme of such dismissal
may well be a bold proposal that PrPC has no function, and
that its conserved amino acid sequence was naturally selected
as a consequence of the deadly effects of mutations (Prcina and
Kontsekova, 2011).

Still, the last 15 years witnessed growing interest in the
functional properties of PrPC, based on analyses of mice
devoid of its coding gene Prnp, transgenic animals harboring
various mutated or partially-deleted forms of PrPC, or Prnp-
overexpressing mice, as well as experimental cross-linking
of PrPC with antibodies, engagement with binding peptides
or glycosaminoglycans (GAGs), and interference with plasma
membrane lipids, eventually accompanied by simultaneous
activation of other membrane proteins (reviewed in Martins
et al., 2002; Westergard et al., 2007; Linden et al., 2008, 2012;
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Málaga-Trillo and Sempou, 2009; Martin-Lannerée et al., 2014;
Onodera et al., 2014).

It appears to be settled that the prion protein mediates
mechanisms of neuroprotection (Martins et al., 2010; Biasini
et al., 2012; Béland and Roucou, 2014). However, contributions
of PrPC have been reported also in immune responses, energy
metabolism, cancer, and stress conditions in general (Linden
et al., 2008; Li et al., 2011; Mariante et al., 2012; Martin-Lannerée
et al., 2014; Onodera et al., 2014; Bakkebø et al., 2015; Zeng et al.,
2015). Often, each such demonstration was heralded as the bona
fide physiological function of PrPC, claims of which range from
the systemic level, such as the consolidation of memory, through
cellular, such as cytoprotection, down to the subcellular level,
such as the homeostasis of copper (Table 1). Nonetheless, the
vast majority of the corresponding data, actually disclosed either
circumstantial contributions to cellular or systemic processes,
or phenotypes, in some cases specific to certain mouse strains,
rather than the unraveling of an unambiguous function at the
molecular level (Ashburner et al., 2000; Dessimoz and Škunca,
2017).

It is therefore not surprising that current literature pictures
the function of PrPC as ‘‘unknown’’, ‘‘unresolved’’, ‘‘uncertain’’,
‘‘obscure’’, ‘‘abstruse’’, or ‘‘elusive’’, among other demeaning
terms. Indeed, some of the alleged functions coexist with
their opposites. For example, despite substantial agreement
that PrPC supports cytoprotection (Liang et al., 2006; Martins
et al., 2010; Mehrpour and Codogno, 2010; Santos et al.,
2015), proapoptotic effects have also been reported (Paitel
et al., 2002; Solforosi et al., 2004; Zhang et al., 2006). Whereas
the binding of PrPC to the co-chaperone hop/STI1 triggers
neuroprotective signals (Zanata et al., 2002), and the expression
of PrPC is associated with enhanced synaptic function (Robinson
et al., 2014), binding of PrPC to AßO induces synaptotoxic

TABLE 1 | Keywords to processes at the molecular, cellular and system
levels, upon which presumptive functions have been ascribed to the prion
protein.

Level Process

Molecular Homeostasis of copper
Ion fluxes
Transport of metabolites
Redox homeostasis

Cellular Cell proliferation
Cell adhesion
Cell differentiation
Cell survival
Cell death
Neurite outgrowth
Myelin maintenance
Synaptic transmission
Synaptogenesis
β-amyloid toxicity
T cell activation

System Memory
Sleep
Embryogenesis
Inflammation
Stem cell renewal
Muscle physiology
Glucose homeostasis

signals (Nygaard and Strittmatter, 2009). Also, the prion protein
reportedly stimulates the proliferation of stem cells (Steele et al.,
2006; Santos et al., 2011), but may also shift the phenotype of
human embryonic stem cells from self-renewal to differentiation
(Lee and Baskakov, 2013).

Granted, methodological differences as well as distinct
experimental preparations might explain such contradictory
effects. However, the latter are also consistent with a strong cell
type- and context-dependency in the behavior of PrPC (Linden
et al., 2008; Steele et al., 2009). Such an abundance and variety of
functional properties is even more striking considering that the
vast majority of mature PrPC molecules are tethered to the outer
leaflet of the plasma membrane through a glycosyl-phosphatydil
inositol (GPI) anchor (Stahl et al., 1987), and therefore lack
an intracellular domain capable of transferring signals from
the extracellular environment to the intracellular milieu. Signal
transfer involving the prion protein must therefore be conveyed
by transmembrane molecules engaged either together with or
through PrPC. Analysis of such molecular complexes is required
to understand the roles of the prion protein in physiological
context, as well as its multiple interventions in both health and
disease.

Research on PrPC-binding partners was originally directed
at the identification of a so-called ‘‘protein X’’, participant
in the conversion of PrPC into the scrapie form (Yehiely
et al., 1997), or otherwise involved in the formation and
propagation of prions (Caughey and Baron, 2006). Over the
years a list of putative PrPC-binding partners grew out of various
approaches (Schmitt-Ulms et al., 2004; Aguzzi et al., 2008;
Linden et al., 2008). Several such interactions were validated
through compelling biochemical and cell biological procedures,
and in each individual case the results were interpreted as
evidence for the respective authors’ view of the long sought
fundamental function of PrPC. In contrast, a number of other
putative ligands still lack rigorous confirmation or, often, are
unlikely to pair with PrPC in physiological context due to
incongruous topologies (Aguzzi et al., 2008; Linden et al., 2008).
Nonetheless, even the current consensus around only a handful
of strictly validated binding partners allows for the conclusion
that PrPC is poised to participate in a variety of combinatorial,
multiprotein complexes at the cell surface (Martins et al.,
2002, 2010; Linden et al., 2008). The composition of such
molecular arrangements is expected to depend on both cell type
and context—the former determines the repertoire of binding
partners available at the cell surface, whereas the latter modulates
their stoichiometry and pattern of activation. The influence of
both these factors is further enriched by the rapid and continuous
trafficking of PrPC among distinct plasma membrane domains,
and the repeated cycles of endocytosis and resurfacing prior to
degradation of individual PrPC molecules (Harris, 2003; Prado
et al., 2004).

To account for the abundance of cell- and context-dependent,
PrPC-related roles and phenotypes, as well as the growing list of
validated binding partners, we advanced the hypothesis that PrPC

functions as a dynamic platform for the assembly of signaling
modules at the cell surface, analogous to the scaffold proteins
involved in the organization of intracellular signal transduction
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pathways (Linden et al., 2008, 2012). This theory is further
discussed here, in light of three decades of studies that led
to the robust characterization of intracellular scaffold proteins
(Langeberg and Scott, 2015).

THE PRION PROTEIN AS A CELL
SURFACE SCAFFOLD PROTEIN

The current concept of a natural scaffold protein is that of an
intracellular, multivalent molecule that binds several members
of a signaling pathway leading to a higher order, spatially
restricted ensemble, which optimizes downstream signal transfer
(Morrison and Davis, 2003; Good et al., 2011; Langeberg
and Scott, 2015). Early work suggested that the role of such
proteins was limited to the holding of intracellular enzymes
in close proximity (Faux and Scott, 1996), but subsequent
studies uncovered remarkable structural and functional plasticity
(Chen et al., 2005; Brennan et al., 2011; Pan et al., 2012;
Smith and Scott, 2013; Barbar and Nyarko, 2014), which
helps these molecular platforms regulate spatial, temporal and
kinetic properties of signal transduction pathways (Pan et al.,
2012). The following sections consider the parallels between
the fundamental properties of the prion protein and those of
intracellular scaffold proteins.

Assembly of Multicomponent Signaling
Modules
The basic property of a scaffold protein was originally seen as the
offer of a molecular architecture that organizes an intracellular
signaling cascade, through the binding of several sequential
members of a defined pathway (Pawson and Scott, 1997;
Whitmarsh and Davis, 1998). Consistent with this fundamental
property, defined sets of molecules among those known to
interact with the prion protein compose functional assemblies
with specific signaling properties (Figure 1).

Group I metabotropic receptors mGluR1 and mGluR5 belong
to a subclass of receptors for the ubiquitous neurotransmitter
glutamate (Ferraguti et al., 2008; Ribeiro et al., 2010). These
receptors, originally identified as potential ligands of the prion
protein in a PrPC-baited phage display screen and validated
through biochemical experiments (Beraldo et al., 2011), are
required to trigger intracellular phospholipase C (PLC)-mediated
calcium signals induced in hippocampal neurons by the binding
of PrPC to a peptide from the γ1 chain of the extracellular
matrix protein Laminin (Ln-γ1; Graner et al., 2000; Beraldo et al.,
2011). Signaling through this pathway induces neuritogenesis
in both isolated hippocampal neurons and PC12 cells (Beraldo
et al., 2011). In turn, the α7 type of nicotinic acetylcholine
receptor (α7nAChR) was also shown to bind PrPC (Beraldo et al.,
2010), and this interaction was required to trigger calcium influx,
the activation of both protein kinase A and Erk, and trophic
responses in isolated hippocampal neurons following the binding
of the cochaperone hop/STI1 to PrPC (Zanata et al., 2002; Lopes
et al., 2005; Beraldo et al., 2010).

Somewhat similar results were reported following
experiments done with dorsal root ganglion (DRG) neurons
(Santos et al., 2013), where both hop/STI1 and Ln-γ1 induced

FIGURE 1 | Assembly of multicomponent signaling modules. This and
the following figures depict multiprotein signaling modules assembled around
a scaffold protein (shown in red); the diagram to the left of the vertical bar
portrays an intracellular signaling module organized by a consensual scaffold
protein, and the scheme to the right represents a cell surface signaling module
scaffolded by the prion protein. Yellow arrows indicate output signals from the
scaffolded complex. Except where explicitly indicated, the form of each
drawing or their juxtaposition indicate binding only, and do not imply either
structural or spatial arrangements. (A) KSR2-scaffolded MAP kinase cascade
based on Kolch (2005). (B) PrPC-scaffolded, mGluR1/5-mediated, laminin
γ1-induced signaling module based on Beraldo et al. (2011).

calcium responses and axon elongation. Here again, the
responses triggered by Ln-γ1:PrPC interaction were mediated
by mGluR1/5. Distinct from hippocampal neurons, however,
signals triggered by hop/STI1:PrPC binding in DRG neurons
were traced to the TRPC family of transient calcium receptor
channels (Ramsey et al., 2006), rather than to α7nAChR (Santos
et al., 2013). It is not known whether the latter result is due
to direct PrPC:TRPC binding, or to an indirect cell surface
interaction, but the differing results reported in neurons either
from the central (CNS) or peripheral (PNS) nervous system
(Beraldo et al., 2010; Santos et al., 2013) are consistent with the
aforementioned cell- and context-dependence of PrPC-mediated
signal transduction. Importantly, evidence was shown for
DRG neurons, but not for hippocampal neurons, of synergism
between the hop/STI-1:PrPC and Ln-γ1:PrPC effects, as well as of
simultaneous occupation of binding sites in PrPC by both ligands
(Santos et al., 2013), supporting the view that PrPC scaffolds
multiple molecules at the cell surface, however depending on
both cell type and context.

Crosstalk of Scaffolded Signaling
Pathways
In contrast with the early idea of an exclusive intracellular
scaffold protein for each defined set of signaling partners,
subsequent work disclosed extensive crosstalk among scaffolded
signaling networks (Pan et al., 2012). Thus, scaffold proteins

Frontiers in Molecular Neuroscience | www.frontiersin.org 4 March 2017 | Volume 10 | Article 77

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Linden Biological Function of the Prion Protein

such as β-arrestins or axin may each engage multiple signaling
cascades (Luo and Lin, 2004; Dard and Peter, 2006). In turn,
distinct scaffold proteins may organize the same set of signaling
intermediates, such as the Raf-MEK-Erk kinase pathway (Pan
et al., 2012; Witzel et al., 2012). In addition, scaffold proteins
promote interactions of various signaling modules (Kolch, 2005;
Dhanasekaran et al., 2007; Pan et al., 2012), and are subject
to regulatory feedback control (Good et al., 2011; Witzel et al.,
2012).

Certain signaling modules based on PrPC display similar
features. Thus, PrPC binds several isoforms of the neural
cell adhesion molecule (NCAM; Schmitt-Ulms et al., 2001;
Slapšak et al., 2016), a cell surface-adhesion molecule of the
immunoglobulin superfamily. NCAMs are widely expressed
in many tissues and are especially abundant in the nervous
system, where they mediate both neural histogenesis and
plasticity through homophilic cell-cell interactions (Edelman,
1986; Rutishauser and Landmesser, 1996). Upon binding to
PrPC, NCAM is recruited to lipid rafts, which facilitates
interaction with the soluble Fyn protein kinase, thus leading to
intracellular signaling (Santuccione et al., 2005). In addition, the
extensive network of NCAM-binding cell adhesion molecules,
proteoglycans and extracellular matrix molecules (Nielsen et al.,
2010) adds an additional layer of complexity to PrPC-mediated
signaling components containing NCAM. Interestingly, at least
one NCAM binding partner, the cell adhesion molecule L1,
also binds laminin (Hall et al., 1997), which forms a loop that
may amplify the consequences of the PrPC-NCAM interaction.
Thus, it is expected that the engagement of PrPC by binding
to laminin entails cross-linked activation of multiple signaling
pathways, through the concurring transfer of transmembrane
signals through mGluR1/5, NCAM and L1 (Figure 2).

Importantly, the 37 kDa Laminin Receptor
Precursor/Laminin Receptor (LRP/LR) has been identified
as an additional binding partner of PrPC (Rieger et al.,
1997). Two sets of cognate binding sites were identified
in both partners, one of which required mediation of
heparan sulfate proteoglycan, and included a heparin-
binding site in PrPC (Hundt et al., 2001; Warner et al.,
2002). Interestingly, the binding site in LRP/LR for both
Laminin and PrPC is the same (Rieger et al., 1999), and the
binding sites in PrPC for both LRP/LR and Laminin partially
overlap (Linden et al., 2008), which implies an even more
intricate arrangement of PrPC-mediated, laminin-induced
signaling.

Allosteric Properties of Multiprotein
Signaling Modules
Mechanisms of regulation of scaffold proteins and their clients
include reciprocal allosteric changes (Pan et al., 2012; Langeberg
and Scott, 2015). For example, the scaffold protein Kinase
Suppressor of Ras (KSR), which regulates signal transduction
through MAPK pathways (Witzel et al., 2012), not only
allosterically modulates the activity of its client protein kinases
(Langeberg and Scott, 2015), but its own kinase activity is
unlocked upon binding to B-RAF, which facilitates downstream

FIGURE 2 | Crosstalk of multicomponent signaling modules. The
drawings represent multiple signaling modules that may be organized by either
an intracellular scaffold protein or the cell surface cellular prion protein PrPC.
(A) Intracellular protein Axin functions as a major scaffold for components of
synapses, which include interactive glutamate receptors of the NMDA and
AMPA types, bidirectional signaling by ephrin-B, and adhesive interactions
through N-cadherin, the latter of which modulates gene transcription through
β-catenin. Based on Wei et al. (2010) and Chen et al. (2013). (B) Expected
crosstalk of Laminin (Ln)-induced signals, transferred to the intracellular milieu
through PrPC-scaffolded mGluR1/5-, NCAM- and L1-mediated pathways.
Based on Nielsen et al. (2010) and Beraldo et al. (2011).

phosphorylation of MEK (Brennan et al., 2011; Hu et al.,
2011).

Reciprocal allosteric effects have also been shown in
experiments done with recombinant PrPC and some of its
binding partners. Thus, the binding of the co-chaperone
hop/STI1 to PrPC induced C-terminal compaction of the former,
detected by modeling through small-angle X-ray spectroscopy
(SAXS), as well as a slight loss of PrPC α-helical structure,
involving at least the PrPC

143–153 (H1) α-helix (Romano
et al., 2009; Figure 3). The latter domain of PrPC contains
binding sites for both LRP/LR and NCAM (Hundt et al.,
2001; Santuccione et al., 2005), which raised the hypothesis
that the prion protein may compute signaling triggered
by multiple ligands. Interestingly, whereas a PrPC-binding
hop/STI1 peptide mimicked the full hop/STI1 protein in
the induction of several PrPC-mediated responses in neurons
(Zanata et al., 2002; Lopes et al., 2005), the proliferative effect
of hop/STI1 upon glioblastoma cells also depended on the
hop/STI1:PrPC interaction, but was not induced by the peptide
alone (Erlich et al., 2007; Linden et al., 2012). The latter effect
is likely associated with the reciprocal allosteric modulation
between hop/STI1 and PrPC, and a higher order interaction may
involve one or more additional hop/STI1 partners (Linden et al.,
2012).

Also consistent with allosteric control of cell surface
complexes, is the evidence that a variety of human TSE-related
point mutations along the globular domain of PrPC both
enhanced the binding of GAGs to the far N-terminal of PrPC,
as well as unlocked a normally hidden GAG-binding site midway
between differing mutations (Yin et al., 2007). These results may
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FIGURE 3 | Allosteric properties of signaling modules. In this figure,
asterisks indicate allosteric events. (A) Binding of Raf to scaffold protein
KSR2 leads to structural rearrangement in the MEK1 kinase and ensuing
activation of Erk. Based on Brennan et al. (2011) and Langeberg and Scott
(2015). This simplified diagram does not include dimerization events also
indicated by Brennan et al. (2011). (B) Reciprocal allosteric changes induced
by the binding of hop/STI1 to PrPC. Compaction of hop/STI1 and structural
remodeling within at least the PrPC

143–153 α-helix may engage the
transmembrane signaling proteins LRP/LR and NCAM, both of which bind
that domain of PrPC, but the binding domains involved in the
PrPC:nAChRα7 interaction are still unknown. Based on Romano et al. (2009)
and Linden et al. (2012).

signify an impact on signaling properties of LRP/LR, since the
interaction of this receptor with one of its target sites in PrPC

depends on mediation by a heparan sulfate proteoglycan (Hundt
et al., 2001). It should be noted that although PrPC mutations
examined in this context were all disease-associated (Yin et al.,
2007), several of those correspond to aminoacid residues located
either within or close to the binding sites of functionally relevant
PrPC ligands such as hop/STI1 (Zanata et al., 2002) or mGluR5
(Haas et al., 2014).

Furthermore, an antibody that targets residues in the α1 and
α3 helices of the C-terminal globular domain of PrPC resulted
in severe toxicity dependent on the latter’s N-terminal (Sonati
et al., 2013). This study pointed to remarkable long-distance
interactions along the full extent of PrPC. Interestingly, although
the set of residues of PrPC that underwent chemical shifts
detectable through nuclear magnetic resonance upon antibody
binding did not include the N-terminal, they overlapped
extensively with the domains involved in the interaction of
the prion protein with both Laminin and NCAM (Gauczynski
et al., 2001; Santuccione et al., 2005; Sonati et al., 2013).
More recent work showed that an engineered GPI-anchored,
N-terminal only PrPC molecule (PrP∆141–225, dubbed FTgpi)
mimicked the effect of the toxic antibody. Thus, FTgpi bound
the endoplasmic reticulum (ER) chaperone Immunoglobulin
heavy chain-Binding Protein/Glucose-Regulated Protein 78
(Bip/GRP78), and such binding was followed by sustained
ER stress, reduced FTgpi protein/mRNA ratio due to rapid
proteolysis, as well as activation of the Protein Kinase R-like ER
Kinase (PERK), and cell death (Dametto et al., 2015). Differing,
however, from these results, the previous study from the same

group did not report any change in the content of full length
PrPC upon binding of the toxic antibody (Sonati et al., 2013).
Thus, it is not clear whether the toxicity of the latter engages
the same mechanisms that link FTgpi with fatal ER stress, or
alternatively, depend on interactions of the N-terminal of PrPC

at the cell surface. Interestingly, other than its canonical location
with the ER, Bip/GRP78 is also found both at the cell surface and
in the extracellular medium upon cellular stress (Delpino and
Castelli, 2002; Corrigall et al., 2004; Marín-Briggiler et al., 2010;
Panayi and Corrigall, 2014; Tsai et al., 2015), therefore potentially
subject to scaffolding by an allosterically activated N-terminal
domain of PrPC.

Compartmentalization of Scaffolded
Signaling Modules
Besides allosteric modulation, the activities of intracellular
scaffold proteins are subject to robust regulation by several
other mechanisms (Morrison and Davis, 2003; Dard and Peter,
2006). Distribution to selected subcellular domains is required
for the spatial and temporal restriction of the activity of signaling
modules, as exemplified by the nucleocytoplasmic shuttling of
both the yeast Ste5p and mammalian β-arrestin (Mahanty et al.,
1999; Wang et al., 2003), or the tethering of KSR to the plasma
membrane (Zhou et al., 2002; Ory and Morrison, 2004; Koveal
et al., 2012).

Effects induced by hop/STI1:PrPC interaction provide an
example of compartmentalization of PrPC-mediated signaling
(Figure 4). The binding of hop/STI1 to PrPC in CNS neurons
engages the cAMP-PKA, as well as the Erk signaling pathways
(Chiarini et al., 2002; Zanata et al., 2002). Both responses
were blocked either by α-bungarotoxin, a specific inhibitor

FIGURE 4 | Compartmentalization of scaffolded signals. (A) Sets of
AKAP-scaffolded client proteins located in distinct compartments lead to
distinct intracellular signals mediated by cAMP-PKA activity or calcium fluxes.
Modified from Fu et al. (2013). (B) Binding of hop/STI1 to PrPC leads to
endocytosis-independent signaling through cAMP, and
endocytosis-dependent Erk signaling. The PrPC-binding clients involved in
each case are yet to be determined. Based on Americo et al. (2007) and
Caetano et al. (2008).
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of the α7 nicotinic cholinergic receptor, or by the removal
of extracellular calcium, which together with evidence of the
binding of PrPC to α7nAChR, implicated this membrane
receptor in the PrPC-mediated cell responses to hop/STI1
(Beraldo et al., 2010). Nevertheless, the activation of Erk induced
by hop/STI1 was abolished by prevention of PrPC endocytosis,
while that of the cAMP-PKA pathway persisted (Americo et al.,
2007; Caetano et al., 2008). It is likely that the latter results reflect
changes in PrPC-ligand interactions as the prion protein moves
along distinct compartments. One hypothesis to explain these
results stems from the changing physicochemical environment
along the endocytic pathway. Thus, the concentration of calcium
collected via pinocytosis to the lumen of endosomes undergoes
an initial rapid decrease compared with the extracellular
medium, due to both acidification and the activity of various
transporters (Gerasimenko et al., 1998). This strongly affects the
binding of several plasma membrane receptors to their cognate
ligands (Andersen and Moestrup, 2014). Also, the progressive
acidification along the endocytic pathway is, by itself, expected
to promote changes in structure and thermodynamic stability
of the prion protein (Gu et al., 2003; Zahn, 2003; Chiang et al.,
2008; Biljan et al., 2012; Kovǎc et al., 2016), which in combination
with changes in luminal calcium, may modulate the binding of
PrPC ligands. Further work directed at the characterization of
the dynamic behavior of PrPC ligands, in particular in response
to Ca2+ levels, is therefore warranted to clarify mechanisms
that regulate the compartmentalization of PrPC-mediated signal
transduction.

In addition to the PrPC-ligand interactions in cis described
above, other studies of both soluble PrPC and its fragments
also typify compartmentalized signaling. Thus, various soluble
recombinant forms of PrPC bound to and underwent partial
LRP/LR-dependent internalization (Gauczynski et al., 2001),
protected human neurons from Bax-mediated apoptosis
(Bounhar et al., 2001), induced neurite outgrowth and/or
synaptogenesis in cultured cerebellar and hippocampal neurons
(Chen et al., 2003; Kanaani et al., 2005), and activated monocytes
(Krebs et al., 2006; Jeon et al., 2013) and natural killer cells
(Seong et al., 2015). Such effects are contingent upon the
activation of a variety of intracellular signaling molecules,
including PI3-kinase, Erk, cAMP/PKA or PKC (for review see
Linden et al., 2008). Although those results were obtained with
recombinant PrPC, they are consistent with physiological effects
of PrPC in trans, either through the release of PrP-containing
microvesicles (Porto-Carreiro et al., 2005; Robertson et al., 2006;
Vella et al., 2008; Wang et al., 2011; Hajj et al., 2013; Ritchie
et al., 2013; Berrone et al., 2015; Guo et al., 2015), or as soluble
fragments derived from endoproteolysis of PrPC (Béland et al.,
2012; Roucou, 2014).

An extended view of PrPC-based interactions in trans includes
the recently disclosed role of the prion protein upon myelin
homeostasis, through the specific interaction of its N-terminal
flexible tail with the Adhesion G protein-coupled receptor
Gpr126 (Adgrg6; Küffer et al., 2016 and see below). Also recently,
evidence was shown that a recombinant, soluble PrPC promoted
growth cone (GC) motility and extension of neurites, through
in trans interactions that depend on cell surface PrPC as well

as NCAM, both of which are recruited to common sites at the
GC plasma membrane, and involve the activation of several
downstream signaling pathways (Amin et al., 2016). The latter
are analogous to effects triggered by other extracellular ligands
of the prion protein, and suggest a physiological role of either
soluble or microvesicle-associated PrPC upon neurite outgrowth.
A notable requirement for the reported effect in trans was the
integrity of the soluble PrPC molecule (Amin et al., 2016), which
is consistent with long-range allosteric interactions throughout
the full extent of the prion protein (Yao et al., 2003; Yin et al.,
2007; Christen et al., 2009; Thakur et al., 2011; Sonati et al.,
2013; Spevacek et al., 2013). It is, however, not yet known
whether the effects of the recombinant PrPC in physiological
context may require its location at the surface of extracellular
microvesicles.

Posttranslational Regulation of Scaffolding
Properties
Functional regulation of intracellular scaffold proteins also
relies upon phosphorylation (Ory and Morrison, 2004; Good
et al., 2011; Tacchelly-Benites et al., 2013; Langeberg and
Scott, 2015) or ubiquitination (Shenoy et al., 2001). Neither
has been so far described for the prion protein, but other
posttranslational modifications of native PrPC molecules affect
signaling properties.

The GPI anchor was reported as required for the formation
of cell-surface PrPC dimers, which in turn were needed for
PrPC-mediated protection from cellular stress (Rambold et al.,
2008). Consistent with a previous theoretical model (Warwicker,
2000), the short internal hydrophobic domain PrPC

113–133
was identified as the dimerization domain (Rambold et al.,
2008; Figure 5). This finding strengthens the notion that
posttranslational modifications impart PrPC properties relevant
for signal transduction. The GPI anchor is also critical for the
trafficking of PrPC along distinct plasma membrane domains
(Harris, 2003; Prado et al., 2004), which underlies the above-
mentioned dependence of downstream signals on endocytosis of
PrPC, and in particular for the targeting of the prion protein to
lipid rafts (Morris et al., 2006; Taylor and Hooper, 2006; Puig
et al., 2014). The latter explains, for example, the recruitment
of NCAM towards the preferential location of its intracellular
signaling partner, the soluble Fyn kinase (Santuccione et al.,
2005), as well as the association of PrPC with reggie/flotillins
(Stuermer and Plattner, 2005), which drives both downstream
MAP kinase and calcium signals (Stuermer et al., 2004). Recent
work also attributes to the GPI anchor an important role in PrPC

processing and the shedding of bioactive fragments (Puig et al.,
2014).

Furthermore, the composition of the GPI anchor was shown
to regulate both the lipid content of membrane microdomains
and the localization of PrPC therein (Bate and Williams, 2011b;
Bate et al., 2016), with concurring changes in synaptotoxic
signaling triggered by cross-linking of PrPC molecules with either
AßO or antibodies, and mediated by phospholipase A2 (PLA2;
West et al., 2015; Bate et al., 2016). Interestingly, PLA2 has
also been identified as a mediator of the release of the APP
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FIGURE 5 | Posttranslational regulation of scaffolding properties.
(A) Dephosphorylation of the scaffold protein Axin by the PP1-I2 phosphatase
complex is required for β-catenin-induced gene expression in response to
Frizzled-mediated Wnt signaling. Adapted from Tacchelly-Benites et al. (2013).
(B) Tetethering of PrPC through the glycosyl-phosphatydil inositol (GPI) anchor,
but not through an heterologous transmembrane domain, was needed for
protection of neuroblastoma cell lines from cell death induced by the
excitotoxin kainate. In this context, it was shown that stress protection
depended on dimerization of PrPC (short, curved black lines), but additional
molecules required for the transfer of cytoprotective signals have not been
identified. Based on Rambold et al. (2008).

ectodomain induced by activation of the PrPC ligand mGluR1
(Nitsch et al., 1997). These data are consistent with an important,
selective role of the GPI anchor upon the interaction of PrPC with
its client proteins.

Another critical postranslational modification of PrPC is the
N-linked glycosylation of either one or both target asparagine
residues (Turk et al., 1988; Rudd et al., 2002; Lawson et al.,
2005). Comparative analysis of PrPC either from the brain
or from peripheral blood mononuclear cells (PBMC), showed
that the relative content of the unglycosylated and glycosylated
forms differed between the two samples (Li et al., 2001).
Distinct patterns of sialylation have also been described for PrPC

from either brain or spleen (Baskakov and Katorcha, 2016),
and possible roles of sialylation upon functional properties of
PrPC were discussed (Baskakov and Katorcha, 2016). Other
studies indicated that posttranslational modifications produce a
collection of differing glycosylated forms of PrPC (Pan et al.,
2002), which vary across distinct brain regions (Kuczius et al.,
2007b) and change with aging (Goh et al., 2007). Heterogeneous
glycosylation is likely to impart selectivity of ligand binding,
as suggested both by differential binding to antibodies (Li
et al., 2001; Kuczius et al., 2007a) and metal ions (Moudjou
et al., 2007), as well as by the differing outcomes of peripheral
inoculation of TSE upon experimental prion disease in mice
expressing distinct glycosylated forms of PrPC (Cancellotti et al.,
2010). Indeed, a coimmunoprecipitation experiment in our lab
suggested that interaction of PrPC with the purinergic receptor
P2X4R depends on the pattern of glycosylation of PrPC (Carneiro
et al., 2016).

Stoichiometry and Oligomerization in
Scaffold-Client Signaling Modules
In early attempts to model the behavior of scaffold proteins,
attention was focused on their binding selectivity and their
ensuing ability to spatially concentrate sequential components
of intracellular signaling modules (Eungdamrong and Iyengar,
2004). Such studies gradually evolved to the matter of
stoichiometry of multiprotein assemblies, and the effects of
varying concentrations of either the scaffold or their client
proteins (Bray and Lay, 1997; Bray, 1998; Levchenko et al., 2000;
Heinrich et al., 2002; Locasale et al., 2007; Kholodenko et al.,
2010). Pertinent to the matter of stoichiometry, the effects of
certain scaffold proteins upon signaling efficacy were traced to
their oligomerization (Yablonski et al., 1996; Elion, 2001; Ren
et al., 2005; Chen et al., 2008; Gold et al., 2011; Abel et al., 2015;
Liu et al., 2016).

A major challenge to a deeper understanding of the
scaffolding function is, however, the scarcity of data regarding
both kinetic parameters and relative concentrations of signal
transducers in confined intracellular domains, which are
required for the full understanding of signaling dynamics
(Langeberg and Scott, 2015). Still, the stoichiometries of certain
scaffold-client complexes have been unraveled. For example, the
scaffold protein AKAP79 forms a 2:2:2:2 complex with its client
proteins calmodulin, calcineurin and a PKA regulatory subunit
(Gold et al., 2011), whereas AKAP18γ forms a 1:2 complex
with a PKA regulatory subunit (Smith et al., 2013), and the
NOD-like receptor NLRP3 was proposed to form a multimeric,
equimolar inflammasome with Caspase-1 through the adaptor
protein Apoptosis-associated Speck-like protein containing a
CARD (ASC; Lechtenberg et al., 2014). An especially complex
case is the postsynaptic density (PSD), which contains large
numbers of proteins, including neurotransmitter receptors,
adaptor and effector proteins organized in aggregates visible
through conventional transmission electron microscopy (Harris
and Weinberg, 2012). Importantly, certain differences were
reported among the relative concentrations of PSD components
in differing areas of the CNS (Cheng et al., 2006; Sheng and
Hoogenraad, 2007; Lowenthal et al., 2015; Patrizio and Specht,
2016).

So far, growing interest in ligands of the prion protein
has yet to lead to direct analysis of the stoichiometry of the
PrPC-based signaling modules, and this is, at this time, the
least understood among the features discussed herein with
respect to intracellular scaffold proteins. Nevertheless, many
studies have compared either the phenotypes of mice, or the
properties of cells harboring differing contents of PrPC. For
example, by comparing Prnp-KO, WT and Prnp-overexpressing
mice subject to ischemic injury to the brain, it was reported
both that PrPC accumulates at the penumbra of hypoxic
damage, and that lack of PrPC is associated with aggravated
ischemic injury (McLennan et al., 2004; Weise et al., 2004,
2006; Spudich et al., 2005; Mitsios et al., 2007). Transduction of
the Prnp gene carried by a recombinant viral vector improved
neurological behavior and reduced the volume of cerebral
infarction in a rat model of cerebral ischemia (Shyu et al.,
2005).
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The results above suggest a dose-dependent neuroprotective
effect of PrPC against hypoxic-ischemic insults, but its
mechanisms are unclear. Enhanced sensitivity to ischemic
damage in the absence of PrPC was originally attributed
to an impairment of the antiapoptotic phosphatidylinositol
3-kinase/Akt pathway, resulting in enhanced postischemic
activation of caspase-3 (Weise et al., 2006). However, mice
harboring an increased content of PrPC displayed significantly
smaller infarct volumes than wild type, accompanied by a
reduction in early postischemic Erk1/2 phosphorylation, whereas
no difference was detected in postischemic phosphorylation of
Akt (Weise et al., 2008). Recently, the same group reported an
increased content of lactate dehydrogenase (LDH), as well as
evidence of physical interaction of LDH with PrPC, and suggested
that LDH may mediate PrPC-dependent neuroprotection
under low oxygen conditions, although the apparent physical
LDH:PrPC interaction was localized to the cytoplasm (Ramljak
et al., 2015). Still, in those reports no cell surface partners of PrPC

have been associated with the altered intracellular signals, which
preclude further consideration of stoichiometry.

Other studies showed that hop/STI1 haploinsufficient mice
were more vulnerable to ischemic insult and their astrocytes
secreted lower amounts of the cochaperone than wildtype.
Significantly, PrPC mediated prevention of ischemic insult by
extracellular hop/STI1 (Beraldo et al., 2013). Since neurotrophic
signals induced by hop/STI1:PrPC interaction in central neurons
depend on α7nAChR (Beraldo et al., 2010), and the latter
has been implicated in neuronal resistance induced by either
nicotine or melatonin against hypoxia (Hejmadi et al., 2003;
Parada et al., 2014), the hop/STI1:PrPC:α7nAChR signaling
complex may be a major player in neuroprotection against
ischemic insults. Interestingly, examples of sexually dimorphic,
ischemic brain injury mediated by both hormonal and non
hormonal mechanisms (Liu et al., 2009; Herson and Hurn,
2010; Manwani and McCullough, 2011; Fairbanks et al., 2012;
Herson et al., 2013; Zuo et al., 2013; Sanches et al., 2015)
include the sensitivity of hippocampal neurons to ischemia in
PrPC-null mice (Sakurai-Yamashita et al., 2005), and evidence
has been reported of both sexually-dimorphic α-bungarotoxin
binding (Arimatsu et al., 1981; Arimatsu and Seto, 1982) as
well as changed content of α7nAChR following prenatal stress
(Schulz et al., 2013). These data warrant a critical examination
of the stoichiometry of hop/STI1:PrPC:α7nAChR complexes in
the context of sensitivity to ischemic insults, especially in view
of the variegated homo- and/or hetero-multimeric, cholinergic
receptors that may assembled around α7nAChR subunits, as
indicated by experimental work with various cell types (Bertrand
et al., 2015; Wu et al., 2016).

In contrast with the reports above of an unimodal
dose-response relationship between cell responses and
the content of PrPC, differing results were reported as
to the sensitivity to ischemic damage of transgenic Prnp-
overexpressing mice (Spudich et al., 2005; Weise et al., 2006),
and several experimental models failed to conform to a regular
dose-dependent effect among mice harboring variable amounts
of PrPC (Coulpier et al., 2006; Jouvin-Marche et al., 2006;
Terra-Granado et al., 2007; Lobão-Soares et al., 2008; Steele

et al., 2009; Rial et al., 2012; Alfaidy et al., 2013). In several such
cases, it appears that either up- or downregulation of PrPC may
induce cellular dysfunction, and again the effect depends on
both cell type and context. For example, the recently described
dose-response curve of the neuritogenic effect of a soluble
recombinant PrPC upon GCs of hippocampal neurons was
clearly biphasic (Amin et al., 2016). Results as such strengthen
the need for studies of the stoichiometry of PrPC-ligand
complexes.

In a distinct experimental setting, we showed that the
expression of the the Prnp gene, as well as the content of
PrPC at the cell surface of mouse neutrophils, are selectively
augmented by both inflammatory and behavioral stress, as
a response mediated by a combination of serum TGFβ and
glucocorticoid (Mariante et al., 2012). The increased content of
PrPC endowed neutrophils with enhanced peroxide-dependent
cytotoxicity toward endothelial cells (Figure 6), the mechanism
of which is currently unknown. Studies of the stoichiometry of
PrPC-dependent signaling complexes in immune cells may thus
contribute to the understanding of neurodegenerative events
(Beckman and Linden, 2016), in particular those mediated
by neutrophils which have recently been implicated in the
pathogenesis of AD (Zenaro et al., 2015).

In parallel, several lines of evidence indicate that clustering or
oligomerization of native PrPC affect normal signal transduction.
Various cellular responses were induced by cross-linking of
PrPC with antibodies (Mouillet-Richard et al., 2000; Hugel
et al., 2004; Solforosi et al., 2004; Pantera et al., 2009; Tomasi,
2010; Shi et al., 2013), as for example, the association of PrPC

FIGURE 6 | Stoichiometry and/or oligomerization in scaffold-client
signaling modules. (A) A diagram of the pathogen-associated molecular
pattern (PAMP)-activated, NLRP3-scaffolded inflammasome, formed by an
equimolar associationof the latter with ASC and caspase-1. The drawing
depicts a pentameric arrangement, but the actual stoichiometry is still
unknown. Adapted from Lechtenberg et al. (2014). (B) The drawing represents
the effect of an increased content of PrPC upon the killing of primary bovine
aortic endothelial cells (BAEC) by neutrophils. Either inflammatory of behavioral
stress induced increased gene expression and a higher content of PrPC at the
surface of mouse neutrophils, which was associated with increased neutrophil
cytotoxicity towards BAEC (dark profiles at the top). Adapted from Mariante
et al. (2012). Effectors of cytotoxicity are still unknown.
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with microdomain-forming reggie/flotillin proteins, followed
by recruitment of other transmembrane proteins and soluble
intracellular protein kinases, leading to downstream signaling
(Stuermer et al., 2004).

Native prion protein may likewise form dimers (Priola et al.,
1995; Meyer et al., 2000), and in contrast with an earlier report
that a recombinant protein failed to exhibit in vitro monomer-
dimer equilibrium (Meyer et al., 2000), recombinant PrPC was
shown to dimerize in solution at room temperature and upon
crystalization, through domain swapping and rearrangement
of disulfide bonds (Knaus et al., 2001). Copper ions at
substoichiometric concentrations also induced self-association
of PrPC molecules in vitro, without detectable conformational
changes in the globular domain (Wells et al., 2006). Furthermore,
adding to the above mentioned stress-protection effect of dimeric
PrPC in cis (Rambold et al., 2008), homophilic interaction of PrPC

molecules in trans were shown to impart cell adhesion properties
particularly important for embryonic development in zebrafish
(Málaga-Trillo et al., 2009).

Due to the evidence that the infectivity of abnormal
conformers of the prion protein is associated with aggregation
(Silveira et al., 2005), functional characterization of PrPC

oligomers have usually been limited to their putative role as the
basic components of pathogenic prions (Masel et al., 2005; Pan
et al., 2005; Zhang et al., 2007; Gerber et al., 2008; Kaimann
et al., 2008; Lee et al., 2010; Hafner-Bratkovǐc and Jerala,
2011; Hafner-Bratkovǐc et al., 2011; Apostol et al., 2013; Huang
et al., 2013; Yu et al., 2016). Nonetheless, there is growing
interest in physiological consequences of PrPC dimerization,
such as their trafficking to the cell surface, endoproteolysis and
shedding of soluble fragments with cytoprotective activity (Yusa
et al., 2012; Roucou, 2014), all of which may be subject to
stoichiometry-dependent multicomponent assemblies of PrPC

and its ligands. This subject clearly needs further attention to
allow better understanding of PrPC-dependent cell signaling and
its consequences upon physiology and behavior.

CORRUPTION OF PRION
PROTEIN-MEDIATED SIGNALING AND
THE SCAFFOLD HYPOTHESIS IN
NEUROPATHOLOGY

Mutations and polymorphisms in several members of the AKAP
family of intracellular scaffold proteins, such as AKAP12, Ezrin
and Merlin have been linked to hyperplastic syndromes and
cancer (Poppinga et al., 2014; Han et al., 2015; Petrilli and
Fernández-Valle, 2016), while other family members, such as
Myospryn and AKAP9, have been associated with skeletal muscle
and cardiovascular diseases (Tsoupri and Capetanaki, 2013;
Diviani et al., 2016). In particular, a targeted mutation analysis
has linked the Long-QT Syndrome (LQTS) to a single missense
mutation in AKAP9, which disrupts its binding to a slowly
activating cardiac potassium channel (IKs), thus preventing
proper cAMP-dependent regulation of the latter, and leading
to delayed repolarization of the ventricular action potential
(Chen et al., 2007). The latter is a compelling example of

the specific requirement of the scaffold-client interaction for
maintaining a defined physiological condition. Robust, albeit
less precise, genotype-phenotype correlations were inferred for
other intracellular scaffold proteins and provisionally traced to
scaffold-client interactions, such as the association of severe
obesity with rare variants of KSR2, a member of the KSR
family (Pearce et al., 2013), and that of certain transcripts of
the dystrophin gene with cognitive impairment in a subset
of muscular distrophy patients (Daoud et al., 2009; Desguerre
et al., 2009; Taylor et al., 2010; Constantin, 2014; Molza et al.,
2015). Further work is, however, warranted to reach a similar
mechanistic understanding of scaffold corruption associated with
mutations in either KSR or Dystrophin, as is the case of the
AKAP9:IKs interaction associated with LQTS.

An analogous hypothesis of scaffold corruption applies to
PrPC. Thus, the group I metabotropic glutamate receptor
mGluR5 reportedly cooperates with PrPC for both AßO binding
and toxicity Um and Strittmatter, 2013; Hu et al., 2014).
AßO induced cell-surface clustering of PrPC (Caetano et al.,
2011), while an mGluR5-selective negative allosteric modulator
had a protective effect against both cognitive loss and the
accumulation of neuropathological Aß oligomers and plaques
in a transgenic AD mouse model (Hamilton et al., 2016).
These results are consistent with the evidence for a pathogenic
role of the PrPC:mGluR5 interaction, which may be linked to
disruption of PrPC:mGluR5 stoichiometry. In addition, recent
studies showed that the co-chaperone hop/STI1 has protective
effects upon AßO toxicity, through direct interaction with
the PrPC-α7nAChR complex (Ostapchenko et al., 2013), and
evidence has been reported of a crosstalk between intracellular
signaling induced by either AβO or the Ln-γ1 peptide through
the PrPC-mGluR5 complex in both primary neuron cultures and
cell lines (Beraldo et al., 2016). These data implicate at least
two extracellular and two transmembrane ligands of PrPC in
a cell-surface complex involved in both neurodegenerative and
neuroprotective signaling associated with AD.

On the other hand, the recently disclosed interaction
in trans of the N-terminal flexible tail of PrPC with the
Adhesion G protein-coupled receptor Gpr126 was shown to
favor myelination of peripheral axons through an increase in
the levels of cAMP in Schwann cells, which likely explains the
demyelinating polyneuropathy that affects aging PrPC-null mice
(Küffer et al., 2016). Whereas possible roles of other PrPC-
interacting molecules have not been examined, it is noteworthy
that another known ligand of Gpr126 likewise involved in
myelin homeostasis is Laminin-211 (Petersen et al., 2015), which
bears the PrPC-interacting Laminin γ1 chain (Graner et al.,
2000; Beraldo et al., 2011). These data raise the hypothesis of
the operation of a signaling complex involving PrPC-laminin
211 binding in cis, and both PrPC- and Laminin 211-Gpr126
in trans, in both the physiological control of peripheral nerve
myelination and in demyelination conditions.

The prevailing view that TSEs are caused by an exclusive
gain-of-toxic function of the scrapie form of the prion protein,
has often been challenged by an alternative view that loss-of-
function of PrPC is likely to play a role in such diseases (for review
see Leighton and Allison, 2016). The latter has historically been
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dismissed due to the lack of major neurological signs in PrPC-
null mice (Büeler et al., 1992). Even the evidence of preclinical
downregulation of PrPC in several disease models was discussed
basically as a possible neuroprotective event, on the grounds that
it would provide less substrate for conformational conversion
and thus for disease progress (Mays et al., 2014). In fact, gain- and
loss-of-function components are not mutually exclusive, and the
abundant evidence for neuroprotective effects of PrPC (Zamponi
and Stys, 2009; Martins et al., 2010; Biasini et al., 2012; Onodera
et al., 2014; Zeng et al., 2015) concurs with the hypothesis
that the early and robust loss of PrPC may be involved in the
pathogenesis of TSEs. In turn, whereas PrPC has been identified
as a pathogenic receptor for AβO in models of AD, binding of the
prion protein to hop/STI1 also mediates neuroprotection against
AβO neurotoxicity (Ostapchenko et al., 2013), which reinforce
the interest in physiological properties of PrPC.

CONCLUSION AND FURTHER
DIRECTIONS

So far, the reported physiological roles of PrPC cannot be
reduced to any intrinsic function beyond its ability to bind
other molecules required to either overcome the lack of a
transmembrane domain in the dominant form of PrPC, or
to bridge in trans cell-cell interaction. Still, most attempts at
understanding the Janus-faced behavior of the prion protein in
various circumstances have led investigators to concentrate on
effects of either the engagement or ablation of PrPC, or else to
address single PrPC partners. This has usually led to equating the
elusive physiological function of PrPC to its role in a particular
process or phenotype. Contrary to such a restricted approach,
current evidence supports the hypothesis that the functional
properties of PrPC are based on its ability to serve as a hub
for a large variety of multicomponent signaling modules, with
widespread consequences for both physiology and pathology.

The data reviewed above highlight a striking resemblance of
both the behavior of PrPC and that of intracellular signaling
scaffold proteins. Similar to the latter, the prion protein
displays the following properties (Figures 1–6): (a) ability to
recruit spatially restricted sets of binding molecules involved
in specific signaling; (b) mediation of the crosstalk of
signaling pathways; (c) reciprocal allosteric regulation with
its partners; (d) compartmentalized responses; (e) dependence
of signaling properties upon posttranslational modification;
and (f) stoichiometric requirements and/or oligomerization-

dependent impact on PrPC-dependent effects. These features,
added to the widely recognized pleiotropism of PrPC, are
consistent with our view that the prion protein functions as a
scaffold protein, which helps the assembly of various cell type-
and context-specific, multicomponent signaling modules at the
cell surface (Linden et al., 2008, 2012, 2017).

The recognition of PrPC as a scaffold protein appears to be
the closest to philosophical concepts of biological function, which
imply an unambiguous, unconditional, generalized property
of a biological unit (Cummins, 1975; Griffiths, 1993; Diaz-
Herrera, 2006; Seringhaus and Gerstein, 2008). Rather than
concentrating on any selected, individual binding partner of
PrPC, such a concept recommends a wider, systemic approach
to the variety of signaling modules scaffolded by the prion
protein in either physiological or pathophysiological contexts.
In view of the failure of several clinical trials directed at
either the TSEs or AD (Stewart et al., 2008; Gauthier et al.,
2016), this approach may help devise a novel rationale to the
development of effective therapeutic options for such refractory
neurodegenerative conditions.
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