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Astrocytes are commonly involved in negative responses through their hyperreactivity
and glial scar formation in excitotoxic and/or mechanical injuries. But, astrocytes
are also specialized glial cells of the nervous system that perform multiple
homeostatic functions for the survival and maintenance of the neurovascular unit.
Astrocytes have neuroprotective, angiogenic, immunomodulatory, neurogenic, and
antioxidant properties and modulate synaptic function. This makes them excellent
candidates as a source of neuroprotection and neurorestoration in tissues affected
by ischemia/reperfusion, when some of their deregulated genes can be controlled.
Therefore, this review analyzes pro-survival responses of astrocytes that would allow
their use in cell therapy strategies.
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INTRODUCTION

Until a few decades ago, astrocytes were considered to be glial support cells, with roles
limited to providing trophic, metabolic, and structural support to the neurons. Currently,
multiple investigations have revealed the multi-faceted role of astrocytes in cerebral parenchymal
homeostasis, which depends on intercellular communication (Dallérac et al., 2013). It has been
widely reported that astrocytic cells play protective roles in the nervous system, characterized by the
ion buffering (Walz, 2000; D’Ambrosio et al., 2002), the uptake and synthesis of neurotransmitters
(Danbolt, 2001; Kaczor et al., 2015), controlling cerebral blood flow (Abbott et al., 2006;

Abbreviations: AGC, aspartate/glutamate carrier; ALS, amyotrophic lateral sclerosis; Ang, angiopoietin; APCs, antigen
presenting cells; βA, β-amyloid; BBB, blood–brain barrier; BDNF, brain-derived neurotrophic factor; bFGF, basic fibroblast
growth factor; BMEC, brain micro-endothelial cells; CDK5, cyclin-dependent kinase 5; CNTF, ciliary neurotrophic factor;
Cx43, connexin-43; DAB, 1,4-dideoxy-1,4-imino-D-arabinitol; DCX, doublecortin; DG, dentate gyrus; EAATs, excitatory
amino acid transporters; ECs, endothelial cells; EPCs, endothelial progenitor cells; GDNF, glial-derived neurotrophic
factor; GFAP, glial fibrillary acidic protein; GLAST, glutamate aspartate transporter; GLT-1, glutamate transported 1; GM-
CSF, glial-monocyte colony stimulating factor; GS, glutamine synthetize; GSH, glutathione; GSK3, glycogen synthase
kinase 3; HMGB1, high-mobility group box 1; IGF, insulin growth factor; IL, interleukin; iPSCs, induced pluripotent
stem cells; KO, knockout; LPS, lipopolysaccharides; LTP, long-term potentiation; MAPs, microtubule-associated proteins;
MSC, mesenchymal stem cells; NH4, ammonium; NMDAR, N-methyl-D-aspartate receptor; NO, nitric oxide; NPs, neural
progenitors; Nrf2, nuclear factor erythroid 2-related factor 2; NS, neurosphere; NSCs, neural stem cells; NT-4, neurotrophin 4;
NVU, neurovascular unit; OGD/R, oxygen glucose deprivation/reperfusion; PECAM1, platelet and endothelial cell adhesion
molecule 1; Pfkfb3, 6-phosphofructose-2-kinase/fructose-2,6-biphosphatase-3; PRRs, pattern-recognition receptors; RAGE,
receptor for advanced glycation end products; RhoA and Rac1, Rho family of GTPase members; ROS, reactive oxygen species;
S100b, calcium-binding protein B; SGL, subgranular layer; siRNA, small interference Ribonucleic acid; SVZ, subventricular
zone; TGFβ, transforming growth factor-β; TLRs, Toll-like receptors; TRAIL, TNF-related apoptosis-inducing ligand; VEGF,
vascular endothelial growth factor.
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Newman, 2015), transport of water (Zeng et al., 2007; Kitchen
et al., 2015), release of antioxidant substances (Pentreath and
Slamon, 2000), and immunomodulation (Dong and Benveniste,
2001). Also, it has recently been described that astrocytes are
involved in adult neurogenesis (Mori et al., 2005; Buffo et al.,
2008; Duan et al., 2015; Nato et al., 2015), making the astrocyte
a highly complex cell (Figure 1A). However, under pathological
conditions, hyperreactive astrocytes exacerbate its heterogeneous
functions, presenting an opposite role that, contribute to the
central nervous system (CNS) disbalance (Figure 1B).

Astrocytes are characterized as having a stellate morphology,
which changes to a reactive state under stress and degenerative
conditions. This individual morphology is directly related to the
expression of glial fibrillary acidic protein (GFAP; Lebkuechner
et al., 2015); the upregulation of GFAP depends on the nature
of damage, the distance between the astrocyte and the site of
injury, and the time after injury (Eng et al., 2000; Sun et al.,
2010). On the other hand, it has been reported that reactive
astrogliosis and astrocyte proliferation also are neuroprotective,
because on this condition the glial cells can to provide factors
that promote cell survival against severe injury or degeneration
(Mohn and Koob, 2015; Figure 1B). However, under ischemia
context, for example, the interruption of blood supply to the
brain results in deprivation of oxygen and glucose and the
consequent reduction of the energy supply. This process leads
to excessive accumulation of ions and the deregulation of
several signaling pathways, overloading the buffering role of
the astrocytes, which go to favor of the activation of catabolic
processes mediated by proteases, lipases, and nucleases, which
disrupt neuronal function and lead to cell death (Lipton, 1999).
Therefore, a better understanding of the astrocyte’s mechanism
for triggering cell cytotoxicity or keeping its neuroprotective
activity would help to control the parenchyma dyshomeostasis
and to prevent progressive brain degeneration. In this review,
we will focus on the cellular mechanism of the astrocytes
for providing neuroprotection, and we will propose that the
downregulation of proteins associated with pathological states
could allow maintenance of its survival activity in the injured
tissue, recovering its integrity and function.

ASTROCYTES IN
NEURODEGENERATION AFTER BRAIN
STROKE

Astrocytes, unlike neurons, are less vulnerable to glutamate
excitotoxicity during a brain stroke, however, induces its
proliferation and increase GFAP levels in a process termed
reactive astrogliosis (Sofroniew and Vinters, 2010). Susarla
et al. (2014) reports that reactive protoplasmic astrocytes in
the cortex began to proliferate within 3–5 days after injury,
and the half of them reentering to the cell cycle up to
a week later. Reactive astrogliosis have been related widely
as a pathological hallmark of altered CNS tissue (Igarashi
et al., 1999; Chen and Swanson, 2003; Rodríguez et al., 2009;
Sofroniew and Vinters, 2010; Robel et al., 2015; Sofroniew,
2015). Which are generally found in areas surrounding severe

focal lesions, and it is characterized by astrocyte proliferation
and a considerable extension of processes beyond the previous
domains of individual astrocytes (Swanson et al., 2004). These
changes can result in reorganization of tissue architecture
without the formation of dense narrow and compact barriers,
as in glial scars (Sofroniew and Vinters, 2010; Shimada et al.,
2011). The glial scar is the most characteristic profile of
the reactive astrogliosis. In a severe state, a compact glial
scar formation, includes changes associated with milder forms,
with upregulation of GFAP and other genes, and pronounced
hypertrophy of cell bodies and processes, interacting with
other type of glial cells (Silver and Miller, 2004; Sofroniew
and Vinters, 2010). In addition, glial scar formation has
been considered an inhibitor of axon regeneration, as a
maladaptive phenomenon that unavoidably causes neurotoxicity,
inflammation, or chronic pain, supported by the increase
of pro inflammatory factors levels, as interleukins 1β, 6, 10
(IL-1, IL-1β, IL-6, IL-10), interferon-γ (IFN-γ), transforming
growth factor-β (TGFβ) (Rostworowski et al., 1997; Suzumura
et al., 2006), reactive oxygen species (ROS), nitric oxide (NO),
glutamate, calcium-binding protein B (S100b) (Piani et al.,
1993; Pekny and Nilsson, 2005; Mori et al., 2009; Liu et al.,
2011; Shen et al., 2012; de Pablo et al., 2013; Jiang et al.,
2013). Also, producing molecules associated to infection and
metabolic disorders, which exacerbate the disease, as Toll-like
receptors (TLRs), lipopolysaccharides (LPS), β-amyloid (βA;
Hu and Van Eldik, 1999; Caso et al., 2007; Gorina et al.,
2011; Sofroniew, 2014), and ammonium (NH4; Lichter-Konecki,
2008). In brain stroke, reactive astrocytosis is related with
“chronic cystic infarcts,” characteristic finding in a cortical
cystic infarct is the preservation of the relatively paucicellular
molecular layer overlying it and located immediately beneath
the meninges, which then develops a dense collection of
astrocytes, usually with gemistocytic phenotype. Astrocytic
processes usually traverse the cystic cavity left by the death
of brain tissue, in a delicate meshwork, with persistence of
foamy histiocytes among and influx of polymorphonuclear
leukocytes and macrophages (Sofroniew and Vinters, 2010).
In the counterpart, there is a specific process of reactive
astrogliosis that has beneficial functions and does not do
harm. As describe below, many studies using transgenic and
experimental animal models provide evidences that reactive
astrocytes protect CNS tissue by the same mechanisms
that astrocytes has homeostatic functions, as well as the
induction of neurogenesis, regulation of immune system
and maintain the blood–brain barrier (BBB) integrity. This
evidence changes astrocytosis, from being viewed as harmful to
being neuroprotective, while pathogenic expressions are being
regulated (Figure 1).

SUPPORT OF ENERGY METABOLISM
AND ANTIOXIDANT EFFECTS OF
ASTROCYTES

Brain is a high energy-consuming organ; for these reason, brain
cells can efficiently to utilize various energy substrates in addition
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FIGURE 1 | Role of astrocytes in a micro-environment dependent-mode. (A) Functions of the astrocytes in physiological conditions, which are in favor of the
homeostasis of the nervous tissue. (B) Reactive astrocytosis, which has a double function highly discussed, one for cell death and one for pro-neuroprotection
probably in a context dependent-mode. (C) Astrocytes with genetic modifications by reduced expression of some upregulated genes, which would allow preserve
them as a neuroprotective source for promoting neuronal survival; although the mechanism of how they could maintain this state of neuroprotection for longer time is
still unknown (?).

to glucose, including lactate, pyruvate, glutamate, and glutamine
(Bé Langer et al., 2011). Neurons and astrocytes present different
metabolic profiles, although are complementary. However,
astrocytes are reported that has an exclusive characteristic of
support the neuron energetic needs. One of recently reported
is the lactate metabolism represent an import pathway of
glucose metabolism (Lovatt et al., 2007). Astrocytes present
a high glycolytic rate, so enzymes as 6-phosphofructose-
2-kinase/fructose-2,6-bisphosphatase-3 (Pfkfb3) are related to
the activation of glycolytic pathway, involving the lactate
as result of glucose oxidation. Those enzymes have high
expression levels in astrocytes, but it is absent in neurons
due to constant proteasome degradation (Herrero-Mendez
et al., 2009). Another characteristic of astrocytes is the
low expression levels of aspartate/glutamate carrier (AGC),
which is a component of maleate aspartate shuttle, which
operates the transfer of reducing equivalents from the cytosol
to mitochondria (Berkich et al., 2007). In this context
the conversion of derived pyruvate to lactate in cytosol
ensure the maintenance of high NAD+/NAD ratio, being
essential to sustain a high glycolytic rate (Bé Langer et al.,
2011).

Another characteristic of astrocytes is the glycogen
metabolism. Glycogen is the largest energy reserve of the brain
and it can be rapidly metabolized under anaerobic conditions.
Glycogen has been found to be almost exclusively localized in
astrocytes in the adult brain (Brown, 2004), this characteristic
suggest the close interaction between astrocytes and neurons.
Brown et al. (2005) demonstrated that increasing astrocytic
glycogen stores preserves the neuronal function and viability

under limited conditions of energy, such as in hypoglycemia.
Also, neuron–glia metabolic coupling involves glycogen content
under the dynamic control of neurotransmitters and the
neural functions (Brown et al., 2005). Gibbs et al. (2006)
demonstrated that pharmacological inhibition of glycogenolysis
in astrocytes using 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), a
potent inhibitor of glycogen phosphorylase, interrupts memory
consolidation in young chickens in a bead discrimination
learning task. Also, the role of astrocytic glycogen-derived
lactate in long term memory formation, and for the in vivo
maintenance of long-term potentiation (LTP) of synaptic
strength in the mammalian brain (Suzuki et al., 2011). These
findings support that the astrocytes play a major role in the
metabolic maintenance of neurons, which are directly related to
its functionality.

Additional characteristic of astrocytes is the role in the
synthesis, re-uptake or recycling of neurotransmitters. It is
widely known that astrocytes rapidly remove neurotransmitters
that that are released in the synaptic cleft. This function
is an essential process to guarantee the effective synaptic
process and the maintenance of neuronal excitability. One
of most important excitatory neurotransmitter is glutamate,
its overstimulation is highly toxic for neurons, the way that
astrocyte uptake the glutamate is through specific glutamate
transporters named glutamate transported 1 (GLT-1), and
glutamate aspartate transporter (GLAST) (Bak et al., 2006) in
a glutamate–glutamine cycle (Shen et al., 1999; Danbolt, 2001).
Astrocytes are responsible for replenishment of brain glutamate
and are the only cell type in the brain which express pyruvate
carboxylase, an enzyme involved in the anaplerotic pathway
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in the brain, effectively allowing them to synthesize glutamate
from glucose (Bélanger and Magistretti, 2009; Bé Langer et al.,
2011).

In brain stroke, the decrease of oxygen and glucose,
produce an alteration of the glutamate levels, producing
excitotoxicity in neurons. The evidence shows that GLAST
and GLT-1 are downregulated shortly following the insult,
which then precipitates glutamate-mediated excitotoxic
conditions (Yi and Hazell, 2006; Zou et al., 2010). Also,
Zou et al. (2010) demonstrated that glutamine synthetize (GS)
inhibition in astrocytes significantly impaired glutamate uptake,
suggesting that GS in astrocytes may represent a novel target
for neuroprotection against neuronal dysfunction. Liang et al.
(2008) compared the expression of excitatory amino acid
transporters (EAATs) in astrocytes and microglia, analyses
demonstrated that astrocytes express a much larger amount
of membrane localized EAATs than microglia. Astrocytes
prevented excito-neurotoxicity by the reduction of exogenous
glutamate, whereas microglia did not. Conversely, activated
microglia released an excess of glutamate that induced
excitotoxic neuronal death. Astrocytes rescued neurons
from microglial glutamate-induced death in a ratio-dependent
manner. Inhibition of EAATs abolished glutamate uptake
and the neuroprotective effect of astrocytes, but it did not
alter microglial neurotoxic or neuroprotective effects. These
results revealed that astrocytic EAATs can counteract microglial
glutamate-induced neuronal death, whereas microglial EAATs
are not involved in the toxicity and protection of astrocytes
and microglia in a co-culture system (Liang et al., 2008).
Those findings suggest that maintaining the expression and
regulation of the transporters in astrocytes would be a potential
source of clinical intervention treatment following brain
ischemia.

On the other hand, astrocytes are involved in the defense
against oxidative stress. Stroke produces several factors that
contribute to increased brain vulnerability to oxidative stress,
including its high rate of oxidative energy metabolism (an
inevitable process generating ROS), and its high unsaturated
fatty acids content (which are prone to lipid peroxidation;
Dringen, 2000). Glutathione (GSH) is the most abundant
antioxidant molecule in the brain, which acts directly as
ROS scavenger or can be used as substrate for glutathione
peroxidase (Dringen, 2000). GSH is regenerated for action of
glutathione reductase, using NADPH as an electron donor;
this process is essential for the maintenance of GSH in its
reduced form (Bé Langer et al., 2011). NADPH is more
abundant in astrocytes than in neurons, and astrocytes have
a higher basal activity rate and a better capacity to stimulate
this pathway in response to oxidative stress (Garcia-Nogales
et al., 2003). Also, astrocytes release the antioxidant molecule
ascorbic acid in response to glutamatergic activity. This ascorbic
acid is taken up by neurons and modifies the local energy
metabolism by inhibition of glucose consumption and increased
uptake of lactate (Castro et al., 2009). Moreover, there is
another molecule that is expressed in astrocytes and it has
neuroprotective functions, the redox-sensitive transcription
factor, named nuclear factor erythroid 2-related factor 2 (Nrf2)

activation. Nrf2, is a redox-sensitive transcription factor, that
coordinates expression of genes required for free radical
scavenging, detoxification of xenobiotics, and maintenance of
redox potential (Shih et al., 2005). In stroke, Nrf2 pathway
is activated in both in vitro and in vivo ischemic models.
In addition, to mediate self-defense in neurons, Nrf2 also
actively regulates the expression of cytoprotective enzymes in
other cell types within the neurovascular unit (NVU), including
astrocytes and endothelial cells (ECs), and thus supports
neuronal function and survival through cell–cell interaction
(Yang et al., 2016).

A large body of experimental evidence suggests that astrocytes
have a greater metabolic plasticity than neurons. A striking
example is the differential response of astrocytes and neurons
following the inhibition of mitochondrial respiration induced
by NO. Astrocytes respond to NO with an increase in glucose
metabolism through the glycolytic pathway, limiting the fall in
ATP levels and preventing apoptosis. In neurons, however, this
response does not seem to be present, and a similar NO challenge
causes a massive ATP depletion, leading to apoptosis (Almeida
et al., 2001; Bé Langer et al., 2011).

ASTROCYTES MODULATE THE IMMUNE
RESPONSE

In ischemic conditions, reactive astrocytes are involved
in the immune response because astrocytes mediate and
propagate inflammatory signals in the brain, influencing various
physiological and behavioral responses. Astrocytes were the first
CNS cell type where was demonstrated the expression of class II
major histocompatibility complex (MHC) molecules (Dong and
Benveniste, 2001). MHC II is a molecule that play a critical role
in the induction of immune responses through the presentation
of processed antigens to CD41 T-helper cells, this molecule is
normally expressed on professional antigen presenting cells
(APCs), such as B cells, macrophages, dendritic cells, and other
cell types, including astrocytes. MHC II expression allow to
astrocytes can be regulated by cytokines, neurotransmitters, and
neuropeptides (Dong and Benveniste, 2001). Although, the MHC
is involve in an exacerbated inflammation response in astrocytes.
Also, cytokines have neuroprotective and neurotrophic roles
required for neurodevelopment and maintenance of normal
CNS function (Maier et al., 2005; Morganti-Kossmann et al.,
2007).

As mentioned before astrocytes are also capable of
synthesizing cytokines and chemokines; they express pattern-
recognition receptors (PRRs), such as TLRs, scavenger receptors,
and complement proteins. There is evidence that astrocytes play
a complex and a dual role in the local regulation of immune
reactivity. Astrocytes are resistant to apoptosis induced after
inflammation by death receptors, which is known as apoptosis
antigen 1 and tumor necrosis factor (TNF)-related apoptosis-
inducing ligand (FAS, TRAIL), indicating that these cells are well
prepared to survive under inflammatory insults (Farina et al.,
2007). Neurotrophic mediators such as glial-monocyte colony
stimulating factor (GM-CSF), vascular endothelial growth factor
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(VEGF), neurotrophin 4 (NT-4), and ciliary neurotrophic factor
(CNTF) can activate TLRs in astrocytes and stimulate restorative
pathways (Bsibsi et al., 2006).

In an ischemic condition, activated microglia and activated
astrocytes (reactive astrogliosis), might to secret products
exerting neuroprotective actions during glial scar formation. It
has been demonstrated that reactive astrocytes and microglia
can to demarcate the damaged area and to limit the leukocyte
extravasation, promoting BBB repair and neuronal survival
(Farina et al., 2007). Some cytokines, such as IL-1 and IL-6,
related to pathological inflammatory responses in different
processes might also behave as a mediator of neuroprotection.
Some studies have demonstrated that deletion of IL-6 and IL-1β

increases BBB permeability and decreases the production of
neurotrophic factors such as CNTF and insulin growth factor
(IGF), indicating that cytokine-induced astrogliosis following
trauma is important to restore the integrity of the BBB and
to repair the lesion (Herx et al., 2000; Mason et al., 2001).
Several in vitro data demonstrate that cytokines such as IL-1,
IL-6, and TNF support the production of neuroprotective
mediators. Other proteins implicated in inflammation response,
are the chemokines, which facilitate the mobilization of
leukocytes and polymorphonuclear cells. Additionally, these
chemokines contribute to the migration of neural progenitors
in the developing brain (Tran and Miller, 2003) and toward
areas of brain injury (Belmadani et al., 2006; Farina et al.,
2007). These characteristics make the astrocyte a cell highly
sensitive, inductor and possibly regulator of immune responses,
being one of main important characteristic in an ischemic
context, because the chronicity of inflammation depends
on the degree of tissue damage and exacerbation of the
injury.

NEUROPROTECTIVE ROLE OF
ASTROCYTES

Under a loss of cerebral parenchymal integrity, astrocytes would
play a protective role whether is possible to control its reactivity
(Li et al., 2008), which would allow maintaining the homeostatic
functions. In particular, astrocytes are involved in a large
number of key processes in the nervous system, including crucial
roles in regulating vascular tone; removing excess glutamate
in synaptic cleft thus limiting the neuronal activity; promoting
synaptogenesis; releasing neurotrophic factors; secreting different
antioxidants and responding to the release of pro and
anti-inflammatory molecules (Sofroniew and Vinters, 2010).
Astrocytes have also been shown to regulate the blood flow
during neuronal activity, via the release of vasoactive substances
such as NO, products derived from activity of epoxygenase,
ATP and cyclooxygenase, activation of phosphatidylinositol 3-
kinase (PI3K) and calcium waves propagated from the neuron
to astrocyte and endothelium (blood vessel cells; Abbott et al.,
2006), and regulate potassium ions [K+] resulting from synaptic
activity (Benarroch, 2005; Bean, 2007). Concomitant with the
ionic and metabolic regulation by astrocytes, these cells may
regulate the release of neurotrophic factors, which facilitate

neuronal survival and angiogenesis (Goss et al., 1998; Rz et al.,
1999; Jiang et al., 2013). These neurotrophic factors have varied
effects on neurons, ECs, microglia, leukocytes, and neural stem
cells (NSCs) (Schwartz and Nishiyama, 1994; Igarashi et al.,
1999; Swanson et al., 2004; Oliveira et al., 2013; Götz et al.,
2015).

ASTROCYTIC INVOLVEMENT IN ADULT
NEUROGENESIS

The adult neurogenesis in the adult mammalian brain has
been described in two specific zones, named neural niches;
the subgranular layer (SGL) of the dentate gyrus (DG) of the
hippocampus and the subventricular zone (SVZ) in the lateral
wall of the lateral ventricle (Seri et al., 2001). The primary
precursors in the SVZ, the other germinal region of the adult
brain, have been identified as having the characteristics of
astrocytes and expressing GFAP (Laywell et al., 2000). The
reports are suggested that some of these cells can maintain
a neurogenic potential and act as NSCs (Mori et al., 2005;
Magnusson and Frisén, 2016). These cells can divide and generate
new neurons under normal conditions or after the chemical
removal. Seri et al. (2001) found GFAP+ cells called type D
cells are derived from the astrocytes and probably function
as a transient precursor in the formation of new neurons.
However, deeper research is needed to understand the trans-
differentiation of astrocytes in NSC or a transient state as
trophic source without a definitive commitment to other specific
linage.

After brain ischemic event, astrocytes acquire stem cell
hallmarks mainly in vitro conditions; in vivo is still controversial
because the multipotentiality is depending of growth factors
(Götz et al., 2015). In vitro assays have shown that some of the
reactive astrocytes in the traumatic or ischemic brain acquire
neurosphere (NS)-forming ability, multipotency and long-term
self-renewal, while others remain within their astrocyte lineage
in vivo (Götz et al., 2015). Jiang et al. (2013) found two different
types of cells that are NPC-astroglial cells (NPC-Astros) and
Olig2PC-astroglial cells (Olig2PC-Astros), respectively. When
was grafted into brains subjected to global ischemia, Olig2PC-
Astros exhibit neuroprotective effects and improved behavior
(Jiang et al., 2013). On other hand, Ohab et al. (2006) reported
that stroke induces neurogenesis from a GFAP-expressing
progenitor cell in the SVZ and migration of newly born neurons
into a unique neurovascular niche in peri-infarct cortex. Also,
Faiz et al. (2015) described that reactive astrocytes can convert
to multipotent NSCs capable of NS formation and multi-
lineage differentiation in vitro. Moreover, they reported that
SVZ NSCs give rise to a reactive astrocytes subpopulation in
the cortex that contribute to astrogliosis and scar formation
and they found that these astrocytes in SVZ can be converted
to neurons in vivo by forced expression of Ascl1 (Faiz et al.,
2015).

Astrocytes also preserve the function of the hippocampal
neural niches, where adult neurogenesis plays an important
role. Sultan et al. (2015) found that astrocytes can allow the
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synaptic integration of adult-born hippocampal neurons,
allowing local dendritic spine maturation, which is necessary
for the N-methyl-D-aspartate receptor (NMDAR)-dependent
functional integration of newborn neurons. Moreover, Tao
et al. (2015) demonstrated that some proteins as β-arrestin-
1 (β-arr1) is secreted by astrocytes in DG and participates
in adult hippocampal neurogenesis. The model of β-arr1
knockout (KO) astrocytes produced less NSs, and RNA-
sequencing revealed that β-arr1 KO DG astrocytes exhibit an
aberrant gene expression profile of niche factors, including
elevated transcription of Bmp2. Those results suggest that
β-arr1-mediated nuclear signaling regulates the production
of excretive factors derived from niche of astrocytes and
expansion of neural precursors in DG, thus maintaining
homeostasis of adult hippocampal neurogenesis (Tao et al.,
2015). Additionally, Li et al. (2014), in an oxygen glucose
deprivation/reperfusion (OGD/R) model, examined the
levels of a damage-associated molecular-patterning molecule
called high-mobility group box 1 (HMGB1) that is release
by astrocytes. HMGB1 is critical for NSC/neuroprogenitors
proliferation during brain development. The data demonstrate
that HMGB1 released by OGD/R astrocytes promotes NSC
proliferation through activation of the PI3K/protein kinase B
(PI3K/Akt) signaling pathway (Li et al., 2014). These findings
demonstrate that astrocytes are involved key roles in the
generation of new neurons and maintenance, stimulation
of neural niches after an ischemic event, and possibly
in the regulation of adult neurogenesis in physiological
conditions, which do them targets for isolation, study and
cell therapeutic cells in this type of brain damage. However,
some characteristic of NSC associate with astrocytes still is
controversial, hence their neurogenic potential must be further
explored.

ANGIOGENESIS CAN BE MODULATED
BY ASTROCYTES

The appropriate supply of oxygen and glucose, as well as the
appropriate secretion of metabolites by the brain, depends on
close relationships between the vascular system, glial cells, and
neurons. The interconnection between these cells is known as
the NVU. Astrocytes have very close interactions with neurons
and ECs, which composite the blood vessels. In this interaction
participate various membrane proteins such as ion and water
channels and receptors for growth factors and cytokines. Also,
astrocytes and ECs can release neurotrophins, vascular growth
factors, glucose, and amino acids, in order to generate stability
and maintenance of the BBB (Abbott et al., 2006).

During brain ischemia, there is a series of events that
compromise the integrity of the BBB. Glucose deficit and
hypoxia trigger cellular stress, not only in neurons, but also
in ECs and astrocytes. This cellular stress causes the release
of oxygen, free radicals, and NO; and also the production of
pro-inflammatory cytokines that allow permeabilization of the
BBB and therefore infiltration of leukocytes, which exacerbate
the inflammatory response and increase the triggering of

apoptotic signals (Chodobski et al., 2011). In this condition,
signaling between astrocytes, pericytes, and endothelium become
disrupted. Hence, repairing the gliovascular system include a
crosstalk between astrocytes and pericytes (Bell et al., 2010).
Astrocytes are known to release thrombospondin-1, which
is a major regulator of synaptic maturation (Christopherson
et al., 2005). Reactive astrocytes also release tissue plasminogen
activator, which may be required for recovering neurons to
remodel their dendritic arbors (Xin et al., 2010). Indeed,
several studies have suggested that the therapeutic benefits
of stem cell therapies may depend in part on the ability
of astrocytes to amplify the effects on neuronal remodeling
(Shen et al., 2010). Astrocytes and cerebral ECs secrete many
trophic factors that support oligodendrocyte precursor cells (Arai
and Lo, 2009). And after injury, VEGF-mediated endothelial
recovery is linked with the proliferation and migration of
oligodendrocyte precursor cells (Le Bras et al., 2006; Hayakawa
et al., 2011).

Moreover, astrocytes has different mechanism to modulate
cytotoxic response, as inducing angiogenesis necessary for the
reestablishment of the blood circulation after brain ischemia.
This mechanism consist of the secretion of a range of chemical
agents and glia-derived factors, including TGFβ, glial-derived
neurotrophic factor (GDNF), basic fibroblast growth factor
(bFGF), angiopoietin 1 (Ang1) (Igarashi et al., 1999; Wuestefeld
et al., 2012). These factors can stimulate the production
of new blood vessels and the proliferation of endothelial
progenitor cells (EPCs; Cross et al., 2001; Babaei et al.,
2003). Different studies using co-cultures of brain ECs and
astrocytes have demonstrated that astrocytes express functional
receptors for a high proportion of agents that mobilize ECs
(Abbott et al., 2006). Additionally, reactive astrocytes can
release factors, as HMGB1, VEGF, Ang1, and angiotensin
2 (Ang2) (Hayakawa et al., 2012; Duan et al., 2015; Shen
et al., 2016); which promotes EPC-mediated neurovascular
remodeling during stroke recovery (Krum and Rosenstein,
1998). Hayakawa et al. (2011, 2012), found that blocking
the “receptor for advanced glycation end products” (RAGE)
increased the reactive astrocyte and ECs significantly decreased
EPC-endothelial adherence. RAGE is a multi-ligand receptor
that propagates cellular dysfunction in several inflammatory
disorders, tumors and diabetes, and it is upregulated at sites
where its ligands are accumulated; being low expressed in
normal tissues. Also, it has been reported that RAGE may play
a dual role in the inflammatory response, because interaction
of RAGE on leukocytes or ECs with its ligands results in
cellular activation involving the transcription factor nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-
kappaB). On the other hand, RAGE on ECs may function as
an adhesive receptor that directly interacts with leukocyte ss2-
integrins (Chavakis et al., 2004). So, through the upregulation
of RAGE on affected ECs, the reactive astrocytes may augment
EPC adherence and transmigration. This phenomenon may
comprise a novel mechanism whereby crosstalk between reactive
astrocytes and cerebral endothelium augments EPC responses
for neurovascular recovery in damaged or diseased brain. In
this order, RAGE is important in EPC induction and adherence
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that can play an important role in tissue vascularization and
endothelium homeostasis after CNS damage by ischemia. Those
findings suggest that astrocytes can partially regulate the effects
of ischemia through a continue communication with NVU
cells.

POSSIBLE PROTEINS INVOLVED IN
ASTROCYTES REACTIVITY AND
REGENERATION

As described above, astrocytes appear to possess a high potential
for regeneration and neuroprotection following stroke, but also
there are substantial evidence that has shown that astrocytes are
cells that exacerbate ischemic injury (Figure 1B).

So, one possible paradigm of astrocyte reactivity control is
the expression of GFAP. Increased GFAP expression is associated
with hyperreactivity and altered morphology of the astrocyte.
Also, connexin-43 (Cx43) is a gap junction protein that is
associated with reactive astrogliosis. In response to an acute
needle stab wound in vivo, reactive astrocytes expressed Cx43
in the peripheral zone surrounding the injury site (Theodoric
et al., 2012). In addition, intermediate filament proteins such as
vimentin, nestin, and synemin are involved in the reactivity of
astrocytes and are highly expressed in conditions of deprivation
of oxygen and glucose, as well as in response to oxidative stress
(de Pablo et al., 2013). However, the regulatory mechanisms
underlying the development of reactive astrocytes during basal
function and under neuroprotective hypertrophic function
remain unknown.

Other protein involved in the reactive astrocyte that has
been poorly studied is cyclin-dependent kinase 5 (CDK5). This
protein is highly expressed in post-mitotic neurons. In the
brain, it is involved in functions such as neuritogenesis, synapse
formation, synaptic transmission, and the assembly, organization
and stabilization of the axonal cytoskeleton, and it allows the
activation of apoptosis. Its substrates are mainly neurofilaments,
microtubule-associated proteins (MAPs) and elements of the
axonal cytoskeleton (Grant et al., 2001). Although CDK5 is
generally studied in neurons, it is not exclusively expressed in
those cells; some reports show that CDK5 is active in non-
neuronal cells such as astrocytes, ECs, and blood cells (Liebl
et al., 2011). In astrocytes, CDK5 has a very important activity
in the process of elongation and reactivity. He et al. (2007)
report that p35, GFAP, and CDK5 can form immunocomplexes
in primary cultures of astrocytes. p35 is activated when the
astrocyte is subjected to stress caused by injury, generating active
CDK5. Astrocytes treated with roscovitine, a CDK5 inhibitor,
show reorganization of tubulin and GFAP (He et al., 2007).
In addition, other findings have shown that CDK5 plays a
significant role in the regulation of EC proliferation (Liu et al.,
2008). Therefore, CDK5 dysregulation in excitotoxic processes
can generate changes not only in neurons but elsewhere in
the NVU, which is highly regulated by astrocytes. This in
turn leads to increased reactivity and alteration of each of the
components and the integrity of the NVU and results in brain
dysfunction.

COULD GENETICALLY MODIFIED
ASTROCYTES BE A CELL THERAPEUTIC
STRATEGY FOR CEREBRAL ISCHEMIA?

Due to the complexity of the excitotoxic effects caused by
ischemia/reperfusion, in which pharmacological treatments
have only palliative effects or require administration within a
short time period after injury (van der Worp and van Gijn,
2007), it is necessary to find alternative therapies focused on
long-term neuroprotection. Cell therapy in neuroscience is
focused on the search for cells that can induce regeneration,
providing a vehicle for corrective molecular systems to
trigger endogenous cellular events that can restore tissue
homeostasis in progressive neurodegeneration. Currently,
many therapeutic strategies using astrocytes have been
focused primarily on diseases associated with the spinal
cord, such as amyotrophic lateral sclerosis (ALS; Nicaise
et al., 2015). In addition, astrocyte transplantation leads to
recovery of axonal myelination, modulation of the immune
response and release of neurotrophic factors that prevent
oxidative stress and excitotoxic damage (Choudhury and Ding,
2015).

Transplantation models have been reported in cerebral
ischemia mainly using mesenchymal stem cells (MSC;
Hsuan et al., 2016; Lee et al., 2016), induced pluripotent
stem cells (iPSCs; Mohamad et al., 2013), and NSCs (Huang
et al., 2014; Gervois et al., 2016), showing that there is
stimulus of endogenous activity of cells in the injured
tissue, generating increased angiogenesis/neovascularization
and release of trophic factors, which is chiefly secreted
by these cells, allowing the migration to the lesion
zone. Likewise, there is axonal recovery, dendritic
branching, and synaptogenesis, which are reported
mainly surrounding the injury site (Horie et al., 2015).
Interestingly, the intravenous NSC administration improves
the gliotransmission property, which induced the excitatory–
inhibitory balance in the penumbra area (Bacigaluppi et al.,
2016).

Other reports have proposed astrocytes as a therapeutic
target based on their control by genetic modification of proteins
related to the immune response and to the exacerbation
of reactivity and cytotoxicity (Choudhury and Ding, 2015;
Merienne et al., 2015). We and other researchers have found
that Tau hyperphosphorylation is increased by focal and
global cerebral ischemia, which is closely related to spatial
memory impairment (Gutiérrez-Vargas et al., 2015), implying
the alteration of proteins that regulate microtubule assembly,
such as glycogen synthase kinase 3 (GSK3; Céspedes-Rubio
et al., 2010) and CDK5 (Rashidian et al., 2009; Gutiérrez-
Vargas et al., 2016), and remodeling of the actin cytoskeleton,
such as the small GTPases RhoA and Rac (Rho family of
GTPase members; Posada-Duque et al., 2015b). These
proteins have therefore been suggested as key targets in the
pathogenesis and recovery of the cerebrovascular unit after
infarction (Posada-Duque et al., 2015a, targeting not only
neurons but also astrocytes (Posada-Duque et al., 2015b).
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FIGURE 2 | Possible mechanisms of neuroprotection induced by astrocytes’ cell therapy after brain stroke. Following brain ischemia, transplantation of
genetically modified astrocytes could trigger endogenous neuroprotective mechanisms as neurogenesis, angiogenesis, and regulation of inflammation. These
mechanisms are regulated by a paracrine activity, where the astrocyte participates as an intermediary between neurons, endothelial cells, pericytes, microglia, and
neural progenitor cells; through the release of neurotrophic factors (BDNF, GDNF, VEGF, GDNF), lower proinflammatory cytokines, and increased reuptake excitatory
neurotransmitters, thus avoiding excitotoxicity and, promoting long-term neuronal survival. Arrow, soluble growth factors release by transplanted genetically modified
astrocytes (“green cells,” e.g., Figure 1C), stimulate endogens astrocytes and endothelial cells, preserving the neurovascular integrity.

In the case of CDK5, we have designed a shRNAmiR that,
in a cerebral ischemia model, resulted in neurologic and
motor improvement during the first week after ischemia.
Additionally, CDK5 RNAi (RNA interference) prevented
dysfunctions in learning, memory and reversal learning
at a month after ischemia. Interestingly, silencing CDK5
decreases the hyperreactivity of astrocytes at 1 month post-
treatment (Gutiérrez-Vargas et al., 2015) but increased astrocytic
arborization under neuroprotective conditions at 4 months
post-ischemia (Gutiérrez-Vargas et al., 2016). In addition, our
in vitro assays have shown that CDK5 RNAi in astrocytes
generates stellation and brain-derived neurotrophic factor
(BDNF) release in a mechanism dependent on active Rac,
providing neuroprotection in co-cultures of astrocytes and
neurons (Posada-Duque et al., 2015b). However, it has been
widely reported that astrocytes have limited neuroprotective
capacity, primarily because of their hypertrophic reactivity
under neurotoxic and neurodegenerative processes. This activity
involves cytoskeletal changes mediated by Rho GTPases such
as Rac/RhoA and by CDK5, as well as the participation of
these cells in glial scar formation, the increase of free radicals,
and the pro-inflammatory response that prevents neuronal
plasticity (Gleichman and Carmichael, 2014). Our most
recent findings validated the potential of CDK5 knock-down
astrocytes transplanted in ischemic rats, which surprisingly
generated motor function recovery, branching of endogenous
astrocytes and increased EC adhesion by PECAM1 and Ki67+

cells in SVZ after 1 month post transplantation (Becerra-
Calixto and Cardona-Gómez, 2016). This functional effect
was maintained for 4 months and astrocytes recovery the EC
adhesion and transendothelial electrical resistance (TEER)
affected by glutamate in a co-culture in vitro model (unpublished
data). Therefore, these results lead to the proposal of cell
therapy based on silenced astrocytes for genes associated
with hyperreactivity (Figure 1C). Based on our evidence,
CDK5 knock-down astrocytes may provide neuroprotective
functions by inducing the activation of endogenous surrounding
astrocytes, which would trigger paracrine signaling or activity
of another cell population of the NVU. Transplantation of
these modified astrocytes also mobilizes neural progenitor
cells, which, combined with their other protective effects, could
increase survival and neuroprotection mainly in the penumbra
areas of infarcted tissue, recovering neurological function
(Figure 2).

CONCLUSION AND PERSPECTIVES

The field of neuroscience is currently focusing on the study
of the function of non-neuronal cells, which seems to play a
key role, especially in the survival of neurons upon cerebral
injuries. However, it remains highly discussed how and when
astrocytes may provide neuroprotection. Several authors indicate
that there are different types of astrocytic populations with effects

Frontiers in Molecular Neuroscience | www.frontiersin.org 8 April 2017 | Volume 10 | Article 88

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


fnmol-10-00088 March 30, 2017 Time: 16:22 # 9

Becerra-Calixto and Cardona-Gómez Astrocytes in Cell Therapy

on neuroprotection, neurogenesis and regulation of the immune
response. Thus, the next challenge for validating the use of
astrocytes in cell therapy is to explore the specific profile of
neuroprotective astrocytes.

Furthermore, cell therapy has some limitations, such as
maintaining long-term restoration, potential regenerative
abilities of some types of cells, the capacity of mobilization
toward the injured tissue and their safe use in humans. These
limitations necessitate further analysis and discussion before
the clinical application of those cells. Therefore, further studies
must be performed to elucidate how to use astrocytes as
targets for cell therapy in acute and chronic neurodegenerative
diseases.
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