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Neurons have inherent competence to regrow following injury, although not

spontaneously. Spinal cord injury (SCI) induces a pronounced neuroinflammation driven

by resident microglia and infiltrating peripheral macrophages. Microglia are the first

reactive glial population after SCI and participate in recruitment of monocyte-derived

macrophages to the lesion site. Both positive and negative influence of microglia

and macrophages on axonal regeneration had been reported after SCI, raising the

issue whether their response depends on time post-lesion or different lesion severity.

We analyzed molecular alterations in microglia at several time-points after different

SCI severities using RNA-sequencing. We demonstrate that activation of microglia is

time-dependent post-injury but is independent of lesion severity. Early transcriptomic

response of microglia after SCI involves proliferation and neuroprotection, which is then

switched to neuroinflammation at later stages. Moreover, SCI induces an autologous

microglial expression of astrocytic markers with over 6% of microglia expressing glial

fibrillary acidic protein and vimentin from as early as 72 h post-lesion and up to 6

weeks after injury. We also identified the potential involvement of DNA damage and

in particular tumor suppressor gene breast cancer susceptibility gene 1 (Brca1) in

microglia after SCI. Finally, we established that BRCA1 protein is specifically expressed

in non-human primate spinal microglia and is upregulated after SCI. Our data provide

the first transcriptomic analysis of microglia at multiple stages after different SCI

severities. Injury-induced microglia expression of astrocytic markers at RNA and protein

levels demonstrates novel insights into microglia plasticity. Finally, increased microglia

expression of BRCA1 in rodents and non-human primate model of SCI, suggests the

involvement of oncogenic proteins after CNS lesion.
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INTRODUCTION

Spinal cord injury (SCI) is a devastating condition with clinical
symptoms that depend on both the anatomical level of the injury
and the severity of the lesion. SCI triggers microglia activation,
peripheral macrophages and neutrophil infiltration that together
govern neuroinflammation after central nervous system (CNS)
injury (David and Kroner, 2011). Microglia, the main immune
cells of the CNS, are the first responsive glial cells after SCI
(Tian et al., 2007) and participate in recruitment of monocyte-
derived macrophages to the lesion site (David and Kroner,
2011). Microglia and monocytes have myelomonocytic origin
that may explain their common expression of surface receptors
and signaling molecules (Schmitz et al., 2009; Kettenmann et al.,
2011).

Although activation of microglia/macrophages promotes
inflammation and tissue damage after SCI, these cells may
also have neuroprotective actions (David and Kroner,
2011). In particular, microglia play major roles in the
phagocytosis of cellular debris (Perrin et al., 2005) and
express neurotrophic factors (Lambertsen et al., 2009) that
account for their beneficial effects after SCI (Mukaino et al.,
2010). Similarly, other studies have reported both positive
(Shechter et al., 2009) and negative (Popovich et al., 1999)
influence of infiltrating monocyte-derived macrophages on
functional recovery after SCI. Together, these studies highlight
positive and negative influence of CNS resident microglia
and peripheral infiltrating macrophages after SCI. However,
whether these dual roles are due to differences in time
post-injury, lesion severity or both remains unclear and the
precise molecular mechanisms that control the positive and
negative roles of activated microglia post-injury are poorly
understood.

When studying microglia it is important to take into account
other closely related cells such as macrophages, monocytes
and dendritic cells. This is particularly important in CNS
trauma, in which destruction of the blood-CNS barrier induces
infiltration of inflammatory cells. Microglia prominently express
a Gαi-coupled seven-transmembrane receptor, the chemokine
receptor CX3CR1. The generation of CX3CR1eGFP transgenic
mice, which express enhanced Green Fluorescent Protein (eGFP)
downstream of the Cx3cr1 promoter, provided a powerful
research tool to potentially isolate microglia using techniques
such as flow cytometry (Jung et al., 2000; Wolf et al., 2013).
Importantly, CX3CR1 is also expressed in circulating monocytes
and resident macrophages (Jung et al., 2000; Gautier et al.,
2012). However, recent studies have revealed additional markers,
including Ly6C, which can be used, at least partially, to
distinguish microglia from these additional cell types (Chiu et al.,

Abbreviations: ALS, amyotrophic lateral sclerosis; BMP, bone morphogenetic

proteins; Brca1, breast cancer susceptibility gene 1; CNS, central nervous

system; CPM, counts per million; eGFP, enhanced green fluorescent protein;

FACS, fluorescence-activated cell sorting; FC, fold-change; FT, full transection;

GFAP, glial fibrillary acidic protein; HS, hemisection; MMRRC, Mutant Mouse

Regional Resource Centre; NI, non-injured; PBS, phosphate base saline; PFA,

paraformaldehyde; RNA-Seq, RNA sequencing; SCI, spinal cord injury; SEM,

standard error of the mean.

2013; Butovsky et al., 2014; Gosselin et al., 2014; Bennett et al.,
2016).

Transcriptomic analyses of microglia at multiple time-
points after different lesion severities provide a powerful
approach to reveal their exact molecular involvements in SCI
pathophysiology. Recent findings, including our own, using gene
expression profiling in microglia have unveiled novel insights
into their contribution in multiple neuropathologies (Olah et al.,
2012; Parakalan et al., 2012; Beutner et al., 2013; Chiu et al.,
2013; Hickman et al., 2013; Noristani et al., 2015b). To this
end, using cell-specific microarrays in CD11b+ microglia, we
recently identified DNA damage pathway and in particular the
tumor suppressor gene breast cancer susceptibility gene 1 (Brca1)
upregulation in an animal model of amyotrophic lateral sclerosis
(ALS) (Noristani et al., 2015b). Furthermore, we identified
BRCA1 as a novel human microglial marker and demonstrated
its specific over-expression in ALS microglia within the spinal
cord (Noristani et al., 2015b).

Although rodents are routinely used to study SCI
pathophysiology, there are significant differences in
neuroanatomical organization and neurophysiological features
between rodents and primates that is a major obstacle in
translation to clinics (Courtine et al., 2007; Friedli et al., 2015).
In a recent study, using contusive SCI in common marmosets
(Callithrix jacchus), analysis of changes in gene expression
established that the inflammatory response is prolonged and
the glial scar formation is delayed in non-human primates as
compared to rodents (Nishimura et al., 2014). Indeed, expression
levels of cytokines and immune cell markers that were maximal
at 1 week after injury decreased by 2 weeks post-SCI concomitant
with the onset of glial scar formation (Nishimura et al., 2014).
Thus, in order to improve translational research, experimental
findings in rodents need to be compared with those seen in
non-human primate models of SCI.

In the current study, we used CX3CR1+/eGFP transgenic
mice and flow cytometry to isolate microglia at several stages
after different lesion severities and carried out RNA sequencing
(RNA-Seq) on the isolated cells. We analyzed the transcriptomic
signature of microglia after hemisection (HS) and full transection
(FT) at 3, 7, and 14 days following lesion relative to that of
non-injured (NI) controls. We chose these two SCI models
to study microglia responses in environments with different
regeneration capacity; namely FT that shows no regeneration and
lateral HS because limited spontaneous regeneration does occur
between 3 days and 2 weeks post-lesion due to the presence of
spared tissue (Lee and Lee, 2013). Our results revealed distinct
transcriptional deregulation in microglia that is primarily driven
by time post-lesion, irrespective of lesion severity. Strikingly,
we also found that following SCI over 6% of microglia express
classical astrocytic markers including glial fibrillary acidic protein
(GFAP) and vimentin. Microglia expression of astrocytic markers
was evident as early as 72 h, peaking by 1 week post-lesion and
continued up to 6 weeks after both HS and FT SCI. We also
identified the potential involvement of DNA damage pathway
and BRCA1 in microglia following SCI. Finally, we extended
these results to spinal cord injured non-human primate and
confirmed an alteration of BRCA1 expression specifically in
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microglia after SCI. These data represent the first transcriptomic
analysis of microglia at multiple time-points after different spinal
cord lesion severities and thus provide novel insights into the
response profile of these cells following SCI.

MATERIALS AND METHODS

Ethical Approval
Experimental procedures followed the European legislative,
administrative and statutory measures for animal
experimentation (2010/63/EU). The study was approved by
the “Direction des Services Vétérinaires de l’Hérault,” the
regional ethic committee for animal experimentation, France
and the “Ministère de l’éducation nationale, l’enseignement
supérieur et de la recherche” (authorization number 34118 for
mice and CEEA-LR-12142 for non-human primates).

Experimental Procedures
Transgenic mice expressing eGFP in CNS resident microglia
and peripheral monocytes (CX3CR1+/GFP) were obtained from
Dr. Dan Littman, Howard Hughes Medical Institute, Skirball
Institute, NYU Medical Centre, New York, USA and maintained
on a C57BL/6 background (The Jackson Laboratory, Bar Harbor,
ME, USA) (Jung et al., 2000). Mice were housed in controlled
conditions (hygrometry, temperature and 12 h light/dark cycle).
Five adult male gray mouse lemurs (Microcebus murinus, 2
years of age) were also used in the current study. Microcebus
murinus were all born and bred in the animal facility (CECEMA,
University of Montpellier, France). Microcebus murinus were
housed together in cages (2 × 1 × 1 m, 3 lemurs per cage)
until surgery, and then separately (60 × 60 × 50 cm) for 1
week following injury before they were returned to their original
cages. All cages were equipped with wooden nests. Microcebus
murinus were kept at standard temperature (24–26◦C) and
relative humidity (55%) and fed with fresh fruits and a daily-
made mixture of cereals, milk and eggs. Water and food were
given ad libitum. Twenty-four hours after surgery Microcebus
murinus were given flour worm to increase their protein intake.

Spinal Cord Injury
Adult heterozygote CX3CR1+/GFP mice (12 weeks of age) were
anesthetized by inhalation of 1.5% isoflurane gas; laminectomy
was performed and lateral (HS) or (FT) were carried out under
microscope using a micro knife [10315-12, Fine Science Tools
(FST)], as previously described (Noristani et al., 2015a, 2016).
Lesions were done at thoracic 9 (T9) level to obtain complete
paraplegia (FT) or hemi paraplegia (HS) while preserving
complete respiratory function.

For SCI in Microcebus murinus, atropine (0.4–0.6 mg/kg)
was administered subcutaneously 15 min prior to the surgery
to inhibit salivary and bronchial secretions as well as vagal
stimulation. Anesthesia onMicrocebus murinuswas induced with
3–4% of isoflurane and maintained with 1–2% isoflurane and 1
L/min oxygen flow rate throughout the surgery. The skin and
muscles overlying the lumbar segment were cut along the back
midline and a laminectomy was carried out. Lateral (HS) of the
spinal cord was done at lumbar level 1 (L1) under microscope

using a micro knife. Muscles and skin were sutured and animals
were left to recover on a temperature-controlled pad.

Postoperative Cares
In mice, bladders were emptied manually twice daily until
recovery of full sphincter control (in the case of HS) or
throughout the 6 weeks of the study (in case of FT group).
Bodyweights were measured before surgery and daily throughout
the 6 weeks period after injury.

Lemurs were observed twice daily. Bodyweights were
measured daily until stabilization, then once a week.
Buprenorphine (0.01 mg/kg/day) and enterofloxacine
(5 mg/kg/day) were administered via intramuscular and
subcutaneous routes, respectively, for up to 1 week after the
injury. Animals were kept for 3 months after lesion.

Flow Cytometry
Flow cytometry was used to obtain microglia populations at
multiple stages after both HS and FT in CX3CR1+/GFP mice.
We used a 1 cm-segment centered on the lesion site to
isolate eGFP+ microglia. For non-injured (NI) control mice, an
equivalent 1 cm-thoracic segment was used. Male CX3CR1+/GFP

mice were anesthetized using tribromoethanol (500 mg/kg) and
intracardially perfused with 0.1 M RNAse-free phosphate base
saline (PBS, Invitrogen, Carlsbad, USA). Spinal cords were
thoroughly dissected in a cocktail of 750µl PBS, 100µl of 13
mg/ml trypsin, 100µl of 7 mg/ml hyaluronidase, 50µl of 4
mg/ml kinurenic acid (all from Sigma Aldrich, Saint Louis, USA)
and 20µl of 10 mg/ml DNAse I (Roche, Rotkreuz, Switzerland)
for 30 min at 37◦C. Cell suspension was sieved using 40µm sieve
(BD Biosciences, Franklin Lakes, USA), re-suspended in 0.9 M
sucrose and centrifuged for additional 20 min at 750 × g to
remove the myelin sheath. Cell pellet was re-suspended in 500µl
of 7AAD (1µl/ml, Sigma Aldrich, Saint Louis, USA). Microglia
were sorted using FACSAria (BD Biosciences, Franklin Lakes,
USA), equipped with a 488 nm Laser Sapphire 488–20. Size
threshold was used to eliminate cellular debris. Sorted microglia
were then centrifuged for 5 min at 700 g and re-suspended in
250µl of RLT lysis buffer (Qiagen, Maryland, USA) containing
1% beta-mercaptoethanol.

In a parallel experiment designed to better define the selected
cell population, we used 2 non-injured mice, 8 mice at 72 h
after HS and 7 mice at 1 and 2 weeks following HS. Pelleted
cells collected after sucrose gradients (as described above) were
re-suspended in PBS, first incubated for 10 min at 4◦C with
Fc-receptor block CD16/32 antibody (1:100; BD Biosciences,
Franklin Lakes, USA) and then 30 min at 4◦C with mouse anti-
CD11b-PE (1:200; BD Pharmingen, San Diego, USA), CD45-
APC (1:200; BD Pharmingen, San Diego, USA), LY6C-PE-Cy7
(1:200; BD Biosciences, Franklin Lakes, USA). FACS analyses
were performed using the FACSAria (BD Biosciences, Franklin
Lakes, USA). All flow cytometry data were analyzed using the
FlowJo Software (Ashland, Oregon, USA).

RNA Sequencing
Total RNA was isolated using the RNeasy Mini Kit, (Qiagen,
Maryland, USA) with DNAse treatment. The quality of starting
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RNA and amplified cRNA were tested (Agilent 2100 bioanalyzer,
RNA 6000 Pico LabChip, Palo Alto, USA) and used only
when the RNA integrity number (RIN) was >7, as previously
described (Kiewe et al., 2009). Total RNA was isolated from
mice at 72 h, 1 and 2 weeks post-injury (n = 29 for HS and
n = 48 for FT) and from non-injured (NI) controls (n =

38). RNA-Seq was performed on the polyadenylated fraction
of RNA using HiSeq 2500 (Ilumina, San Diego, USA). Three
biological replicates were used for all time-points including
NI control. 10 ng of total RNA was used for each replicate
library. FastQC was used to assess sequencing quality control.
FASTX-Toolkit was used to remove the reads containing adapter
sequences. Filtered reads were mapped with TopHat v2.0.9
software to use the UCSC mm10 release reference on new
junctions and known annotations. RSeQC v2.3.3, PicardTools
v1.92 and SamTools v.1.18 software were used to verify biological
quality control and summarization. HTSeq v.0.5.4p3 was used
to prepare the count data. R/Bioconductor edgeR software
v.3.3.6 was used to carry out data normalization and differential
expression analyses. Genes that achieved 10 counts in at least
two replicates were kept, whereas very low expressed genes
were filtered out. The filtered data were normalized by the
library size and differentially expressed genes were estimated
using negative binomial general model statistics. To identify
differentially expressed transcripts, we defined a criterion of a
2-fold and greater difference plus a significant (p < 0.05) false
discovery rate (FDR). Statistics: t-test with un-equal variance.
The R/Bioconductor MFuzz package v.2.18.0 was used for fuzzy
clustering of the differentially expressed genes over time in both
HS and FT compared to NI controls. Pathway analysis was
performed using MetaCore (Thomson Reuters), as described
previously (Noristani et al., 2015b, 2016). Accession number for
RNA-Seq data: Gene Expression Omnibus (GE0) GSE96055.

Primary Antibodies for Immunological Staining
Primary antibodies used included rabbit anti GFAP (1:1000; Z
0334; Dako, Glostrup, Denmark), mouse anti GFAP (1:1000;
G3893; Sigma Aldrich, Saint Louis, USA), chicken anti
GFP (1:1000; Ab13970; Abcam; Cambridge, UK), mouse anti
vimentin (1:500; V2258-2ML; Sigma Aldrich, Saint Louis, USA),
rabbit anti IBA1 (1:1000; 019-19741; Wako Pure Chemical
Industries, Osaka, Japan), rabbit anti BRCA1 (1:100, Santa Cruz
Biotechnology, Dallas, USA), rabbit anti KI67 (1:500; NCL-
Ki67p; Leica, Novocastra, Wetzlar, Germany) and rabbit anti
S100 beta (1:1000, (DAKO, Denmark).

Immunohistochemistry
Hemisected and non-injured control female mice as well
as hemisected Microcebus murinus were anesthetized via
intraperitoneal injection of tribromoethanol (500 mg/kg) or
ketamine, respectively and then intracardially perfused using
cold 0.1 M PBS followed by 4% paraformaldehyde (PFA, Sigma
Aldrich, Saint Louis, USA). Spinal cords were carefully removed
and post-fixed for additional 2 h in 4% PFA at room temperature,
cryoprotected in 30% sucrose, included in Tissue Tek (Sakura,
Alphen aan den Rijn, The Netherlands), frozen and kept at
−20◦C until processing. Frozen spinal cords were cut either

longitudinally (20µm, mice only) or transversally (14µm, mice
and Microcebus murinus) and collected on Superfrost Plus©
slides.

For fluorescence immunohistochemistry, slides were washed
in 0.1 M PBS and incubated for 20 min in 20 mM lysine (pH
7.2). To block non-specific labeling, sections were incubated for
1 h in 1% bovine serum albumin (BSA, Sigma Aldrich, Saint
Louis, USA) and 0.1% Triton X-100 (Fisher Scientific, Illkirch,
France). Sections were then incubated in primary antibody
for 48 h at 4◦C. Slides were then washed in 0.1 M PBS and
incubated with secondary antibodies conjugated to Alexa 488,
594, or 633 (1:1000, Vector Laboratories, Burlingame, USA
and Millipore Bioscience Research Re-agents, Massachusetts,
USA) and with the nuclear stain 4′,6-diamidino-2-phenylindole
dihydro-chloride (DAPI, 2 ng/ml, Invitrogen, Massachusetts,
USA). Sections were coverslipped using fluorescence mounting
medium (DAKO, Denmark).

For peroxidase immunohistochemistry, sections were treated
for 30 min in 20 mM lysine followed by incubation in 1%
hydrogen peroxide (H2O2) for 30 min. Sections were blocked
for 1 h with 0.1 M PBS containing 1% BSA and 0.1% Triton X-
100 and then incubated for 48 h at 4◦C with primary antibody.
Slides were rinsed with 0.1 M PBS for 30 min and incubated
in 1:1000 dilutions of the corresponding peroxidase-coupled
secondary antibody (Jackson Immunoresearch, UK) for 1 h at
room temperature. Slides were then rinsed with 0.1 M PBS.
The peroxidase reaction product was visualized by incubating
in a solution containing 0.022% of 3,3′diaminobenzidine
and 0.003% H2O2 for 30 min. The reaction was stopped
by rinsing the sections in 0.1 M PBS for 15 min. Slides
were then dehydrated in ascending ethanol concentration and
finally xylene. Coverslips were applied using Entellan (Merck
KGaA, Germany).Morphometric fluorescence photographs were
obtained using a fluorescent microscope (Zeiss, Axio Imager
M1, Oberkochen, Germany), a laser scanning inverted (Leica
SP5, Mannheim, Germany) and confocal microscopy (Zeiss
5 Live Duo, Oberkochen, Germany) to assess co-expression
of two proteins. 225 × 225µm2 images were taken adjacent
to the lesion center for each animal and the co-localization
coefficient was measured between the two channels. In total we
assessed co-localization within a 6750 × 6750µm2 surface area
adjacent to the lesion site. Laser intensity and detector sensitivity
settings were kept constant for all acquisition of all images in
a given experiment. 5–7 animals were used per time-point. Co-
localization analysis was performed using the Carl Zeiss LSM-
710-NLO software. Morphometric bright field photographs were
obtained and analyzed using NanoZoomer RS slide scanner
(NanoZoomer Digital Pathology System and NDP view software,
Hamamatsu, Japan).

Relative Optical Density
To determine SCI-induced changes in BRCA1 expression
in Microcebus murinus, the mean optical density (OD) was
measured at different distances 3 months after spinal cord (HS)
using ImageJ (National Institutes of Health, USA), as described
previously (Noristani et al., 2010). OD is a sensitive and reliable
method to measure expression level of a given signal and to
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detect changes caused by different experimental conditions.
Following peroxidase immunostaining, spinal cord sections were
scanned using Nanozoomer RS slide scanner that uses constant
light intensity and exposure time to obtain peroxidase-labeled
photographs (NanoZoomer Digital Pathology System and NDP
view software, Hamamatsu, Japan). Digital images were exported
with RGB color profiles, using identical exposure settings for
all sections. To avoid potential variation in staining intensity
between different slides or animals, we carried out BRCA1
immunostaining of all animals in parallel. BRCA1 intensity was
analyzed in at least fifty sections throughout the lesion segment of
the spinal cord with 210µm intervals. Non-specific background
was determined for individual section and subtracted from the
general signal. Optical density measures included the graymatter,
the white matter and the dorsal funiculus of the spinal cord.
By clearly distinguishing lesion epicenter (section with highest
damaged area) from un-injured tissue, we were able to determine
differences in BRCA1 intensity along the entire segment of the
spinal cord both above and below the injury site.

Statistical Analysis
Paired t-tests were used to compare differences in BRCA1
intensity at similar distance between above and below the lesion
site inMicrocebus murinus. Significance was defined as p ≤ 0.05.
The data were analyzed using GraphPad Prism 5.0 (GraphPad
Software, Inc, CA, USA). All data are shown as the mean ±

standard error of the mean (SEM).

RESULTS

Time-Dependent Microglia/Macrophages
Responses after SCI
To study microglia responses after SCI, we used chemokine
(C-X3-C Motif) Receptor 1 (CX3CR1+/eGFP) transgenic mice
that selectively express enhanced green fluorescent protein
(eGFP) in CNS resident microglia and peripheral monocytes
(Jung et al., 2000). Dual immunohistochemistry in uninjured
mice, using ionized calcium binding adaptor molecule 1
(IBA1) confirmed specific microglial eGFP expression in spinal
cord of CX3CR1+/eGFP mice (Figures S1A–C). Moreover,
immunostaining using S100 beta (Figures S1D–F), GFAP
(Figures 3C–E) and vimentin (Figures 3L–N), established that
in non-injured CX3CR1+/eGFP mice eGFP is not expressed in
astrocytes. Following injury, no co-localization of eGFP and
S100 beta was observed (Figures S1G–I) ruling out potential
expression of CX3CR1 by reactive astrocytes.

To study neuroinflammation at early and chronic stages
after injury, we used flow cytometry to isolate eGFPhigh

expressing cells at 72 h, 1 and 2 weeks post-lesion in both
HS and FT. No eGFP expression was observed in wild type
control littermate (Figure S2A). Sorted eGFPhigh expressing
cells (Figures S2A–D, red dots) were further analyzed for
RNAseq. In a parallel experiment, to better characterize the
selected eGFPhigh cell population, we used a combination of
CD45, CD11b and LY6C antibodies in both non-injured and
pathological conditions (all time points after HS). Ramified
microglia express CD11b+/CD45low cells whereas fully activated
microglia and infiltrating macrophages are CD11b+/CD45high

cells (David and Kroner, 2011). At 72 h after SCI it was
possible to distinguish 2 sub-populations of eGFP+ cells based on
CD45 expression level (Figure S2F). These sub-population most
likely correspond to ramified microglia (CD45low) and activated
macrophages (CD45high). In contrast, at 1 and 2 weeks post-
injury this discrimination was not possible (Figures S2G,H).
Further combination of CD45 and LY6C showed that at all
time points, eGFPhigh cells were LY6C−, strongly suggesting that
the majority of selected cells were microglia (Figures S2I–U).
Even if we cannot exclude contamination with infiltrating
macrophages, we will further refer to the selected population as
microglia.

SCI induced a similar increase in microglia number after HS
and FT SCI compared to NI control (Figures S2B–D) and RNA
from isolated microglia was of high quality (RIN > 7, data not
shown). We then carried out RNA-Seq analyses to determine
transcriptomic changes in microglia at multiple time-points after
the two SCI severities (Tables S1, S3). We found an increased
expression of microglia and monocyte markers (including Arg1,
Ccr2, and Emr1) (Mildner et al., 2007; Gautier et al., 2012; Zhang
et al., 2014; Greenhalgh et al., 2016) that were independent
of lesion severity (Figure S3A, Table S3). In all samples we
detected only very low expression and no lesion-induced change
in neuronal (Tubb3, Isl1, Syt1 and Gabra1), astrocytic (Aldh1l1,
Tnc and Aqp4) or oligodendrocyte (Sox10, Mag, Mog, Mobp,
Cx47, and Cldn11) transcripts, further confirming the purity
of our isolation procedure (Table S3). To identify differentially
expressed (DE) transcripts, we defined a criterion of a 2-fold and
greater difference plus a significant (p < 0.05) false discovery
rate (FDR). We identified 3100, 470, and 626 DE genes in HS
as well as 2395, 889, and 1004 DE genes in FT group at 72 h,
1 and 2 weeks post-lesion compared to NI control, respectively
(Figures 1A,B). 225 genes were deregulated in both HS and FT
groups at all time-points, whilst only 37 and 249 genes were
specifically deregulated in HS and FT relative to NI control,
respectively (Figure 1C). Overall, microglia displayed a greater
number of upregulated genes compared to down regulated genes
(Figures 1D–I). In both injury severities, a higher number of DE
genes was observed at 72 h compared to 1 and 2 weeks post-
lesion. Comparisons between the two injury severities revealed
a greater number of DE genes after HS compared to FT injury
at 72 h (Figures 1D,G). However, at 1 and 2 weeks post-lesion
FT displayed a greater number of DE genes compared to the HS
group (Figures 1E,F,H,I). To determine the relationship between
gene expression profiles at different time-points post-lesion, we
generated a multidimensional scaling plot (Szulzewsky et al.,
2016). Samples from NI mice clustered together and samples
from injured animals clustered according to time after injury but
not lesion severity (Figures 1J,K).

To provide amore in-depth analysis, we directly compared the
total number of differentially expressed genes between the two
injury severities at all 3 time-points (comparison number 7, 8,
and 9 Figure S4A). No differences in gene expression were found
upon direct comparison betweenHS and FT groups at 72 h whilst
only 8 dysregulated and 1 up-regulated transcripts were found at
1 and 2 weeks, respectively (Figures S4B–E).

Taken together, these findings demonstrate that (1)
SCI induces a higher number of upregulated than down
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FIGURE 1 | Longitudinal analyses of de-regulated genes in microglia after 2 severities of SCI. (A–C) Venn diagrams displaying the number of deregulated

genes in microglia isolated by flow cytometry at the indicated stages after HS and FT. Relationship between average expression and log 2 of the fold-change in

microglia at different stages after HS (D–F) and FT (G–I) injuries. Horizontal blue lines indicate the cut off criterion used to define deferentially expressed genes with a

FC >2 (logFC comprised between–1 and 1) and a significant false discovery rate (FDR) values (p < 0.05). Red points indicate significantly deregulated genes following

injury. Multidimensional scaling plots displaying distances, in terms of biological coefficient of variation (J) and fold change (K) in microglia at different stages after HS

and FT injuries relative to NI control.

regulated transcripts in microglia, (2) at 72 h after HS
injury microglia express a higher number of DE genes
than FT, (3) the number of DE genes in microglia at 1

and 2 weeks after lesion are higher after FT than in HS
and (4) microglia responses after injury are time- but not
severity-dependent.
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Microglia Responses after SCI Involve
Early Anti-Inflammatory Response and
Proliferation
Activation of microglia has been described as neurotoxic (also
known as M1) and neuroprotective (also known as M2) states
(Hickman et al., 2013; Kroner et al., 2014), although, more
recent findings suggest a multidimensional model of activation
(Xue et al., 2014; Ginhoux et al., 2016; Ransohoff, 2016).
We identified significantly increased expression of 12 pro-
inflammatory and 9 anti-inflammatory transcripts after injury
(Figures 2A–D). Anti-inflammatory transcript upregulation was
more evident at 72 h post-lesion (9/9 transcripts, following
both HS and FT, Figures 2B,D) compared to pro-inflammatory
markers (9/12 transcripts after HS and 10/12 transcripts after
FT, Figures 2A,C). Moreover, the level of over expression was
overall higher for anti-inflammatory (Figures 2B–D) compared
to proinfammatory markers (Figures 2A–C). Comparison of
DE genes between the two injury models revealed only
minor differences. In particular, the FT group showed slight
upregulation of pro-inflammatory, and down regulation of anti-
inflammatory, transcripts (Figures 2C,D), compared to HS. It
is, however, important to note that altered abundance of this
limited number of transcripts should not be used to definitively
infer microglial pro vs. anti-inflammatory roles in the context
of SCI.

FIGURE 2 | Acute inflammatory response and proliferation of microglia

after SCI. Bar graphs displaying alterations in pro-inflammatory and

anti-inflammatory marker genes in microglia after HS (A,B) and FT (C,D).

Values are actual fold change. # represents transcripts with different

expression between the two lesion severities at the same time-points after

injury. Schematic drawing of longitudinal spinal cord sections from HS groups

illustrating the lesion site (red square) and reference frames for displayed field

of views. Confocal micrographs indicating proliferation of microglia at 72 h

after SCI (E–H). Proliferation of microglia ceased by 1 week after injury (I–L).

Scale bars (E–L), 100µm. LS, lesion site. (E–H) HS 72 h and (I–L) HS 1 week.

FC, fold change.

To provide insight into the potential roles of microglia
at different stages after injury, we carried out pathway
analysis of DE genes in the two experimental models at
the three time-points following lesion (Noristani et al.,
2015b, 2016). At 72 h post-lesion, microglial responses
predominantly involved proliferation as indicated by up-
regulation of numerous genes involved in cell cycle processes
(Table S2). We confirmed proliferation of microglia at 72 h post-
lesion using KI67, which is exclusively expressed by actively
dividing cells (Figures 2E–H). By 1 week after lesion proliferation
had ceased (Figures 2I–L) and microglial responses included
inflammation, defense response, cytoskeleton and extracellular
matrix remodeling (Table S2). Pathway analysis comparison
between the two lesion severities also showed no differences
between FT and HS groups, further confirming that microglial
responses after injury is mainly driven by time post-lesion.

Altogether, these data suggest that (1) acute microglial
responses to injury involve anti-inflammatory signaling, (2)
proliferation of microglia principally occurs within 72 h post-
lesion, (3) by 1 and 2 weeks following CNS lesion microglia
regulate multiple aspects of immune response and (4) responses
ofmicroglia after injury differ only slightly between the two lesion
severities.

SCI Induces Expression of Astrocytic
Markers in Microglia
Interestingly, our pathway analysis of microglial transcriptional
changes also suggested the involvement of a “neural stem cell
lineage” pathway at 1 week after FT (Table S2) due to increased
expression of astrocyte-specific marker genes including vimentin
(Vim) and glial fibrillary acidic protein (Gfap) (Figure S5).
Gfap transcript levels were significantly increased at 72 h in
both HS and FT and in FT only 1 week after injury, while
Vim transcript levels were significantly increased at all time
points after both HS and FT injuries (Figures 3A,B). Using
immunohistochemistry, we confirmed protein expression of
both GFAP and VIM in CX3CR1+/eGFP microglia after SCI
(Figures 3F–K,O–T). In contrast, GFAP/eGFP or VIM/eGFP
co-expression was not observed in non-injured CX3CR1+/eGFP

spinal cords (Figures 3C–E,L–N). In the injured spinal cord,
GFAP-expressing microglia were primarily located within
500µm distance adjacent to the lesion site whereas VIM-
positive microglia were mainly found within the lesion epicenter
(Figures 3F–H,O–Q). Morphologically, GFAP and VIM proteins
were predominantly located in somata and primary processes
(Figures 3I–K,R–S). SCI-induced astrocytic marker expression
by microglia was also supported by pronounced upregulation
of Serpin Family A Member 3 transcripts (Serpina3n), a marker
of reactive astrocytes (Zamanian et al., 2012) (Figures S3B,C).
Serpina3n transcript expression increased more than 20-
fold at 72 h post-lesion and 30-folds after HS and FT
SCI, respectively (Figures S3B,C). In addition, at 72 h after
FT we also observed a 2.4-fold increased expression of
the pan-astrocytic marker Aldh1l1 (Cahoy et al., 2008). No
changes were observed in other astrocyte-specific transcripts
(Table S3).

We next examined SCI-induced expression of astrocytic
markers in microglia of adult spinal cord at multiple stages
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FIGURE 3 | Astroglial marker expression by microglia after SCI. Bar

graphs indicating up-regulation of Gfap and Vim transcripts expressions in

microglia after SCI (A,B). Values are actual fold change (**p < 0.01; ***p <

0.001 by t-test). Schematic drawing of longitudinal spinal cord sections from

non-injured control and after FT illustrating the lesion site (red rectangle) and

reference frames for the displayed fields of view. Confocal micrographs of

longitudinally cut non-injured spinal cord section showing no eGFP/GFAP

(C–E) or eGFP/vim (L–N) co-expression. Following SCI eGFP/GFAP (F–K) and

eGFP/vim (O–T) protein co-expressions were evident in a sub-population of

microglia in CX3CR1+/eGFP mice. Small insets in K,T are orthogonal

projections of confocal z-stacks, which show eGFP co-localization with GFAP

and vim, respectively (confocal z-stack with XY, XZ, and YX views). Scale bars

(C–E,L–N), 50µm; (F–H), 100µm; (O–Q), 25µm; (I–K, R–T), 10µm. LS,

lesion site. (C–E,L–N) non-injured and (F–K,O–T) FT 2 weeks.

after different lesion severity (Figure 4, Table S3). Time-course
analyses in CX3CR1+/eGFP mice showed that astrocytic marker
expression in microglia starts as early as 72 h after injury and

FIGURE 4 | Astrocytic marker expression in microglia continues up to 6

weeks after different lesion severities. Schematic of longitudinal spinal

cord section after HS SCI illustrating the lesion site (red square) and reference

frames for the displayed fields of view. Confocal micrographs showing DAPI

(B), eGFP (C), IBA1 (D) and GFAP (E) in CX3CR1+/eGFP. Micrographs were

taken from regions adjacent to the lesion site (overlap of red and black squares

in the schematic view). Higher magnification images, acquired from the same

spinal cord, further from the lesion (black square without overlap with the

lesion in the schematic view) confirmed the presence of IBA1/GFAP

co-expressing cells (F–I). Quantitative analysis of IBA1/GFAP co-expressing

cells (arrowheads in A,F) in the 2 lesion severities at multiple stages after SCI

(J). Scale bars (A–E), 50µm; (F–I), 10µm. Bars represent mean ± SEM. 225

× 225µm2 images were taken adjacent to the lesion center for each given

animal and the colocalization coefficient were measured between the two

channels. In total we assessed colocalization within 6750 × 6750µm2 surface

area adjacent to the lesion site in 5–7 animals at each given time-point.

Colocalization analysis was performed using the Carl Zeiss LSM-710-NLO

software. (A–E) HS 4 weeks, (F–I) HS 1 week.

peaks at 1 week post-lesion reaching 7.4 and 6.2% in HS and FT
groups, respectively (Figure 4J). By 6 weeks post-lesion only 2.3
and 1.6% of microglia continued to express GFAP in the HS and
FT groups, respectively (Figure 4J).

These data demonstrate that expression of astrocytic markers
in microglia is evident at 72 h after injury, peaks at 1 week post-
lesion and decreases to lower levels up to 6 weeks (the longest
time-point investigated in this study) after both HS and FT SCI.

Breast Cancer 1 (Brca1) Pathway
Involvement in Microglia after SCI
Pathway analyses also identified DNA damage in microglia
at 72 h after HS SCI (Table S2; Figure 5A) with over
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FIGURE 5 | Induction of DNA damage pathway genes in microglia after SCI. Gene ontology pathway map analysis displaying the induction of DNA damage

pathway in microglia after SCI (A). Thermometers indicate deregulated transcripts (red, up-regulated; blue, down-regulated). Interactions between objects, green

(positive or activation); red (negative or inhibition); gray (unspecified); B: Binding (physical interaction between molecules); Binding protein, Kinase, Generic

enzyme. Bar graphs displaying over-expression of transcripts involved in DNA damage pathway at different time-points after HS and FT injuries (B–I). Values are

actual fold change, t-test between HS and FT at a given time point (*p < 0.05; ***p < 0.001).

65% (17/26) of deregulated transcripts from this pathway
(Table S2). A more in-depth time-course analysis of
DE transcripts involved in the DNA damage pathway
revealed a consistent deregulation that peaked 72 h
after both HS and FT SCI (Figures 5B–I). Concomitant
dysregulation of these genes pointed toward a potential
involvement of Brca1 as a key transcription regulator
(Figure 5A).

To determine whether SCI-induced BRCA1 over-
expression in microglia is observed across species, we

carried out immunohistochemistry in spinal cord injured
Microcebus murinus, a non-human primate (Figures 6A–I).
Morphologically, BRCA1-positive microglia in Microcebus
murinus could be subdivided into two groups: (a) ramified/
resting with small cell bodies and thin-to-medium-size
processes that were randomly distributed (Figure 6I), and
(b) activated/amoeboid with enlarged cell bodies and short/thick
processes (Figures 6C,F). Activated/amoeboid microglia
were evident not only within the lesion site but also in
the dorsal funiculus (Figures 6A–F), whereas only ramified
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microglia were observed caudal to the lesion (Figures 6G–I).
To determine which cell population express BRCA1, we
carried out immunohistochemistry using adjacent sections
(Figures S6A–I), because autoflorescence in primate spinal
cord prevented us from performing dual-label fluorescent
immunostaining. IBA1 immunostaining demonstrated identical
pattern and cell morphology to that of BRCA1, strongly
suggesting microglial expression of BRCA1 in Microcebus
murinus.

Finally, quantitative analyses in Microcebus murinus
demonstrated a pronounced increase in BRCA1 expression
adjacent to the lesion site compared to rostral and caudal
segments of the spinal cords both in the gray and the white
matters (Figures 6J,K). In addition, increased BRCA1 expression
was also found specifically within the dorsal funiculus rostral to
the lesion site (Figures 6A–C,L).

These data demonstrate that BRCA1 overexpression is
induced by SCI in microglia of both rodents and non-human
primates.

FIGURE 6 | Increased BRCA1 reactivity 3 months after SCI in

Microcebus murinus. Bright field micrographs displaying BRCA1-positive

microglia rostral (A–C), within (D–F) and caudal (G–I) to the lesion site 3

months after spinal cord hemisection in Microcebus murinus. Note that

BRCA1-positive microglia displayed a characteristic ramified morphology with

long/thin processes caudal to the lesion sites (I), whilst activated/amoeboid

microglia had enlarged cell bodies with short/thick processes that were mainly

evident within the dorsal funiculus rostral to the lesion site (C) and adjacent to

the lesion epicentre (I). Line graphs displaying quantitative assessment of

BRCA1-positive microglia reactivity within the gray matter (J), the white matter

(K) and the dorsal funiculus (L) of the spinal cords at different distances to the

lesion epicentre. Note the increase in BRCA1 reactivity within the gray matter

and the dorsal funiculus (l) of the spinal cord rostral to the lesion site as

compared to caudal regions after lesion. ***P < 0.001 paired t-test compared

to similar distance rostral to the lesion site. Scale bar (A,D,G), 500µm;

(B,E,H), 200µm; (C,F,I), 50µm.

DISCUSSION

Findings of the current study indicate that microglia undergo
specific transcriptomic alterations after SCI and that these
alterations are primarily driven by time after lesion, irrespective
of injury severity. Importantly, SCI induces persistent expression
of astrocytic markers in microglia, starting as early as 72 h after
injury and maintained up to 6 weeks post-lesion (Figure 7).
Microglia reaction after SCI also involves activation of DNA
damage pathway in particular pointing toward Brca1 in both
rodents and non-human primates. These data, through the
first transcriptomic analysis of microglia at multiple time-
points after different lesion severity, provide novel insight into
neuroinflammation following CNS lesion.

Microglia Compose the Majority of
Selected eGFPhigh Expressing Cells
CX3CR1+/eGFP transgenic mice express eGFP in CNS resident
microglia and infiltrating monocyte-derived macrophages. The
breakdown of blood spinal cord barrier induced by SCI permits
the infiltration of blood monocytes, thus activated macrophages
result from a mixed population of resident microglia and
infiltrating blood-derived macrophages (Popovich et al., 1996).
Therefore, we cannot exclude that our selected cells for RNA-Seq
are contaminated with infiltrating monocytes.

Following SCI, an increase in CX3CR1 expression is observed
from 72 h post-injury and is further amplified by 1 and 2 weeks
(Donnelly et al., 2011). As all CNS macrophages (microglia
and monocyte-derived macrophages) express CD11b, they are
often discriminated based on the level of CD45 expression
(recruited monocytes and activated microglia are CD45high and
resident microglia are CD45low) (Donnelly et al., 2011). In our
study, at 72 h post-injury, it was possible to discriminate two
populations of cells (CD45high and CD45low), eGFP+ selected
cells correspond to both populations, however, infiltrating
monocyte-derived macrophages were not detected in the spinal
cord lesion before 3 days post-injury (Popovich and Hickey,
2001). Thus, the level of contaminating macrophages is most
likely very low.

FIGURE 7 | Schematic cartoon illustrating microglial response after

SCI. Microglia undergo rapid proliferation post-injury, followed by a

predominant role in neuroinflammation, irrespective of lesion severity. Early

after SCI, microglia also express markers associated with DNA damage

pathway and in particular Brca1. Microglia displayed a dual phenotype with

increased expression of both pro- and anti-inflammatory factors after both HS

and FT SCI. Concurrently, a small percentage of microglia co-express

astrocyte-specific markers at acute and chronic stages after SCI.
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In contrast, at 1 and 2 weeks post-injury this discrimination
was not possible, however, eGFP+ selected cells for RNA-
Seq had a CX3CR1highLy6Cneg/low antigenic phenotype.
Circulating monocytes include two principal subpopulations
that both express CX3CR1, the so-called inflammatory
monocytes (CX3CR1lowLy6Chigh) and a patrolling subgroup
(CX3CR1highLy6Cneg/low cells) (Geissmann et al., 2003). Using
CX3CR1+/eGFP mice to identify monocyte-derived macrophages
in a model of contusion SCI through adoptive cell transfer
and bone marrow chimera Blomster et al. identified that
two subsets of monocytes (CD11b+/LY6Chigh/GFPlow and
CD11b+/LY6Cneg/low/GFPhigh cells) were recruited in the
injured spinal cord 1 week after injury (Blomster et al., 2013).
Both subsets were observed around the lesion epicenter and
CD11b+/LY6Cneg/low/GFPhigh macrophages were recruited
with lower efficiency, indicating a preferential recruitment of
inflammatory monocytes. This preferential concentration of
infiltrating monocytes within the margins of the lesion had
also been reported earlier using immunohistochemical analysis
(Shechter et al., 2009).

Among the CD45+CD11b+ macrophages, the infiltrating
Ly6C−Ly6G+ (Ly6C+, monocytic and Ly6G+, granulocytic
subset) and Ly6C+Ly6G− fractions similarly peaked at 12
h after SCI and returned to the non-injured level at 7 days,
while Ly6C−Ly6G− fraction increased gradually from 4 h to
7 days, however with a relatively low number of cell (Saiwai
et al., 2013). The initial phase following SCI is associated with
LY6ChighCX3CR1low macrophage infiltration corresponding
to the “classically activated” cells, while the second phase
is characterized by infiltration of LY6ClowCX3CR1high,
“alternatively activated” macrophages, which are anti-
inflammatory. At 7 days post-injury, LY6ClowCX3CR1high

indeed express anti-inflammatory cytokines (Shechter et al.,
2013).

Taken together, since we have selected eGFP+ cells located in
a 1 cm segment centered on the lesion site and that these cells
were CD11+/LY6Cneg/low/GFPhigh we cannot exclude a low level
of contamination with anti-inflammatory macrophages.

Time-Dependent Transcriptomic
Responses in Microglia after SCI
We report that responses of microglia after injury are time-
dependent and primarily involve proliferation early after injury
followed by neuroinflammation at more chronic stages after
both HS and FT SCI. Although increased proliferation early
after SCI might also be attributed to infiltrating monocyte-
derived macrophages, a recent study has shown that CNS
resident microglia can proliferate in the absence of peripheral
monocytes (Elmore et al., 2014). Moreover, Greenhalgh and
David (2014) reported greater proliferation of resident microglia
compared to infiltrating monocyte-derived macrophages after
SCI (Greenhalgh and David, 2014). Early microglial proliferation
has been also reported in mouse models of Alzheimer’s disease
(Rodriguez et al., 2010) and multiple sclerosis (Ponomarev et al.,
2005), suggesting that proliferation of microglia precedes their
activation in multiple neuropathological conditions.

To our knowledge, microglia-specific transcriptomic analysis
following SCI has not been reported. We recently demonstrated
using RNA-Seq analysis of astrocytes at different stages after
SCI that, in contrast to microglia, the astrocytic response is
both time- and severity-dependent (Noristani et al., 2016). We
also establish that SCI induces an astroglial conversion toward
neuronal lineage with over 10% of astrocytes expressing classical
neuronal progenitor markers with typical immature neuronal
morphology (Noristani and Perrin, 2016; Noristani et al., 2016).
Together, these findings suggest that glial cells undergo specific
transcriptomic alterations after SCI with the microglial response
predominantly influenced by the time post-lesion, and the
astrocytic response influenced by both time and injury severity.

A prior flow cytometric analysis of microglia/macrophages
following SCI revealed an up-regulation of neurotoxic factors
(Kroner et al., 2014). However, this study probed only a small
number of selected transcripts. Gene profile analysis using
microarrays of the whole spinal cord have provided more global
insights into SCI-induced gene changes; for example, Kirgel et al.
described a predominant over-expression of neurotoxic genes
following SCI (Kigerl et al., 2009). A recent RNA-Seq study
characterized temporal genome-wide gene expression profiles in
the whole rat spinal cord following contusive SCI (Shi et al.,
2017). Most de-regulated pathways included immune response,
MHC protein complex, antigen processing and presentation
cytokine and/or chemokine activity. Spinal cord gene profiling
following contusion SCI in non-human primate revealed that
the inflammatory response is extended and the onset of
glial scar formation is delayed when compared to rodents
(Nishimura et al., 2014). Based on transcriptomic profiles the
authors discriminated two distinct phases, an acute phase (0–2
weeks post-SCI) characterized by considerable gene expressions
changes and a later “steady state” phase. Pathways that are de-
regulated in the acute phase include immune responses and
production of cytokines and reactive oxygen species (ROS).
Using IBA1 immunohistochemistry, a marked infiltration of
proliferative microglia/macrophages was reported at the lesion
site 1 week after injury in common marmosets (Callithrix
jacchus) that decreased at 2 weeks post-SCI and disappeared by
6 weeks.

In our study, microglia displayed a dual phenotype with an
acute increase in anti-inflammatory factors followed by later
upregulation of pro- and anti-inflammatory factors after both
HS and FT SCI. These findings suggest a time-dependent shift
induced by SCI in microglial phenotype toward a more pro-
inflammatory function, as described in a mouse model of ALS
(Gerber et al., 2012; Liao et al., 2012). In contrast, others had
reported predominant pro-inflammatory activation of microglia
after contusion SCI, which may be due to their focus on
a relatively small number of selected transcripts rather than
genome-wide analyses (Kigerl et al., 2009; Kroner et al., 2014). In
addition, contusion injury causes greater inflammatory response,
which may induce different effects on microglia activation.

So far, osteopontin (SPP1) is the only microglia-derived
neurotrophic factor whose positive effect has been reported after
SCI (Hashimoto et al., 2007). Here, we demonstrate significant
increases in microglia-derived insulin-like growth factor 1 (Igf1),
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arginase 1 (Arg1) and progranulin (Grn) transcripts, among
others, which possess neurotrophic effects both in vitro and in
vivo (Deng et al., 2009; Ryan et al., 2009; Laird et al., 2010).
Similarly, so far only 3 of microglia-derived pro-inflammatory
factors have been investigated after SCI; namely interleukin-1β
(Liu et al., 2008), matrix metalloproteinases 12 (Mmp12) (Wells
et al., 2003) and NADPH oxidase 2 (Cybb) (Cooney et al., 2014).
Here we report over-expression of additional microglia-derived
proinflammatory transcripts involved in immune/inflammatory
response including lysozyme 1 and 2 (Lyz1 and Lyz2), chemokine
(C-X-C motif) ligand 9 and 10 (Cxcl9 and Cxcl10), interferon-
induced transmembrane protein 1, 2 and 3 (Ifitm1, Ifitm2, and
Ifitm3) after injury, some of which have been shown to inhibit
neurite outgrowth in vitro and in vivo (Ibi et al., 2013). Thus, our
results highlight new target genes and raise the possibility that
modifying the expression of these transcripts in microglia may
reveal their precise contribution in SCI pathophysiology.

An on-going challenge in studying SCI-induced
neuroinflammation is the difficulty to discriminate between
CNS resident microglia and infiltrating peripheral macrophages,
even if recent findings have proposed specific markers to
distinguish between these cell types (Chiu et al., 2013; Butovsky
et al., 2014; Gosselin et al., 2014; Bennett et al., 2016). Using these
markers, Butovsky and colleagues reported clear distinctions
in the transcriptomic profile of microglia and macrophages
(Butovsky et al., 2014). Furthermore, a recent report suggests
that Arg1 is exclusively expressed in infiltrating macrophages,
but not microglia, after SCI (Greenhalgh et al., 2016). We have
used CX3CR1+/eGFP mice that express eGFP in microglia,
monocytes as well as in a subsets of natural killer cells and
dendritic cells (Jung et al., 2000). However, microglia display
enlarged cell morphology and higher eGFP expression compared
to peripheral infiltrating macrophages and we were able to use
these properties to preferentially isolate microglia after SCI using
flow cytometry selection (Figure S2).

SCI Induces an Autologous Expression of
Astrocytic Markers in Microglia
We also demonstrate injury-induced expression of classical
astrocyte-specific markers in a sub-population of microglia.
Astroglial markers in microglia were localized within
500µm of the lesion epicenter, where the highest density
of inflammatory cells is found. In vitro studies support the ability
of microglia to differentiate into GFAP-positive cells through
bonemorphogenetic protein (BMP) and Sox2 signaling pathways
(Niidome et al., 2008; Nonaka et al., 2009). However, we found
no changes in microglia expression of Sox2 and BMP transcripts
after injury, suggesting that other signaling pathways may
be involved in SCI-induced microglia expression of astrocytic
markers in vivo. Increased expression ofmicroglialGfap,Vim and
Serpina3n transcripts was also reported in a mouse model of ALS
(Chiu et al., 2013), whilst in vivo microglial transformation into
astrocyte-like cells were found in a rat model of the disease (Trias
et al., 2013). Co-expression of microglia and astrocytic markers
has been also found in neoplastic glioblastoma multiform cells
associated with increased inflammation (Huysentruyt et al.,

2011). Other studies had also shown vimentin expression
in reative microglia following injury (Graeber et al., 1988;
Wohl et al., 2011). Furthermore, gene expression profiling of
primary lymphomas of the CNS (PCNSL) demonstrated that
macrophages, activated microglia, and reactive astrocytes within
PCNSL samples were SERPINA3-positive (Montesinos-Rongen
et al., 2008). Altogether, these findings suggest that pronounced
inflammation triggers microglial expression of astrocytic
markers. However, it is important to note that SCI-induced
astrocytic transcript and protein expression in microglia is
restricted to markers of astrogliosis, such as Gfap, Vim and
Serpina3n. Other astrocytic markers necessary for physiological
functions of astrocytes including glutamine synthetase (Glul),
S100b and glutamate transporters (Slc1a1, Slc1a3), were not
altered in microglia after SCI.

The potential role of SCI-induction of astrocytic markers
in microglia is currently unknown, although it may suppress
the pro-inflammatory pathway. In support of this possibility,
hemisected CX3CR1+/eGFP mice that showed a greater SCI-
induced increase in astrocytic markers inmicroglia also displayed
reduced microgliosis compared to Aldh1l1-EGFP mouse strain
(Noristani et al. unpublished observations). Further studies
using cell-specific transcriptomic analysis of microglia that
express SCI-induced astrocytic markers are required to uncover
their precise involvement in SCI pathophysiology. Alternatively,
forced expression of astrocytic markers in microglia could also
be used in future studies to investigate the functional role of
upregulation of these proteins following SCI.

Brca1 Over-Expression in Microglia after
SCI
We identified the involvement of DNA damage pathway and in
particular concomitant changes in the expression level of Cdk1
(cyclin-dependent kinase 1) and Brca1 in microglia following
SCI.Cdk1 phosphorylates BRCA1, which reduces BRCA1 activity
and function (Johnson et al., 2011). These findings are in
line with our previous study in which we reported increased
Brca1 transcript expression in microglia of hSOD1G93A mice,
an ALS mouse model, compared to wild type control microglia
(Noristani et al., 2015b). Furthermore, in silico comparison with
data fromChiu et al. (2013) confirmed an age-dependent increase
in Brca1 expression in microglia in a mouse model of ALS (Chiu
et al., 2013). Further support for microglia Brca1 involvement
after SCI was found through the dysregulation of over 65%
genes linked to Brca1 and belonging to the DNA damage
pathway. Using TUNEL assay to reveal DNA fragmentation in
apoptotic cells, Greenhalgh and David (2014) had shown that
infiltrating macrophages are more susceptible to apoptosis than
CNS resident microglia after SCI (Greenhalgh and David, 2014).
Such increased vulnerability to apoptosis is partially due to their
reduced proliferation, which in turn increases phagocytic load
and intracellular stress in macrophages compared to resident
microglia (Greenhalgh and David, 2014).

Here we have shown BRCA1 expression at protein level
in Microcebus murinus. These data further support our
previous study on BRCA1 as a novel microglial marker in
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human spinal cord (Noristani et al., 2015b). SCI-induced
increase in BRCA1 expression in Microcebus murinus is also
in agreement with our earlier study in which we reported
increased BRCA1 expression in ALS spinal cords (Noristani
et al., 2015b). BRCA1 is involved in multiple functions
including transcription regulation, cell cycle progression,
DNA repair (Mantha et al., 2014) and protection against
oxidative stress (Bae et al., 2004; Vurusaner et al., 2012).
In particular, ROS (reactive oxygen species) play important
roles in both pro- and anti-inflammatory states of microglia
(David and Kroner, 2011). The functional role of BRCA1
in microglia after SCI remains to be determined, however,
one hypothesis may represent an antioxidative defense
mechanism.

Brca1 knockout mice are embryonically lethal (Liu et al.,
2014) whereas transgenic mice with reduced Brca1 expression
specifically in neural progenitor cells display increased apoptosis
and only survive untill postnatal day 19 (Pao et al., 2014). BRCA1
has also been implicated in the absence of neural tube closure in
spina bifida meningomyelocele (Gowen et al., 1996; King et al.,
2007).

CONCLUSION

In conclusion, our data highlight that responses of microglia
following injury are time-dependent with a sequential
proliferation and over-expression of anti-inflammatory factors
immediately following injury, followed by concomitant
upregulation of both pro- and anti-inflammatory factors,
irrespective of lesion severity. In addition, we demonstrate
injury-induced expression of classical astrocytic markers
in microglia starting as early as 72 h post-lesion and
continuing up to 6 weeks, after both moderate and severe
SCI. Furthermore, we identify the potential involvement of
DNA damage pathway and specifically Brca1 in microglia
following SCI. We finally confirm BRCA1 expression in
microglia that is significantly increased in a non-human
primate model of SCI. The up-regulation of Brca1 in SCI-
microglia could be anecdotal, but we already demonstrated
using a similar transcriptomic approach that BRCA1 is up-
regulated in human microglia of ALS patient (Noristani et al.,
2015b). In summary, our data represent the first microglia
transcriptomic analyses at multiple time-points after different
lesion severity and provide new insight into their response
after SCI.
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Figure S1 | Specific microglial eGFP expression in CX3CR1+/eGFP mice

spinal cord. Schematic drawing of longitudinal spinal cords from either

non-injured control or following FT. The red square illustrates the lesion site and

reference frames display on the field of views. Confocal micrographs showing

microglial eGFP expression in non-injured CX3CR1+/eGFP mice spinal cord using

IBA1 immunostaining (A–C). Fluorescent images showing microglial eGFP

expression in non-injured (D–F) and injured (FT) spinal cord (G–I) of

CX3CR1+/eGFP mice using S100-beta immunostaining. Scale bars (A, D–I):

50µm, (B,C): 10µm.

Figure S2 | Flow cytometry analysis. Representative flow cytometry analysis

dot plots displaying control (A) and eGFPhigh-expressing microglia profiles from

non-injured (B) as well as after HS (C) and FT SCI (D). Surrounded areas,

designed as “P4” represent sorted cells that correspond to the

eGFPhigh-expressing cells further analyzed using RNAseq. The X- and Y-axis

display fluorescent intensity and cell size, respectively. Representative flow

cytometry analysis dot plots of cells in non-injured samples (E), as well as at 72 h

(F), 1 week (G), and 2 weeks (H) after HS according to CD11b and CD45

expression. Cells were first gated based on size and granularity with small size

events being gated-out (not shown). Definition of the different cell populations

recovered after sucrose gradient according to their expression of LY6C and CD45

in non-injured samples (I), as well as at 72 h (J), 1 week (K), and 2 weeks (L).

Cells were first gated based on size and granularity with small size events being

gated-out (not shown). Cell populations were then separated in CD45−/LY6C−,

CD45−/LY6C+, CD45+/LY6C−, and CD45+/LY6C+ expressing cells.

Characterization of eGFP expression levels in the different cell populations

recovered after sucrose gradient (as defined in S2I–L). Only the CD45+/LY6C−
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population exhibit high eGFP expression level. All CD45+/LY6C+ cells are GFP−

or GFPlow expressing cells (M–P). All other cell populations are GFP−. Vertical

bars indicate the lower threshold for eGFP expression in sorted cells (see S2A–D).

Representative flow cytometry analysis dot plots displaying eGFPhigh expressing

cells in non-injured samples (Q), as well as 72 h (R), 1 week (S), and 2 weeks (T)

after HS. Characterization of LY6C expression levels in the GFPhigh-sorted cells.

Whatever the experimental conditions, GFPhigh-sorted cells are Ly6C− (U).

Expression of LY6C+ in CD45+/LY6C+ cell population (as gated in S2I) is shown

as control.

Figure S3 | Specific microgial transcript over-expression after SCI in

CX3CR1+/eGFP mice. Bar graphs displaying specific over-expression of

microglia-specific transcripts at different stages after HS (A). Values are actual fold

change. Bar graphs indicating up-regulation of Serpina3n transcript expressions in

microglia at different time-point after HS and FT SCI (B,C). Values are actual fold

change, t-test between HS or FT as compared to non-injured at a given time point

(∗∗p < 0.01; ∗∗∗p < 0.001).

Figure S4 | Microglia responses after SCI are time-dependent irrespective

of lesion severity. Schematic diagram displaying the multiple comparisons

carried out to analyze deregulated genes in microglia at multiple time-points after

HS and FT SCI (A). Table illustrating the number of deregulated transcripts in each

comparisons (B). Note that no deregulated genes were found when directly

comparing HS and FT SCI at 72 h post-lesion, whereas only 8 and 1 deregulated

transcripts were found after direct comparison between HS and FT SCI at 1 and 2

weeks, respectively. Relationship between average expression and log 2 of the

fold-change in microglia after direct comparisons between HS and FT groups at

72 (C), 1 week (D), and 2 weeks (E). Horizontal blue lines indicate the cut off

criterion used to define differentially expressed genes with a FC >2 (logFC

comprised between −1 and 1) and a significant false discovery rate (FDR) values

(p < 0.05). Red points indicate significantly deregulated genes following injury.

Figure S5 | Induction of neural development pathways in microglia after

SCI. Gene ontology pathway map analysis displaying the induction of neural

development pathway in microglia after SCI. Thermometers indicate deregulated

genes (red: up-regulated; blue: down-regulated). Interactions between objects:

green (positive or activation); red (negative or inhibition); grey (unspecified); B:

Binding (physical interaction between molecules); Binding protein, Generic

enzyme.

Figure S6 | Increased IBA1 reactivity 3 months after SCI in Microcebus

murinus. Bright field micrographs displaying IBA1-positive microglia rostral (A–C),

within (D–F) and caudal (G–I) to the lesion site at 3 months following spinal cord

hemisection in Microcebus murinus. Note similar to BRCA1 immunostaining

adjacent sections stained with IBA1 displayed identical lablelling and microglial

morphology with long/thin processes caudal to the lesion sites (I), and

activated/amoeboid morphology with enlarged cell bodies with short/thick

processes that were mainly evident within the dorsal funiculus rostral to the lesion

site (C) and adjacent to the lesion epicentre (I). Scale bar (A,D,G): 500µm,

(B,E,H): 200µm, (C,F,I): 50µm.

Table S1 | Database of differential expression comparison of activated

microglia RNA-Seq data relative to non-injured control microglia at 72 h, 1

and 2 weeks after hemisection and full transection injuries.

Table S2 | Pathway analysis of differentially expressed genes in activated

microglia after hemisection and full transection injuries.

Table S3 | Database of the expression level of cellular markers (microglia,

neuronal, astrocyte and oligodendrocyte). Differentially expressed genes

amongst these cellular markers, data relative to non-injured control microglia at 72

h, 1 and 2 weeks after hemisection and full transection injuries. FC, Fold change;

FDR, false discovery rate.
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