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Hearing loss (HL) is one of the most common causes of disability, affecting 360 million
people according to the World Health Organization (WHO). HL is most frequently of
sensorineural origin, being caused by the irreversible loss of hair cells and/or spiral
ganglion neurons. The etiology of sensorineural HL (SNHL) is multifactorial, with genetic
and environmental factors such as noise, ototoxic substances and aging playing a role.
The nutritional status is central in aging disability, but the interplay between nutrition
and SNHL has only recently gained attention. Dietary supplementation could therefore
constitute the first step for the prevention and potential repair of hearing damage before
it reaches irreversibility. In this context, different epidemiological studies have shown
correlations among the nutritional condition, increased total plasma homocysteine
(tHcy) and SNHL. Several human genetic rare diseases are also associated with
homocysteine (Hcy) metabolism and SNHL confirming this potential link. Accordingly,
rodent experimental models have provided the molecular basis to understand the
observed effects. Thus, increased tHcy levels and vitamin deficiencies, such as folic
acid (FA), have been linked with SNHL, whereas long-term dietary supplementation
with omega-3 fatty acids improved Hcy metabolism, cell survival and hearing acuity.
Furthermore, pharmacological supplementations with the anti-oxidant fumaric acid that
targets Hcy metabolism also improved SNHL. Overall these results strongly suggest that
cochlear Hcy metabolism is a key player in the onset and progression of SNHL, opening
the way for the design of prospective nutritional therapies.
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HEARING LOSS

According to the World Health Organization (2015), moderate-to-profound Hearing loss (HL)
affects 360 million people worldwide. Its incidence varies in each population segment, affecting
already ∼10% of children and increasing to 30% of the population over 65 years (Roth et al.,
2011; Li-Korotky, 2012). In addition, HL has been ranked as the fifth leading cause of years
lived with disability in the Global Burden of Disease Study 2013 Collaborators (2015). Thus, this
impairment certainly limits the quality of life, and significantly increases the risk of dependance.
Therefore, the identification of factors involved in HL is key to understand the physiopathology,
to improve diagnosis and to develop appropriate therapies and preventive behaviors.
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The ear consists of three parts of which the cochlea, in the
inner ear, is responsible for the mechanotransduction of the
sound stimulus. At the cochlea, in the scala media, more than
a dozen interconnected cell types are fundamental for hearing.
The auditory sensory epithelium, the organ of Corti, contains
two types of hair cells, outer and inner, innervated by the spiral
ganglion neurons that connect it with the brain (Magariños et al.,
2012, 2014). The irreversible loss of hair cells and/or neurons,
or their malfunctions are the typical causes of sensorineural HL
(SNHL).

SNHL has a multifactorial origin that combines genetic
with environmental factors (Dror and Avraham, 2009; Roth
et al., 2011). Genetic factors comprise mutations in genes or
regulatory elements involved in the development, structure or
function of the cochlea. For example, a fundamental role in
hearing is played by proteins involved in cell-cell junctions
(tight junctions, adherent junctions and gap junctions), and
among them the connexins. Mutations in five of the 21 genes
of the human connexin family have been linked to the onset
of deafness (Cx26, Cx30, Cx31, Cx32 and Cx43; Dror and
Avraham, 2009). Moreover, knockdown of one of these genes,
precisely the Cx30, correlates with alterations in cochlear
homocysteine (Hcy) metabolism (Cohen-Salmon et al., 2007).
Conversely, hyperhomocysteinemia (HHcy) increases the levels
of Cx43 in a variety of cellular contexts (Li et al., 2002;
Boot et al., 2006). Interestingly, Cbs heterozygous mice show
HHcy and impaired matrix remodeling in the cochlea (Kundu
et al., 2009). Cell-cell contacts are essential for hearing and,
therefore, Hcy accumulation could have deleterious effects on
the hearing receptor machinery. Further studies are needed
to fully understand the role of Hcy and its metabolites
in the cochlea. On the other hand, environmental factors
include exposure to high levels of noise, ototoxic drugs or
nutritional deficiencies (Gok et al., 2004; Tabuchi et al.,
2011). Moreover, certain genetic factors predispose to suffer
damage due to noise or ototoxic drugs, as well as, to
premature aging of the hearing structures (Zhao et al., 2004;
Rydzanicz et al., 2010); their identification is one of the
current challenges in this field of research. Approximately 50%
of the cases of hereditary SNHL are accompanied by other
clinical symptoms, and statistically 1 in every 1000 newborns
has profound deafness and one more will suffer HL before
adulthood. Altogether, these data suggest that manipulation
of micronutrients could be a tool to understand the genes
and physiopathological mechanisms involved in hearing and
SNHL.

HYPERHOMOCYSTEINEMIA AND
NEUROSENSORIAL HEARING LOSS

HHcy is an acquired metabolic problem that was first described
by McCully (1969), and whose interest increased greatly due
to the detection of high plasmatic levels of Hcy (tHcy) in
cardiovascular diseases (Ueland and Refsum, 1989). Similarly,
HHcy also shows a strong correlation with the development
of neurological disorders, chronic kidney disease, osteoporosis,

gastrointestinal disorders, cancer and the presence of certain
congenital defects (Givvimani et al., 2012; Schalinske and Smazal,
2012; Iacobazzi et al., 2014; Lehotsky et al., 2015; Perna and
Ingrosso, 2016). In fact, high levels of tHcy are quite common,
and are detected in 10%–20% of the population as a result of
genetic (Brosnan et al., 2004) and other factors (Refsum et al.,
1989; Noga et al., 2003), but their incidence depends widely on
geography, age, sex and ethnicity (Yang et al., 2014).

Regarding hearing impairment and HHcy, several
epidemiological studies have shown an association between
certain nutritional deficiencies and development of SNHL.
Reduced folic acid (FA) concentrations have been found in
age-related HL (ARHL) and sudden SNHL, this decrease
correlating with either reduced vitamin B12 (Houston et al.,
1999; Lasisi et al., 2010; Karli et al., 2013) or increased tHcy
levels (Cadoni et al., 2004). Although Hcy concentrations reflect
alterations in its metabolism (Figure 1), which include the
methionine and folate cycles, as well as the transsulfuration
pathway, no consistent association between mutations in
genes of these pathways and SNHL has been reported
(Durga et al., 2006; Uchida et al., 2011). Analysis of the
putative relationship between the methylenetetrahydrofolate
reductase (MTHFR) C677T mutation and ARHL rendered
contradictory results (Durga et al., 2006), since this allele
has been correlated with hearing impairment and HHcy,
and also with a reduced risk of ARHL independent from
folate and Hcy levels (Uchida et al., 2011; Fusconi et al.,
2012).

Epidemiological research has also provided evidence
associating atherosclerosis in the inner ear and poor hearing, and
connecting risk factors of vascular disease and ARHL (Rosen
and Olin, 1965; Johnsson and Hawkins, 1972; Makishima, 1978).
Among them, Hcy is also an agonist of N-methyl-D-aspartate
receptors, which are overexcited in SNHL (Puel et al., 1991;
Lipton et al., 1997). Thus, the mechanisms linking SNHL and
Hcy metabolism seem to include a large variety of pathways,
their connections remaining underexplored.

Hcy emerges as a node of key pathways of the intermediary
metabolism that has been mainly explored in the liver (Figure 1),
whereas knowledge of these routes and their regulation has been
scarcely analyzed in peripheral or neurosensory organs (Pajares
and Pérez-Sala, 2006; Obeid, 2013). In fact, the cochlea is one
of the few sensory organs in which a whole expression and
protein profile of the methionine cycle and transsultfuration
pathway has been reported (Martínez-Vega et al., 2015a). Based
on the hepatic knowledge, attempts to decrease the systemic
tHcy levels by the design of several supplementation studies
have been carried out. These randomized trials demonstrated
the lowering of tHcy levels by dietary folate supplementation
(Jacques et al., 1999), and provided the basis for an intervention
trial carried out by Durga et al. (2007) to assess effects of
folate supplementation on ARHL. The results obtained showed
a slower progression of ARHL in individuals receiving the
supplement.

SNHL has been associated with rare diseases involving
alterations in Hcy levels. This is the case of combined
methylmalonic acidemia and homocystinuria cblC type
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FIGURE 1 | Methionine and folate metabolism and connecting pathways. Schematic view of the main metabolic reactions involved in homocysteine (Hcy)
metabolism, highlighting the major regulatory mechanisms (dotted lines). Hcy remethylation is part of the methionine cycle and is catalyzed by the vitamin B12

dependent methionine synthase (MTR) or betaine homocysteine methyltransferase (BHMT), enzymes that generate methionine using 5′-methyltetrahydrofolate
(5-MTHF) and betaine as methyl donors, respectively. Methionine adenosyltransferases (MATs: MAT I, II and III) use methionine to synthesize S-adenosylmethionine
(AdoMet). Donation of the AdoMet methyl group renders S-adenosylhomocysteine (AdoHcy) that is hydrolyzed by S-adenosylhomocysteine hydrolase (AHCY) to
produce Hcy and adenosine in a reversible reaction. Hcy catabolism takes place initially by serine conjugation, a reaction catalyzed by cystathionine β-synthase
(CBS) and that lead to cystathionine synthesis. This metabolite is then utilized by cystathionine γ -lyase (CTH) to produce cysteine (Cys). Both reactions depend on
pyridoxal phosphate (vitamin B6). The correct function of these pathways depends on a continuous supply of nutrients, methionine, vitamins B12 and B6 and folate.
The latter is used in the folate cycle for the synthesis of 5-MTHF catalyzed by methylenetetrahydrofolate reductase (MTHFR). A reduced ingestion of the
aforementioned nutrients leads to a decrease in the flux through these pathways, in which many cellular key compounds are generated (phospholipids,
neurotransmitters, etc.). Enzymes and metabolites appear in square and rounded boxes, respectively. ADH, aldehyde dehydrogenase; CHDH, choline oxidase;
5,10-CH2-THF, 5,10-methylenetetrahydrofolate; DMG, dimethylglycine; GCL, glutamate-cysteine ligase; GR, glutathione reductase; GSH, reduced glutathione; GSS,
glutathione synthase; GSSG, oxidized glutathione; MTs, methyltransferases; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, reduced form of
NADP+; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PEMT, phosphatidylethanolanime N-methyltransferase; PLD, phospholipase D; THF,
tetrahydrofolate; vit B6, vitamin B6; vit. B12, vitamin B12.

(OMIM 277400), caused by mutations in the MMACHC
gene. These mutations result in a decreased production of
cofactors for methylmalonyl-CoA mutase (adenosylcobalamin)
and methionine synthase (MTR; methylcobalamin) and, in
turn, in elevated Hcy levels in the cerebrospinal fluid that
correlate with unilateral SNHL (Harding et al., 2003; Tsai
et al., 2007; Carrillo-Carrasco et al., 2012). Another rare
disease reported to result with SNHL and homocystinuria
is spastic quadriplegia, retinitis pigmentosa and mental
retardation (OMIM 270950; Gordon et al., 1976), but this
consanguinity disorder has been described in a very limited
number of cases, and hence, the common molecular bases
remain unknown. Among patients with osteogenesis imperfecta

type I (OMIM 166200), which present with mutations in
several genes including COL1A1 and COL1A2, that codify
for the α1 and α2 chains of type I collagen, a correlation
with SNHL has been also detected from the age of 20-years
onward (Hartikka et al., 2004). Hcy is known to decrease
the H3K9me2 content on the COL1A1 gene promoter
leading to its upregulation. This effect is dependent on Hcy
inhibition of G9a histone methyltransferase expression,
which in turn results in lower G9a binding to the neuron-
restrictive silencer element (NRSE) of this promoter (Lei et al.,
2015). Additionally, Hcy has been also shown to increase
oxidative mechanisms and activation of mitochondrial matrix
metalloproteinase causing bone matrix degradation and
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alterations in its biomechanical properties (Behera et al., 2016),
facts that could affect mechanotransduction of the sound in the
middle ear.

Further studies in animal models confirmed the
association between SNHL and HHcy. For example, Cbs+/−
heterozygous mice show moderate SNHL, high levels of Hcy
in the stria vascularis and the spiral ligament, oxidative
stress and reduction of vessel density, effects that were
prevented by the administration of FA in the drinking
water (Kundu et al., 2012). In Cx30−/− null mice hearing
impairment was also associated with alterations in the
stria vascularis, precisely down- and up-regulation of
Betaine homocysteine methyltransferase (BHMT) and Ahcy
expression, respectively, and increased Hcy immunostaining
(Cohen-Salmon et al., 2007). All these data, epidemiological
and derived from human and mouse genetic studies,
reinforced the idea of the importance of Hcy metabolism
in deafness.

NUTRITIONAL INTERVENTIONS AND
HEARING LOSS

To date, supplementation and nutrient deficiency studies have
been conducted using laboratory animals, in which auditory
thresholds, internal ear microvasculature, or inflammation have
been evaluated (Schuknecht et al., 1974; Makishima, 1978);
but only a few have analyzed Hcy metabolism following the
lead of the epidemiological data (Houston et al., 1999; Cadoni
et al., 2004; Lasisi et al., 2010). Two studies in mouse models
have shown the relationship between Hcy metabolism and
SNHL and the impact of folate deficiency (FD; Martínez-
Vega et al., 2015a, 2016). C57BL/6J mice, a mouse strain
prone to SNHL, showed increased hearing thresholds after
2 months on a FD diet (Martínez-Vega et al., 2015a). This
reduced intake of folate caused decreased serum concentrations
of this micronutrient and increased tHcy. These systemic
alterations correlated with SNHL, which also coincided with
changes in expression and protein levels of cochlear Hcy
metabolism aimed at decreasing the production of this amino
acid, avoid or moderate its remethylation and catabolism, and
induce its elimination into the plasma (Martínez-Vega et al.,
2015a).

However, these cellular efforts to balance intracellular levels of
Hcy are not sufficient as increased protein N-homocysteinylation
was detected in cochlear whole extracts; such post-translational
modification may contribute to the inactivation and aggregation
of proteins (Sharma et al., 2015). The reduced Hcy utilization
by the transsulfuration pathway has an additional negative effect
by decreasing H2S production via CBS and cystathionine γ-
lyase (CTH). The protective role of this gasotransmitter as
cochlear vasodilator has been reported in noise-induced HL
(Li et al., 2011), and hence, the putative contribution of its
reduced levels to the changes described in the microvasculature
(Prazma et al., 1990; Gratton and Schulte, 1995). These
changes are accompanied by a moderate increase in cochlear
oxidative stress, as it is usually the case in the aging process.

FIGURE 2 | Modulation of cochlear metabolism of Hcy by the diet. The
thickness of the arrows indicates whether there is an increase (blue) or
decrease (red) of the indicated parameter. (A) Cochlear Hcy metabolism in
control mice. (B) Effects of ω-3 supplementation on cochlear protein levels of
enzymes involved in Hcy metabolism. (C) Effects of folate deficiency (FD) on
cochlear protein levels of enzymes involved in Hcy metabolism.

Altogether, these findings demonstrate that the relationship
between HHcy induced by FD and premature SNHL involves
cellular degeneration, impairment of cochlear Hcy metabolism
and associated oxidative stress (Martínez-Vega et al., 2015a).
Moreover, these results were later confirmed in a long-term
study on the effects of FD using a mouse strain with delayed
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SNHL onset, in which, again, the deficiency caused premature
SNHL (Martínez-Vega et al., 2016). The latter work also
evidenced that the consequences of nutritional imbalances
are strongly dependent on the mouse genetic background.
Parallel evidences supporting the importance of nutrition on
HL come from studies using injection of rodents with a
variety of antioxidants, which showed different degrees of
otic protection (Fetoni et al., 2010, 2014, 2015). On the
other hand, it should be mentioned that an overdose of
anti-oxidants may have undesired secondary consequences
(Mancuso, 2015).

Human studies have also provided evidences of the putative
prevention of SNHL by dietary supplementation with different
levels of n-3 polyunsaturated (ω3) fatty acids (Rosen et al.,
1970; Dullemeijer et al., 2010; Gopinath et al., 2010; Stefanutti
et al., 2013). Fish oil supplementation resulted in an inverse
correlation between the ingested levels of long-chain ω3 fatty
acids and SNHL (Dullemeijer et al., 2010; Gopinath et al., 2010).
Moreover, Curhan et al. (2014) demonstrated that regular fish
consumption (2 or more servings of fish per week) and higher
intake of ω3 are associated with a lower risk of HL in women,
but had opposite effects on tHcy (Piolot et al., 2003; Huang
et al., 2011). Dissimilar results on tHcy and/or hearing thresholds
were also obtained from animal studies of ω3-suplementation
carried out for limited time periods in adults or during pregnancy
and lactation (Church et al., 2007, 2009, 2010; Kulkarni et al.,
2011; Huang et al., 2013). A recent study focused on analyzing
the effects of long-term administration of a polyunsaturated
fatty acid (PUFA)-rich diet on cochlear Hcy metabolism showed
limited SNHL prevention with no changes in serum folate levels
or tHcy (Martínez-Vega et al., 2015b; Figure 2). Nevertheless,
this diet prevented changes in cochlear expression of age-induced
Hcy metabolism genes (Bhmt and Cbs) and, importantly, the
altered expression of proinflammatory cytokines was precluded,
and the cochlear cytoarchitecture maintained. However, there
was an increase in BHMT protein levels, an enzyme involved
not only in the conservation of methionine levels, but also in
recycling the choline derived from phospholipid metabolism
(Martínez-Vega et al., 2015b).

Altogether, these data could suggest that the diet
supplemented with ω3 induces a moderate increase in
intracellular Hcy levels, although the lack of significant
alterations in cochlear homocysteinylated protein levels points
to other more plausible possibilities. Namely, the increase in CBS
levels observed with age may be necessary for the production of
H2S, which is a regulator of the synthesis of anti- and pro-oxidant
enzymes and mediators of inflammation (Ingenbleek and
Kimura, 2013; Kabil et al., 2014a,b). In fact, it is known that
various synthetic drugs, which supply this gas, have been used
for the treatment of deafness with variable results (Lamm and
Arnold, 1998; Mahmood et al., 2014). CBS also contributes to
cysteine synthesis, a semi-essential proteinogenic amino acid
that is mostly obtained from the diet although a 50% of that
synthesized through transuslfuration is used in GSH synthesis.
On the other hand, the increase of BHMT after supplementation
seems to derive from the need to reduce/regulate betaine levels.
Hydrolysis of phosphatidylcholine may lead, on one side, to fatty

acids for the production of anti-inflammatory mediators and on
the other to choline. This choline excess might be oxidized to
produce the osmolyte betaine (Zeisel et al., 1980; Porter et al.,
1993), and hence the need to regulate its concentrations through
Hcy remethylation. As a result, the methionine cycle would
recover one of the methylation equivalents used by PEMT for
phosphatidylcholine synthesis, while methionine and AdoMet
levels would be sustained. This possibility is supported by data
obtained in the liver of animals supplemented with PUFAs,
where increased expression of Pemt and Gnmt is detected;
two methyltransferases expressed in the cochlea according
to microarray data (Gene Expression Omnibus GSE11821;
Sanchez-Calderon et al., 2010). Nevertheless, the limited
cochlear effect of PUFAs supplementation was attributed to the
use of a formulation especially rich in eicosapentaenoic acid,
which is known to be more effective for reducing inflammation
(Bhattacharya et al., 2007).

Recently, Brown et al. (2014) investigated the putative
protection against noise injury exerted by the administration of
nicotinamide riboside, a precursor of NAD+, a cofactor that is
involved in the regulation of sirtuins. Defects in the function of
mitochondrial SIRT3 deacetylase lead to generation of reactive
oxygen species (He et al., 2012) and decreased GSH levels
(Someya et al., 2010). Both are factors associated to susceptibility
to noise-induced HL (Someya et al., 2010) and to the reduction
of cochlear NAD+ levels (Ohlemiller et al., 1999). Administration
of nicotinamide riboside injected twice daily for 5 days prior to
noise exposure and for 48 h thereafter until sacrifice, prevented
noise-induced HL and spiral ganglia neurite degeneration. These
effects were mediated by the NAD+-dependent SIRT3, since
deletion of this gene abrogated protection by nicotinamide
riboside and expression of NAD+ biosynthetic enzymes, whereas
SIRT3-overexpressing mice became resistant to noise-induced
HL (Brown et al., 2014). Interestingly, AHCY requires NAD+

for activity, thus the use of this compound may also contribute
to improve cochlear Hcy metabolism, an aspect that was not
addressed by the authors and that requires further attention.

CONCLUSIONS

Here we review recent evidence supporting the concept that
the onset and progression of SNHL are closely linked to
the availability of nutrients and their metabolism. Cumulative
epidemiological, genetic and experimental models studies point
to Hcy metabolism as a central node in the response to otic
damage, althoughmuchmore work is needed to fully understand
cochlear Hcy metabolism, how it is regulated by nutrition,
impacted by aging or noxious stimuli. However, available
data fully support the potential of nutritional therapy for the
protection of HL progression.
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