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Epilepsy is a common neurologic disorder. The underlying pathological processes include

synaptic strength, inflammation, ion channels, and apoptosis. Acting as epigenetic

factors, non-coding RNAs (ncRNAs) participate in the regulation of pathophysiologic

processes of epilepsy and are dysregulated during epileptogenesis. Aberrant expression

of ncRNAs are observed in epilepsy patients and animal models of epilepsy. Furthermore,

ncRNAs might also be used as biomarkers for diagnosis and the prognosis of treatment

response in epilepsy. In this review, we will summarize the role of ncRNAs in the

pathophysiology of epilepsy and the putative utilization of ncRNAs as diagnostic

biomarkers and therapeutic targets.
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Epilepsy is a chronic neurologic disorder which is characterized by recurring unprovoked seizures
and affects more than 50 million people worldwide. In China, the prevalence rate is around 2.89%,
and 40–50% of these patients do not receive the necessary treatment. China has more than nine
million existing cases and about 45,000 new patients suffering from epilepsy each year (Gu et al.,
2013). Epilepsy entails recurrent seizures, an increasedmortality rate, a huge economic burden, and
decreased quality of life. At present, the main treatment is antiepileptic drugs (AEDs), but ∼30%
of epilepsy patients do not respond to AEDs, a condition known as refractory epilepsy. None of
the AEDs currently in use focus on the pathogenesis of epilepsy. Therefore, it is necessary to search
for new ways to treat epilepsy. Currently, the pathogenesis of epilepsy is not completely clear. A
growing number of studies have shown that ncRNAs participate in pathological and physiological
processes in the nervous system, for instance the development of the nervous system, synaptic
plasticity, learning and memory, oxidative stress and so on (Aksoy-Aksel et al., 2014; Nwaobi et al.,
2014; Karnati et al., 2015; Loke et al., 2015). These characteristics suggest that ncRNAs may play
an important role in the pathogenesis of epilepsy. NcRNAs refer to small endogenous RNAs that
do not code for proteins, or function without being translated into a protein. Only 1.5% of the
human genome appears to code for proteins; about 80% of the rest of the genome transcribes into
ncRNAs (Huang et al., 2016). A number of studies have shown that ncRNAs play important roles
in epigenetic modifications (Molina, 2017; Redis and Calin, 2017). NcRNAs are divided into many
subtypes such as rRNA (ribosomal RNA), tRNA (transfer RNA), snRNAs (small nuclear RNA),
snoRNA (small nucleolar RNA), miRNA (microRNA), siRNA (small interfering RNA), piRNA
(piwi-interacting RNA), eRNA (enhancer associated RNA), lncRNA (long non-coding RNA), and
circRNA (circular RNA) (Redis and Calin, 2017). In this review, we will highlight recent studies
examining the latest advances in ncRNAs and their relations with epilepsy.
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MicroRNA AND EPILEPSY

miRNA is a class of small non-coding RNA (ncRNA) which
participates in post-transcriptional regulation. The primary
transcript is first produced in the nucleus and then processed
into hairpin RNA (pre-miRNA) by the Drosha microprocessor
complex. Exportin-5 transfers pre-miRNA out of the nucleus
for its final processing into mature miRNA by the RNAase III
enzyme Dicer (O’Carroll and Schaefer, 2013). Mature miRNA
forms RNA-induced silencing complex (RISC) with Argonaute
(Ago) proteins, which can form sequence-specific base-pairings
with the target mRNA, usually with the 3′ untranslated region
(UTR) (Chandradoss et al., 2015; Lin and Gregory, 2015).
This formation can lead to mRNA degradation or translational
inhibition and then regulates the expression of target genes.
Recent studies have demonstrated that miRNA can also regulate
promoters with CpG island methylation at the transcriptional
level (Benhamed et al., 2012; Tan et al., 2013).

Aberrant Expression of miRNAs in Epilepsy
Important roles for miRNA in brain development have been
observed, as well as roles in tissue-specific expression in the
brain. The aberrant expression of miRNAs was observed in
the blood and brain tissues of animal models of epilepsy
and epileptic patients (Table 1; Wang et al., 2015b; Zhu
et al., 2015). Studies have demonstrated that these aberrant
expressions of miRNAs link to themechanisms of epileptogenesis
through regulating ion channels, neuronal morphology, synaptic
plasticity, inflammatory response, and neuronal apoptosis.
Through comparing the sera miRNA expression of 117 epilepsy
patients and 112 healthy controls, it has been found that let-
7d-5p, miR-106b-5p, miR-130a-3p, and miR-146a-5p were up-
regulated in the sera of epilepsy patients, whereas miR-15a-5p
and miR-194-5p were down-regulated (Wang et al., 2015a,b).
Another study found that the expression of miR-34a, miR-22,
miR-125a, and miR-21 in blood and the hippocampus were
changed 24 h after the onset of status epilepticus (SE) (Hu
et al., 2011). Roncon et al. (2015) detected miRNA expression in
the hippocampal granule cell layer and in plasma at a different
phase of the development of pilocarpine-induced epileptic rats.
Sixty-three differentially expressed miRNAs were found in the
granular cell layer (GCL). When validating miRNAs which were
up-regulated in the chronic phase of epileptic rats in brain tissues
from epileptic patients, they found that miR-21-5p, miR-23a-5p,
miR-146a-5p, andmiR-181c-5p were also up-regulated in human
brain tissues. They also found that 27 miRNAs were differentially
expressed in the plasma samples of epileptic patients. Chak et al.
(2016) reported that miR-21 is up-regulated in epilepsy and
that pre-miR-21 may attenuate miR-21-mediated suppression
following SE and could potentially lead to prolonged TGF-β
receptor expression, which can impact epileptogenesis. Gorter
et al. (2014) detected miRNA expression in the CA1, dentate
gyrus, and parahippocampal cortex regions after electrically-
induced SE at 1 day, 1 week, and 3–4 months in a rat model
for temporal lobe epilepsy. The expression of miRNAs exhibited
dynamic changes after SE and changed differently in different
regions. In CA1, 18 miRNAs were up at 1 day, 16 at 1 week,

and 7 in the chronic phase. In dentate gyrus, 20 miRNAs were
up at 1 day, 15 at 1 week, and 37 at 3 months after SE. In
parahippocampal cortex, 31 miRNAs were up at 1 day, 37 at 1
week, and 22 in the chronic stage.

Araujo et al. (2016) performed a miRNA microarray of
the hippocampi of Wistar rats 24 h after intra-hippocampal
pilocarpine-induced SE. A total of 73 miRNAs were found to
be significantly dysregulated, of which 36 were up-regulated and
37 were down-regulated. Among these miRNAs, the expression
level of miR-352 and 196b-5p were over-expressed and miR-
128a-3p were under-expressed. They also evaluated the three
miRNAs at three time points: 0 h, 24 h and chronic phase
after SE. They found that the expression of miR-128a-3p was
significantly down-regulated at the three time points compared
to the control group, miR-352 was significantly up-regulated
at 24 h post-SE and in chronic phase, while miR-196b-5p was
significantly upregulated only at 24 h post-SE. They found that
the expression levels of miRNAs show similar trends to the rat
models when compared with the hippocampi of epileptic patients
with control group.

miR-134 is a brain-specific miRNA, and the high expression
of miR-134 was observed after the occurrence of epilepsy and
SE. Silencing of miR-134 expression could reduce the density of
the CA3 pyramidal neuron dendrite spine in the hippocampus
and suppress the injury caused by seizures and prolonged
seizures. Morphometric analysis of dendritic spines revealed
that miR-134 could increase neuron volume and decrease spine
volume (Jimenez-Mateos et al., 2012; Wang et al., 2014). It has
been demonstrated that LIM kinase-1 (Limk1) plays important
roles in dendritic spine morphogenesis through phosphorylating
and inactivating cofilin (Meng et al., 2002). Loss of Limk1
results in abnormal spine morphology. Studies found that miR-
134 inhibits LIM kinase-1 (Limk1) mRNA, thus preventing
protein translation of Limk1. Pretreatment of mice with miR-
134 antagomirs before pilocarpine administration reduced the
number of mice that developed SE, attenuated the degree of
epileptic seizures and increased survival rate (Jimenez-Mateos
et al., 2015). In addition, other studies observed expression
of miR-134 decreased after the occurrence of epilepsy. miR-
134 may prevent synaptic plasticity by inhibiting CREB and
p-CREB expressions, thereby exerting neuroprotective qualities
(Zhu et al., 2015).

miR-128 is abundant in the brains of humans and adult mice,
and the expression of miR-128 increases gradually during the
process of growth, peaking in adulthood. miR-128 is encoded by
miR-128-1 and miR-128-2. miR-128-2 plays a major role. miR-
128-2−/− mice progress rapidly to fatal epilepsy and death. The
high expression of miR-128 in mice can reduce seizures through
suppressing neuronal excitability and abnormal motor activity.
Studies suggest that miR-128 may function through suppressing
the dopamine 1 receptor, which can increase neuronal excitability
and abnormal motor activity (Tan et al., 2013). Yuan et al. (2016a)
reported that miR-128 was down-regulated in glioblastoma,
and knockout of the miR-128a could induce epilepsy in a
mousemodel. Furthermore, dysregulation ofmiR-128 expression
may be associated with glioma-associated epilepsy in low-grade
glioma.
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miR-146a has been widely studied in the inflammatory
response. High expression of miR-146a was observed in both
epileptic animal models and epilepsy patients (Matos et al., 2014;
Roncon et al., 2015). Studies found that miR-146a expression was
at its lowest level at acute seizure phase and at its highest level
at the latent phase. Another study revealed that expression of
miR-146a was increased in the chronic phase of epileptic rats and
remained at high levels 1 week after SE (Gorter et al., 2014; He
et al., 2016). Functional polymorphisms of the gene miR-146a
may also play a role in the regulation of epilepsy. Rs2910164
and rs57095329 are two SNPs in the gene miR-146a, which can
modify the expression level of mature miR-146a. Studies found
that rs57095329 may be associated with drug resistance and
frequency of seizures (Cui et al., 2015).

Li et al. (2016) found that miR-153 was down expressed
in plasma and temporal cortexes resected from surgical mTLE
patients compared with control patients. miR-153 might down-
regulate HIF-1α expression through binding with two sites in
the 3′UTR region of HIF-1α transcript. miR-153 may serve as
a putative regulator of hypoxia-inducible factor-1α (HIF-1α),
which participates in multidrug resistance in refractory epilepsy.
Functional experiments showed that miR-153 mimics can inhibit
HIF-1α expression in a pharmacoresistant astrocyte model. miR-
153 may regulate the expression of HIF-1α in mTLE and serve as
a putative biomarker and treatment target for epilepsy.

Yuan et al. (2016) induced epileptic neurons by exposing
the neurons to magnesium-free medium for 3 h, which were
considered as a useful in vitromodel of refractory SE. They found
that silencing miR-132 has a neuroprotective effect on cultured
epileptic neurons, including inhibiting the electrical excitability
level of cultured epileptic neurons. Using a lithium-pilocarpine-
induced epileptic mouse model, they found that silencing miR-
132 can inhibit the aberrant formation of dendritic spines
and chronic spontaneous seizures. Another study found that
pretreatment with miR-132 antagomirs can reduce hippocampus
injuries after SE. Upregulation of miR-132may be associated with
neuronal death (Jimenez-Mateos et al., 2011).

miRNAs and Neurogenesis in Epilepsy
Neurogenesis impairment participate in the pathophysiology
of epilepsy in humans and also observed in animal models
(Mendonca et al., 2017). Aberrant hippocampal neurogenesis
can cause epilepsy and seizures can also effect hippocampal
neurogenesis. Activation, migration, integration of neural stem
cells, and expression of brain plasticity-associated proteins in
hippocampus may be required for the maintenance of the
kindling criterion (Retchkiman et al., 1996; Schmoll et al., 2003;
Buga et al., 2012; Uemori et al., 2017). More and more evidence
suggests that miRNAs participate in neurogenesis, which play an
important role in the pathophysiological mechanism of epilepsy.
miR-124 has been reported to regulate Neuron Restrictive
Silencer Factor (NRSF). NRSF was widely expressed in neural
stem cells, and regulates the differentiation, diversity and
plasticity of neural stem cells. NRSF can also repress the genes
HCN1 and KCC2, which can regulate neural activity through
ion channels (Brennan et al., 2016). Franzoni et al. (2015)
found that miR-128 participates in neuronal migration and

intrinsic excitability. miR-146a was reported to participate in
the epileptogenesis and progression of seizures through tGCLhe
regulation of inflammation and immune responses (He et al.,
2016).

Pathways Targeted by miRNAs
A series of functional studies found that miRNAs affect seizures
via affecting neuroinflammation or apoptosis. An individual
miRNA can have different targets, regulating single genes in
several pathways or several genes in a single pathway (Ebert
and Sharp, 2012). The dysregulation of miRNAs probably
affects various molecular and cellular pathways in epilepsy,
including inflammation, oxidative stress, immune responses,
axon guidance, cell differentiation, migration, and proliferation
(Figure 1, Table 1). miR-134 regulates the number and volume
of dendritic spines, presumably through its target Limk1,
which plays important roles in dendritic spine morphogenesis
through phosphorylating and inactivating cofilin (Jimenez-
Mateos et al., 2015). miR-146a, miR-221, and miR-222 can
participate in epilepsy via regulating oxidative responses,
inflammation responses and immune responses through targets
such as interleukin 1β and cell adhesionmolecules (Aronica et al.,
2010; Kan et al., 2012).

Yan et al. (2016) found that the potential target genes of
miR-3613-5p, miR-4668-5p, miR-8071, miR-197-5p, miR-4322,
and miR-6781-5p, predicted by bioinformatics analysis, were
involved in biological processes, molecular functions, and cellular
components through affecting the calcium signaling pathway, the
MAPK signaling pathway and the PI3K-Akt signaling pathway.
These miRNAs may regulate seizure development in mesial
temporal lobe epilepsy with hippocampal sclerosis (mTLE-
HS). Yuan et al. (2016) found that silencing miR-132 has a
neuroprotective effect on cultured epileptic neurons and lithium-
pilocarpine-induced epileptic mouse models through the miR-
132/p250GAP/Cdc42 pathway by regulating the morphology and
electrophysiology of dendritic spines. Over-expression of miR-
184 was observed in mesial temporal lobe epilepsy patients
with hippocampal sclerosis compared with mesial temporal
lobe epilepsy patients without hippocampal sclerosis. miR-
184 may regulate inflammatory responses through regulating
inflammatory signal transduction and apoptosis (Danis et al.,
2016).

miRNAs as Putative Biomarkers of
Epilepsy
A series of studies have reported that changes of miRNAs
observed in certain biological fluids correlate with various
pathological conditions suggesting that circulating miRNAs
might be useful and informative biomarkers to reflect the
pathological status of the body (Valentino et al., 2017; Wang,
2017; Zendjabil et al., 2017; Zhao et al., 2017). Evidence has
emerged that miRNAs in blood or cerebrospinal fluid may serve
as potential biomarkers of brain injury (Weber et al., 2010;
Kulstein et al., 2016; Martinez and Peplow, 2016; Sirker et al.,
2016; Wang, 2017). These miRNAs in biological fluids may come
through the damaged blood–brain barrier after epilepsy onset or
originate from controlled release in exosomes (Choi et al., 2017;
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FIGURE 1 | Potential pathways of non-coding RNAs in epileptic brain tissues.

Gourlay et al., 2017). These miRNAs circulate in blood
or cerebrospinal fluid after release due to encapsulation in
extracellular vesicles or complexing with proteins (Turchinovich
et al., 2012). Animal studies in epileptic rat models suggest that
specific miRNA in blood plasma and sera reflected different types
of brain injury, including dynamic change after seizure onset and
a pattern unique to prolonged seizures (Gorter et al., 2014; Yan
et al., 2016).

Wang et al. (2015b) found that miR-106b-5p was up-regulated
in sera from epilepsy patients compared with healthy controls,
and miR-106b-5p had 80.3% sensitivity and 81.2% specificity
in diagnosis of epilepsy. Roncon et al. (2015) reported that the
alterations of miR-9a-3p, miR-466b-1-3p, miR-494-3p, and miR-
598-5p occurred earlier than the onset of the first spontaneous
seizure in a rat model. These miRNAs may be proposed as
putative biomarkers of epileptogenesis. Gorter et al. (2014)
compared the expression levels of miR-21-5p, miR-146-5p, and
142-5p in plasma with brain tissue in as SE rat model. They
found that the expression pattern of miR-21-5p at different time
points was similar to that observed in brain tissue. However, the
pattern of expression of miR-146a-5p and 142-5p was different
from the pattern observed in brain areas. miR-21-5p may serve
as a potential biomarker in plasma to reflect dynamic changes in
brain tissue. Sun et al. (2016) found thatmiR-30a was upregulated
in the sera of epileptic patients and the expression level of
miR-30a was positively associated with seizure frequency at the
onset of seizures. Of a total of 50 microRNAs, 2 were increased
and 48 were decreased and found to be differentially expressed
in mTLE-HS compared with healthy controls. Among these
miRNAs, miR-8071 had 83.33% sensitivity and 96.67% specificity
in mTLE-HS diagnoses and was associated with seizure severity

(Yan et al., 2016). Surges et al. (2016) found that more than 200
miRNAs were differentially expressed within 30 min of seizure
onset in the sera of patients. Among these miRNAs, miR-143,
miR-145, miR-532, and miR-365a were significantly deregulated.
They also found 10 miRNAs to be differentially expressed 20–
28 h after seizures in patients with seizures occurring during
sleep. miR-663b was significantly deregulated among these 10
miRNAs. Detectable transient miRNA alterations in blood sera
were detected after single seizures in the early postictal phase. Li
et al. (2016) found that miR-153 was down-regulated in temporal
cortexes resected from surgical mTLE patients compared with
control patients. Down-regulation of miR-153 in the plasma of
mTLE patients was also observed in an independent validation
cohort. These studies suggest that the expression level of miRNAs
in blood or cerebrospinal fluid is deregulated after epilepsy
onset, and some may relate to the severity and frequency of
epilepsy. Furthermore, the expression of these miRNAs circulate
in biofluids are stable. Due to these characteristics miRNAs may
serve as potential biomarkers of epilepsy in the future.

Prospects for miRNAs Therapeutics
At present, diagnosis of epilepsy is mainly based on the
clinical symptoms, neuroimaging and electroencephalograms.
Early diagnosis is closely related to the clinical prognosis of
epilepsy patients. miRNAs may be used as a biomarker in the
early diagnosis of epilepsy due to its tissue-specific and stable
expression. However, the multi-targeting and multi-pathway
actions of miRNAs make prediction and therapeutic function
difficult. Several studies have reported the potential therapeutic
targets of miRNAs; these studies provide a novel prospect of
epilepsy treatment and have improved our understanding of
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TABLE 1 | miRNAs profiling in epilepsy models and patients.

Tissues Dysregulated miRNAs Regulation Pathways targeted by the miRNAs References

Sera of epilepsy patients let-7d-5p, miR-106b-5p, -130a-3p, -146a-5p Up Regulating oxidative responses, inflammation

responses and immune responses through

interleukin 1β and cell adhesion molecules

(miR-146a)

Wang et al., 2015b

miR-15a-5p, -194-5p Down

Hippocampus and blood of

status epilepticus rats

miR-213, -132, -30c, -26a, -375, -99a, -24, -124a,

-22, -34a,-125a, -101-1, -29b, -125b, -199a,

-196b, -150, -151, -145

Up miR-134 altered the number and volume of

dendritic spines through Limk1 miR-132 has a

neuroprotective effect through the

miR-132/p250GAP/Cdc42 pathway

Wang et al., 2015a

miR-29a, -181c, -215, -181b, -25, -10b, -21 Down

Hippocampal granule cell

layer of pilocarpine-induced

epileptic rats

miR-15b-5p, -17-5p, -18a-5p, -19a-3p, -19b-3p,

-20a-5p, -20b-5p, -21-5p, -23b-5p, -24-3p,

-27a-3p, -92a-3p, -93-5p, -142-3p, -344b-2-3p,

-431,-466b-5p, -674-3p,-129-1-3p, -129-2-3p,

-129-5p, -181c-5p, -181d-5p, -409a-5p, -655,

-874-3p

Up miR-296-5p regulate apoptosis through

targeting caspase-3

Hu et al., 2011

miR-7a-1-3p, -107-3p, -138-5p,-139-3p, -186-5p,

-204-5p, -222-3p, -324-3p, -505-3p, -296-5p,

miR-500-3p and miR-652-3p

Down

Plasma of

pilocarpine-induced

epileptic rats

miR-466b-1-3p, -494-3p, -598-5p, -32-3p,

-300-3p, -30c-2-3p, -101b-3p, -142-3p, -142-5p,

-181a-1-3p, -374-5p, -466c-3p, -1188-3p,

-3065-3p, -3582

Down Hu et al., 2011

Hippocampal granule cell

layer of epilepsy patients

miR-21-5p, -23a-5p, -146a-5p, -181c-5p Up Chak et al., 2016

Hippocampal of status

epilepticus mice

miR-132, -219, -323, -21, -507, -518d Up Silencing miR-132 has a neuroprotective effect

through the miR-132/p250GAP/Cdc42

pathway

Gorter et al., 2014

miR-657, -520b Down

Sera of epilepsy patients miR-106b, -146a, -301a Up miR-146a can regulate inflammatory response Wang et al., 2015a

miR-194-5p Down

Sera of mesial temporal

lobe epilepsy patients

miR-143-3p, -145-3p, -365a-3p, -532-5p Up Weber et al., 2010

Sera of epilepsy patients miR-574-5p, -67, novel-9, -144-5p, -15a-5p,

-181c-5p, -194-5p, -889-3p, -96

Up Wang et al., 2015b

let-7d-5p, -106b-5p, -130a-3p, -146a-5p, -194-5p,

-204-5p, -221-5p, -301a-3p, -30b-5p, -342-5p,

-3605-5p, -4446-3p, -598-3p, -874-3p, -889-3p,

novel-451

Down

the targets of these miRNAs. A series of functional studies
have reported the potential therapeutic targets of epilepsy on
miRNA levels through administration of mimics or antagomirs
(Jimenez-Mateos et al., 2012; Wang et al., 2014; Yuan et al.,
2016). Pre-administration of miR-134 antagomirs to pilocarpine
mice reduced the number of mice that triggered SE, attenuated
the seizure degree of epileptic mice and increased survival rate
(Jimenez-Mateos et al., 2015). Yuan et al. (2016a) reported that
dysregulation of miR-128 expression may participate in glioma-
associated epilepsy in low-grade glioma, and that knockout
of the miR-128a could induce epilepsy in mouse models.

Yuan et al. (2016) found that silencing miR-132 decreased
the electrical excitability level in epileptic neurons, inhibited
the aberrant formation of dendritic spines and attenuated
chronic spontaneous seizures in a lithium-pilocarpine-induced
epileptic mouse models. Upregulation of miR-132 may be
associated with neuronal death and pretreatment with miR-
132 antagomirs can attenuate hippocampus injuries after SE
(Jimenez-Mateos et al., 2011). These results suggest that
silencing miR-132 has a neuroprotective effect and that miR-
132 may serve as a putative target for developing antiepileptic
treatment.
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Further studies focusing on the effect of miRNAs in animal
models or epileptic patients are needed in the future.

LONG NON-CODING RNA

Long non-coding RNAs (lncRNAs) are transcripts longer than
200 nucleotides that have little or no protein-coding capacity,
and have drawn intense research efforts recently (Schaukowitch
and Kim, 2014). While lncRNAs were at first considered
transcriptional noises, recent studies have demonstrated that
they play essential roles in biological pathways, including
X inactivation, imprinting, development, and differentiation
(Danis et al., 2016; Valentino et al., 2017; Zendjabil et al.,
2017). lncRNAs can regulate many processes in mammalian
and gene expression through a diversity of mechanisms and
at different levels, but the available research tools are still
insufficient. Therefore, their functions in epilepsy remain
unclear. It is known that lncRNAs can serve as molecular
scaffolds for combinations of chromatins and proteins, such as
homeobox A1 (HOXA1). lncRNAs can also act as enhancers,
for instance as enhancer RNAs (eRNAs). They can also
repress transcription through inhibiting RNA polymerase II
or mediating chromatin remodeling and histone modification
(Hewson et al., 2016).

Lee et al. (2015) performed a microarray analysis to compare
lncRNAs expression in pilocarpine and kainate models with
control mice to study epileptic mechanisms. They found
384 aberrant lncRNAs in the pilocarpine model and 279
aberrant lncRNAs in the kainate model. These dysregulated
lncRNAs may participate in epileptic mechanisms. lncRNAs may
regulate the occurrence and development of epilepsy through
a diversity of mechanisms, such as neurogenesis, regulation
of neurotransmitter, ion channels, and synaptic plasticity (Ng
et al., 2013). Xiao et al. (2017) reported that aberrantly
methylated lncRNA and pathway targets might be involved in
TLE development and progression. Abnormal development of
the nervous system may cause epilepsy. lncRNAs participate
in embryonic morphogenesis and neuronal differentiation in
the embryonic period (Mercer et al., 2010). For example,
Dlx1as can modulate the expression of neighboring homeobox
genes, thereby regulating neuronal differentiation (Ramos et al.,
2013). Evf2 plays a role in the regulation of homeodomain
transcription factors and the formation of GABA-dependent
neuronal circuitry in the developing mouse forebrain (Bond
et al., 2009). lncRNAs also participate in synaptic plasticity.
lncRNA Malat1 can increase the density of dendritic spines and
thereby modulate synaptic plasticity and neuronal regeneration
(Wu et al., 2013). The lncRNAs BC1 and BC200 modulate
protein synthesis in postsynaptic dendritic microdomains and
are thought to play roles in signal transduction and synaptic
plasticity. Studies have found that deficiency of BC1 increases
neuronal excitability and facilitates the progression of epilepsy
(Gitaí et al., 2011). Studies on cancer have found that lncRNA
H19 increases multidrug resistance 1 (MDR1) expression and
MDR1-associated drug resistance in liver cancer cells through
regulating MDR1 promoter methylation. It is considered that
MDR1 also plays important roles in the drug resistance of

refractory epilepsy. It may be supposed, therefore, that lncRNAs
may also participate in refractory epilepsy.

CIRCULAR RNA

CircRNAs are a novel type of noncoding RNA differing from
linear RNAs. A covalent bond linking the 3′ and 5′ ends
of circRNA form closed loop structures (Jeck et al., 2013;
Chen et al., 2015). Nuclease hydrolyzes target the tails of
linear RNAs, while circular RNAs form closed loop structures;
therefore, circRNAs are not susceptible to degradation by RNA
exonuclease or RNase (Chen et al., 2016). Due to the stability
of circRNAs, expression of circRNAs is more abundant than
the corresponding linear mRNAs in plasma (Li Y. et al.,
2015; Qin et al., 2016; Shao and Chen, 2016). CircRNAs are
highly enriched in eukaryotic organisms and display elevated
sequence conservation with specific expression in various tissues
during different developmental stages (Memczak et al., 2013;
Tan et al., 2017). CircRNAs can act as competitive endogenous
RNAs (ceRNAs); the temporal and spatial specificity of circRNA
expression supports this possibility (Dong et al., 2016; Ebbesen
et al., 2016; Gruner et al., 2016; Szabo et al., 2016). Some circRNAs
contain miRNA response elements (MREs) and can interact
with miRNAs as miRNA sponges (Hansen et al., 2013; Li F.
et al., 2015). Recently gathered evidence indicates that circRNAs
participate in the micro-regulation of miRNA expression levels
(Zhao et al., 2016; Xue et al., 2017). CircRNAs can perturb
miRNA inhibitory functions on target mRNAs by competitive
binding with miRNAs, and they can then regulate the expression
of target genes (Peng et al., 2016; Zhao et al., 2016; Tang et al.,
2017). For instance, sex-determining region Y (SRY) can act
as a natural miRNA sponge to suppress miR-138 activity (Yeh
et al., 2013; Granados-Riveron and Aquino-Jarquin, 2014; Zhao
and Shen, 2015). CircRNAs can modulate the expression of
other RNAs through partial base pairing with target RNAs. For
example, CDR1as can increase CDR1 mRNA stability through
complementary base pairing with CDR1 mRNA. CircRNA can
recruit the components of multiprotein complexes or directly
combine with proteins and regulate their activity. For example,
CDR1as can bind with the protein Argonaute (AGO). Recent
studies have found that circRNAs can act as translation templates
to encode proteins (Xu et al., 2015; Geng et al., 2016).

CircRNAs may participate in diseases through competitive
binding with target miRNAs based on their characteristics (Yu
et al., 2016; Xu et al., 2017). Many studies have demonstrated
that aberrant circRNAs are associated with the initiation and
development of various diseases, but much of the effort in
these studies into circRNAs has initially been devoted to cancer
research (Zhao and Shen, 2015; Nair et al., 2016; Li et al., 2017).
The relationship with epilepsy has not been reported, but the
regulatory role of circRNAs is considered widespread. Studies
have found that circRNAs are abundant in brain tissues and have
specific distribution (Dong et al., 2016; Kumar et al., 2016). For
instance, circRNAs are highly expressed in neuropils, especially
in dendrites, and participate in regulating synaptic function (You
et al., 2015). This suggests that circRNAs may participate in the
regulation of synaptic function and neuroplasticity, which play an
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important role in the development of epilepsy. The antisense to
the cerebellar degeneration-related protein1 transcript (CDR1as)
acts as a natural miRNA sponge, and can negatively regulate
miR-7. High CDR1as expression can decrease miR-7 activity by
binding to it and thus increasing target gene expression (Geng
et al., 2016). miR-7 is an important regulatory factor in signaling
pathways, and it can regulate many other regulatory factors such
as epidermal growth factor receptor (EGFR), insulin receptor
substrate-1 (IRS-1), AKT3, IRS-2,UBE2A, CTGF, p21-activated
kinase- 1 (Pak1), and Raf1(Reddy et al., 2008; Peng et al., 2016;
Zhao et al., 2016; Tang et al., 2017). Both CDR1as and miR-7
are abundant in brain tissues, and these regulatory factors play
important roles in epilepsy. Thus, we speculate that circRNAs
may participate in the epileptogenesis and development of
epilepsy. Studies have reported that some circRNAs seem to have
virus miRNA binding sites and can affect immune responses.
Wang et al. (2015) reported that circular RNA100783 may be
involved in chronic CD28-associated CD8 (+) T cell aging and
global immunosenescence. miR-138 has a protective effect on
brain injury and can regulate T helper 1 (Th1) and T helper
2 (Th2) expressions via inhibiting the function of runt-related
transcription factor 3 (RUNX3) and regulate IL-1β through
targeting Forkhead Box C1 (Fu et al., 2015; Tang et al., 2016;
Yuan et al., 2016b). Circular RNA SRY can act as natural
miRNA sponges to suppress miR-138 activity (Granados-Riveron
and Aquino-Jarquin, 2014). The above studies suggest that

circRNA may participate in inflammatory reactions that induce
neuropathy, therefore participating in the epileptogenesis and
development of epilepsy.

CONCLUSIONS

There are still significant gaps in our current understanding
of ncRNAs compared with coding RNAs, and many functions
remain unclear. Due to the abundance and stability of ncRNAs
in circulating fluids, they may be considered as clinical diagnosis
biomarkers in the future. Further study of ncRNAs will improve
our understanding regarding epileptogenesis and pathogenesis
of epilepsy and lead to new methods of diagnosis and
treatment.
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